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Abstract

We introduce TreeTop, an algorithm for single cell data analysis to
identify and assign a branching score to branch points in biologi-
cal processes which may have multi-level branching hierarchies.
We demonstrate branch point identification for processes with
varying topologies, including T-cell maturation, B-cell differentia-
tion and hematopoiesis. Our analyses are consistent with recent
experimental studies suggesting a shallower hierarchy of differen-
tiation events in hematopoiesis, rather than the classical multi-
level hierarchy.
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Introduction

Many important biological processes, such as differentiation in

developmental and immune biology, and clonal evolution in cancer,

can be conceived of as bi- or multi-furcated cellular state trajectories.

Hematopoiesis is such a process, where hematopoietic stem cells

(HSCs) give rise to multiple distinct mature blood cell types via a

sequence of lineage commitments. The exact sequence is still

debated (Perié & Duffy, 2016), either assuming a hierarchical archi-

tecture of multiple fate decisions via distinct oligopotent progenitor

cell states (Weissman et al, 2001; Orkin & Zon, 2008; Seita &

Weissman, 2010), or a simpler hierarchy of hematopoiesis, with very

few oligopotent progenitors, where multipotent cells differentiate

directly into committed lineages (Paul et al, 2015; Notta et al, 2016;

Velten et al, 2017).

High-dimensional single cell technologies, such as single cell

RNA sequencing (Tang et al, 2009) and mass cytometry (Bendall

et al, 2014), constitute widely used tools to investigate such oppos-

ing models of differentiation, and other branching processes. These

technologies allow the evaluation of the state of single cells, i.e. the

transcriptional or proteomic abundance profile in the case of single

cell RNA sequencing or mass cytometry, respectively. Biological

processes can be conceived of as trajectories through state space:

ordered sequences of cellular states that can either be derived from

time series or reconstructed from non-time series single cell data

(Stegle et al, 2015). We define a branch point as the location in

state space where three or more distinct cellular state trajectories

meet. Branch points dissect these trajectories into distinct state

trajectory branches.

Identifying branch points is challenging because for each single

cell measurement, both branch membership and ordering within

each branch must be learned simultaneously. SPADE was the first

approach to fitting multiple branches, by fitting a single minimum

spanning tree to non-deterministically clustered data (Bendall et al,

2011). Monocle fits smoothed trees to a low-dimensional represen-

tation of single cell data, where branch points in the tree are

assumed to correspond to branch points in the data (Trapnell et al,

2014; Qiu et al, 2017). Both Monocle and SPADE by definition

impose a tree topology, regardless of the actual topology of the

data. Wishbone (Setty et al, 2016) and diffusion pseudotime

(Haghverdi et al, 2016) both use an embedding whose distances

correspond to those along the underlying low-dimensional mani-

fold, representing the data via diffusion maps (Coifman et al,

2005). Distinct branches are then identified via anti-correlations in

graph distances to a selected root point that has to be sensibly

defined a priori. SCUBA uses bifurcation theory of dynamical

systems to determine the presence or absence of branching points,

but requires the data to have annotations of time (Marco et al,

2014). TSCAN first clusters the data, then like Monocle infers a tree

from the data (Ji & Ji, 2016). p-Creode fits multiple trees to the data,

uses the data to smooth them, then identifies the tree which is most

central within these (Herring et al, 2017). These algorithms can all

(with the exception of SCUBA, which requires time annotations)

return branch points regardless of the actual evidence in the data,

and any decision on the presence or absence of a branch point must

be made by the user.

Results and Discussion

We introduce TreeTop to address these shortcomings: in particular,

the inability of other algorithms to inform users whether or not a

branch point is present, and in addition the supervised root point
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selection of Wishbone, and the strong topological assumptions of

Monocle. TreeTop takes as input high-dimensional single cell

measurements. Via a representation of the data as an ensemble of

trees, it identifies branch points which may join more than three

branches, and assigns a relative branching score to the identified

branch points. TreeTop first approximates the topology of the input

dataset by an ensemble of trees (Fig 1A). A set of reference nodes,

representing subpopulations of cells with similar states, is selected

by the algorithm. These are connected by sampled trees, each of

which may have different edges connecting the nodes, capturing the

spectrum of possible transitions between states of the underlying

biological process. Secondly, each node is scored for branching by

quantifying how consistently cutting each tree at that node partitions

the ensemble of trees into separate branches (Fig 1B, Materials and

Methods).

To assess how confident we are in a branch point derived from a

dataset, we normalize this score, by comparison to reference score

distributions: distributions of scores calculated from synthetic data

A

D F G

E
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Figure 1. TreeTop methodology and demonstration.

A Reference nodes are selected to be evenly distributed through data via seeding algorithm for k-means (Moseley et al, 2012); all other cells are assigned to closest
reference node. Each tree is sampled by selecting a cell from each partition uniformly at random, then joining these points via a minimum spanning tree.

B To assess each reference node as a branch point (red), each tree in the ensemble is cut (removed edges are shown dashed), partitioning the remaining cells. Mean
pairwise co-occurrence across all branch matrices stored in consistency matrix, i.e. (i, j) entry is proportion of trees in which cells i and j were in the same branch,
when cut at the red cell. Hierarchical clustering (single linkage) is performed on each consistency matrix. Sizes of the largest clusters are then calculated over all
possible dendrogram cut heights, and used to score each point for branching; raw branching score is mean size of third and smaller clusters over all thresholds.

C Cartoon of reference datasets based on randomly generated synthetic datasets defined to contain structure but no branch points, over a range of parameters for
comparison with different sizes of input datasets.

D Cartoon of cell types in maturation of T cells in thymus.
E Force-directed graph layout of mass cytometry thymus data [30 antibodies used (Setty et al, 2016)], pre-processed with diffusion maps (Materials and Methods;

Coifman et al, 2005). Point with highest relative branching score (black) is reported branch point, although more than one point may have a score indicating
branching. Colours indicate identified branches.

F TreeTop layout annotated with abundances of selected proteins.
G Abundance profiles for proteins on branches; x-axis is mean tree distance from identified branch point. Proteins selected for most significant differences between

branches. Significance is calculated via ANOVA applied to marker abundances for each branch, Bonferroni-corrected.
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defined to not contain branch points, but to be comparable to the

considered experimental data, i.e. having the same number of obser-

vations and dimensionality as the test data. This procedure results

in a relative branching score indicating how much more branching

was observed, relative to that observed in simple non-branching

topologies. This allows us to state whether there is evidence that a

given input dataset supports branching (Fig 1C, Materials and

Methods). Our method therefore suggests where branching

processes are likely, to be subsequently confirmed by further experi-

mental work.

Alternative methods for identifying branch points always return

the optimal branch point identified, regardless of whether one is

supported by the data. We applied TreeTop, Wishbone and

Monocle to non-branching synthetic datasets, including those used

to define reference score distributions for data from non-branching

processes (Appendix Fig S1A–D). Both Wishbone and Monocle

identified three non-trivial branches in such datasets, where none is

present. TreeTop’s relative branching score is defined with refer-

ence to datasets such as these, specifically to avoid false-positive

branch point identifications.

Assessment of the presence of branch points has typically been

done qualitatively, via visual inspection of suitable projections.

However, we have found these to be misleading: the embeddings

found by Monocle identify exclusively trees, regardless of the

topology of the data (Appendix Fig S1B). t-SNE projections

(van der Maaten & Hinton, 2008), as used by Wishbone, are

A

C
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B

Figure 2. TreeTop applied to mass cytometry data is consistent with shallow hierarchy model of hematopoiesis.

A TreeTop, Wishbone and Monocle compared on healthy human bone marrow mass cytometry data (Amir et al, 2013). TreeTop and Wishbone applied to full dataset,
Monocle applied to sample of 2,000 cells. Top row shows layouts and branches identified by each method. Bottom row shows specificity of manual gate allocation to
identified branches: heading of plot shows normalized mutual information (NMI; Danon et al, 2005) across all gates, branches. Ungated populations excluded. Plots
showing layouts annotated by markers used are shown in Appendix Fig S8.

B Cartoon of recursive application of TreeTop to identify hierarchies of branch points. TreeTop decides whether to recurse at each step by reference to relative
branching score.

C Cartoon of generation of hierarchically branching synthetic data, following classical hematopoietic architecture (Weissman et al, 2001; Materials and Methods).
D TreeTop layout of synthetic deep hierarchy branching data as positive control, annotated species selected to illustrate branch evolution.
E Result of recursive application of TreeTop to synthetic branching data, showing identification of hierarchy of branch points.
F Result of recursive application of TreeTop to healthy human bone marrow data, showing only one branch point identified.
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independent of the branch inference procedure, and frequently do

not respect the continuity of the underlying process (Appendix Fig

S1C). By representing the data by an ensemble of trees, rather than

one individual tree, TreeTop is able to represent a much wider

class of underlying topologies, including those with cycles (repre-

senting a cycle with one individual tree requires the tree to be cut

at some point; with an ensemble of trees, each tree can be cut at a

different point, allowing the full cycle to be represented). TreeTop

visualizes the learned ensemble of trees via a force-based graph

layout and provides a flexible and interpretable layout for the

input dataset: comparison to the first two principal components of

sample synthetic datasets shows that TreeTop’s graph-based visu-

alization accurately captures the global structure of the data

(Appendix Fig S1D).

We assessed TreeTop’s capability to suggest the presence or

absence of branch points for biological processes with different

known topologies. We applied TreeTop to mass cytometry data of

T cells undergoing maturation in the thymus (Setty et al, 2016), a

process known to comprise a simple branch point with well-under-

stood state transitions (Fig 1D). TreeTop assigns a score of 1.8 for

this branch point (where 1 is the maximum score observed in

comparison non-branching topologies). The layout shows three

clearly distinct branches (Fig 1E), and the markers identified as

showing the greatest difference between branches are consistent

with biological expectations (Fig 1F and G, Appendix Fig S2).

Application of TreeTop to B-cell maturation mass cytometry data

(Bendall et al, 2014), a linear process, gave a score of 0.97, indi-

cating no branching, or weak evidence of branching, consistent

with the expected consecutive changes in marker abundances.

TreeTop’s layout also shows a linear structure (Appendix Fig S3).

Performance of the alternative methods above was mixed, with

Wishbone identifying large branches in the linear B-cell maturation

data (Appendix Figs S4 and S5), and Monocle identifying a cluster

of smaller spurious branches (Appendix Figs S6 and S7). The

flexibility of the ensemble of trees learned by TreeTop permits the

accurate assessment of a wide range of topologies.

A B C

D E F

Figure 3. TreeTop applied to single cell RNA-seq is consistent with an erythroid-myeloid branch point.

A–C TreeTop applied to single cell RNA-seq data derived from 2,730 haematopoietic stem cells taken from healthy human bone marrow (Paul et al, 2015). (A) Results of
recursive application of TreeTop to data from Paul et al, which finds a branch point separating Erythroid, Megakaryocyte and other cell types, then separates
additional cell types. TreeTop applied to first eight diffusion components, based on “elbow” criterion. (B) Colours correspond to branches identified by TreeTop,
displayed over TreeTop layout. Underscores denote sub-branches; i.e., 1_1, . . ., 1_4 are the sub-branches of branch 1 identified by TreeTop. (C) Contingency table
showing matching between branches identified by TreeTop and labels from Paul et al (Ery, Erythroid; Eos, Eosinophil; GMP, Granulocyte–macrophage progenitor;
MEP, Megakaryocyte–erythroid progenitor; Baso, Basophil; Mo, Monocyte; Neu, Neutrophil; Mk, Megakaryocyte; DC, Dendritic Cell; Lymph, Lymphoid). Labels not
used in TreeTop calculations.

D–F TreeTop applied to single cell RNA-seq data derived from 1,034 haematopoietic stem and pluripotent cells taken from healthy human bone marrow (Velten et al,
2017). Data from donor 1 used, pre-processed (variance stabilizing transform) as in original paper. TreeTop applied to diffusion map processed data. (D) Results of
recursive application of TreeTop to data from Velten et al, which finds one branch point. TreeTop applied to first 11 diffusion components, based on “elbow”

criterion. (E) Branches identified by TreeTop, displayed over TreeTop layout. (F) Contingency table showing matching between branches identified by TreeTop and
labels from Velten et al paper. Labels not used in TreeTop calculations. Labels taken from STEMNET classifier (Velten et al, 2017) applied to processed mRNA species
abundance values (Mk, Megakaryocyte; Eo.Baso, Eosinophil/Basophil; B, B cell; Mono-D, Monocyte/Dendritic Cell).
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TreeTop enables us to assess whether branch points may be

present in datasets whose structure is uncertain. We examined the

two competing models for hematopoiesis, namely a deep or a shal-

lower hierarchy, by applying TreeTop to mass cytometry data of

healthy human bone marrow (Amir et al, 2013). TreeTop suggests a

branch point (score = 1.7) connecting five distinct branches (Fig 2A,

Appendix Fig S8); the ensemble of trees allows branch points

connecting more than three branches to be identified. Inspection of

marker expression within the branches suggests that these corre-

spond to T cells (CD3+), NK cells (CD7+), myeloid cells (CD33+), B

cells (CD19+ CD20+), and granulocytes (CD24+/CD15+; gating

description in Appendix Fig S9). These branches are connected by a

branch point that does not express any markers for differentiated cell

types, corresponding to the HSC compartment, consistent with its

expected central position within the hematopoietic process. TreeTop

enables us, in contrast to currently available approaches, to assess

the presence of further subsequent branch points supporting the deep

hierarchy model (Fig 2B). To confirm that TreeTop is able to find

hierarchies of branch points, we applied TreeTop recursively to

synthetic data specified to be representative of mass cytometry data

and to include a hierarchy of branch points (Fig 2C–E, Appendix Figs

S10 and S11, Materials and Methods), and identified clear further

branches. We examined the presence of further branch points in the

bone marrow data by applying TreeTop recursively to each of the five

identified branches; it did not suggest further branch points within

the branches (Fig 2F). This result is consistent with no further,

deeper branch points within the set of markers measured.

In addition to analysing mass cytometry data, we also applied

TreeTop to two single cell RNA-seq datasets from healthy human

bone marrow (Fig 3, Materials and Methods). Applied to the data

obtained by Paul et al (2015), TreeTop identified first a branch

point separating Erythroid/MEP, Megakaryocyte and the remaining

cell types (score = 1.9, Fig 3A–C, Appendix Fig S12), then a branch

point separating the remaining cells into differentiated cell types

(score = 2.7). We also analysed the data obtained by Velten et al

(2017), comprising a smaller number of cells (1,034 relative to

2,730 for the Paul et al dataset). TreeTop suggested a single branch

point separating differentiated cell types into six branches

(score = 1.5, Fig 3D–F, Appendix Fig S13). Here, all differentiated

cell types are separated into individual branches, with the exception

of Erythroid, Megakaryocyte and Eosinophil/Basophil cells, which

comprise branch 1. The small branch cell counts (37–380 cells per

branch) precluded recursive application of TreeTop. Taken together,

these results are consistent with the findings of Paul et al, and also

with additional work based on single cell lineage tracing, which

indicates that the divergence between myeloid and erythroid cells

begins within MPPs (Perié et al, 2015).

TreeTop is able to discriminate between processes with and

without branch points, from datasets comprising up to millions of

cell events, and identify multifurcations as well as multiple levels of

branch points. We showed that alternative methods for branch anal-

ysis of single cell data can report branches, where they are known

not to exist. By comparison with branching scores from non-

branching synthetic data, TreeTop reduces the potential for unnec-

essary investigation of false-positive branching results. TreeTop

provides support for the shallower hierarchy model of hematopoi-

esis, rather than the classical deep hierarchy based on oligopotent

progenitors. The complexity of modern single cell data requires

dedicated computational approaches such as TreeTop to identify

possibly branched transitions between new cell types, and to reex-

amine assumed state trajectories in the light of high-dimensional

technologies such as single cell sequencing and mass cytometry.

Such approaches have led to reevaluations of long-standing previ-

ous hypotheses about the complexity and plasticity of cell types in

both health and disease, including identification of new cell types

such as emergency NK cells (Ohs et al, 2016) and human innate

lymphoid subsets (Simoni et al, 2017), and transitions between

them, such as myogenic progenitors (Porpiglia et al, 2017). TreeTop

provides a tool based on a novel conceptual approach to assess the

presence of branch points for biological processes observed via

high-dimensional single cell datasets, and examine the findings via

an interpretable layout.

We provide a MATLAB package for TreeTop (https://github.

com/wmacnair/TreeTop).

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Software

MATLAB 2017a MATLAB and Statistics Toolbox
Release 2017a, The MathWorks, Inc.,
Natick, Massachusetts, United States

R version 3.5.1 (2018-07-02) R Core Team (2018) R: A language and
environment for statistical computing.
Vienna, Austria: R Foundation for
Statistical Computing

Monocle 2.10.0 Reversed graph embedding resolves
complex single cell trajectories, Qiu
et al, Nature Methods, 2017

Wishbone 0.4.2 Wishbone identifies bifurcating
developmental trajectories from single
cell data, Setty et al, Nature
Biotechnology, 2016
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Methods and Protocols

TreeTop overview
This section describes the geometrical intuition motivating TreeTop.

Intuitively, branch points can be thought of as the location in some

space where three or more distinct state trajectories meet. In our

case, the space is the state space of cells, consisting of possible

vectors of species abundances for individual cells. In mass cyto-

metry, species correspond to proteins, and in single cell RNA-seq,

species correspond to mRNA trancripts. To identify such points, we

sample an ensemble of random trees representing possible transi-

tions in the dataset, then score every point based on how consis-

tently it partitions the remaining points into distinct branches.

Briefly, we first sample an ensemble of random trees defined

over a set of reference nodes, i.e. a representative subset of cell

measurements. Each tree uses the same set of reference nodes;

however, the connections between them may differ. In regions

where data have consistent structure, many connections will be

common across trees; in diffuse regions, we will observe high vari-

ability in connections. The ensemble of trees therefore captures how

the subpopulations of cells may be connected to each other.

We use the learned ensemble of trees to look for branch points

by considering each reference node in turn. For a given tree, we cut

the tree at this reference node, partitioning the tree into branches.

We then compare these induced branches across all trees, looking

for consistency between them: a point where branching is observed

will partition the remaining points into at least three branches

which are similar across many trees, while one with no branching

will show little similarity between the branches, or less than three

induced branches. Hierarchical clustering on the consistency matrix

allows us to identify these branches, and to quantify how consistent

they are via a raw branching score.

Raw branching scores alone are not sufficient to assess whether

a dataset is sampled from a branching process; they must be contex-

tualized with information on typical scores from data for non-

branching processes. To do this, we compare the scores of prospec-

tive branch points to scores derived from synthetic data with simple

topologies not containing branch points. When the scores are the

same or lower than those observed in the non-branching data, this

suggests that no branching is present.

TreeTop fits trees to the data, which capture transitions between

cell subpopulations. Important implicit assumptions of our method

(and alternative methods) are therefore that the data are sampled

from a continuous biological process, and that the data are sampled

from the full range of the biological process of interest. If these crite-

ria are not met, the cell subpopulations are separated in state space,

and no evidence is available to determine the likely connections

between them.

Data preprocessing
Mass/flow cytometry data are arcsinh-transformed [with cofactors

of 5 for mass cytometry (Bendall et al, 2014) and 150, or otherwise

depending on the fluorescent tag, for flow cytometry]. Where the

data are a mixture of non-overlapping components, the dimension-

ality reduction technique diffusion maps (Coifman et al, 2005)

results in embeddings of the mixture components which are approx-

imately orthogonal, with one diffusion component per mixture

component (Schiebinger et al, 2015). This motivates preprocessing

data with diffusion maps, then taking the diffusion components with

the largest eigenvalues as inputs to TreeTop.

There are many possible methods for reducing the dimensional-

ity of single cell data. Given the wide range of processes from which

they are sampled, we do not believe that is sensible to specify a

universal recipe for upstream analysis. TreeTop is compatible with

any selected preprocessing. We would advise trying multiple dimen-

sionality reduction techniques to identify the one which best reflects

prior biological knowledge about the data, and potentially also

running TreeTop using each set of preprocessing options.

We have implemented several possible distance measures,

including L1 (Manhattan distance), L2 (Euclidean) and angle

distance. We have found little difference in results between L1 and

L2; throughout this manuscript, we have used L1.

Construction of ensemble of trees
TreeTop first selects reference nodes, which represent subpopulations

of cells with particular profiles of molecular species expression. Initi-

ally, we perform density-based downsampling of the data, to remove

outliers which could cause shortcuts, and to reduce bias towards

species expression profiles more densely occupied by cells (as

described in Qiu et al (2011)). The user must give an appropriate

value of scale, r, for calculation of density (TreeTop provides func-

tionality to assist users in this decision). TreeTop then selects a small

number k of reference nodes, chosen to be evenly distributed through

the data, thereby avoiding redundant concentrations of reference

nodes in the same region. This is based on an algorithm developed

for efficient initialization of k-means (Moseley et al, 2012).

We use k = 200 throughout this study, as a balance between too

few nodes, which would not allow accurate representation of all

subpopulations and transitions in the data, and too many, requiring

extensive computation for little increase in resolution. We suggest

using k = 200 where possible, and considering smaller values of k

for datasets with smaller numbers of cells. The number of nodes

selected does not have a large influence on the branches identified,

or the relative branching score (Appendix Fig S14). Many of the

early single cell RNA-seq datasets comprise up to 200 cells. The

construction of TreeTop consequently requires an even smaller

number of reference cells, say 20. The problem proposed is then the

identification of branches for a set of 20 nodes. This set is small and

based on noisy and extremely high-dimensional data. If we reduced

the dimensionality to 10 dimensions, for example, we are sampling

20 noisy points from a 10-dimensional space and asking whether

they form connected branches. This is a too small number of data-

points for such a problem, and therefore, we do not recommend

TreeTop analysis for small cell numbers (TreeTop is written to

return an error when it is applied to data with < 1,000 cells). This

problem is also largely resolved for the larger single cell RNA-seq

datasets measured with current droplet-based technologies.

The remaining cells are then labelled according to their closest

reference node, partitioning the dataset into a Voronoi tessellation.

Density-downsampled cells are excluded for the purpose of selecting

the k nodes, but included for calculating the Voronoi tessellation;

outliers are permanently excluded from the dataset.

TreeTop then samples a random ensemble of n trees connecting

these reference nodes. Within each Voronoi partition, one cell is

selected uniformly at random, giving the same number of points as

reference nodes, k. These are then joined by a minimum spanning
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tree (MST), giving a unique set of edges which connect the reference

nodes and do not contain cycles. For each tree, the edges identified

are recorded in an adjacency matrix, where edge weights corre-

spond to the distances between the selected cells.

Ensemble of trees visualization
Visualization of the data is based on a force-directed graph layout

algorithm. This class of approaches takes as input a graph, consist-

ing of nodes connected by edges, where the edges may have weights

associated with them. These can be viewed as springs, which are in

a low energy state when the distance between the ends is similar to

their weight, and in a higher energy state when it is different. Force-

directed graph layout algorithms seek an embedding of the graph in

a low-dimensional space that minimizes the resulting energy.

To apply this to TreeTop, we first take the mean over all edges in

all trees in the ensemble, resulting in a “union” graph that has an

edge between two nodes where that edge occurred in at least one of

the trees. Each edge has two values associated with it: the propor-

tion of trees in which it occurred, and the mean distance between

the nodes across those edges. To improve clarity of the graph, we

then remove edges that occurred with low frequency, applying the

maximum possible frequency threshold that still results in a

connected graph. We then apply a force-directed graph layout algo-

rithm to this graph (Harel & Koren, 2001).

The union graph is effectively a superposition of all the trees in

the ensemble. It typically is not a tree and can therefore contain

cycles. To illustrate this point, consider a dataset sampled from the

circumference of a circle (as in the third column of Appendix Fig

S1). Here, Monocle fits a tree with no branches, but with a cutpoint

at some point around the circle (Appendix Fig S1C). Each of the

individual trees sampled by TreeTop also must include a cutpoint,

at different points around the circumference, but taken together the

topology they identify is correct (Appendix Fig S1D).

Identification of branch points
We identify branch points by evaluating how consistently a given

node partitions the other nodes into three or more branches, across all

members of the ensemble of trees. We quantify this consistency by a

branching score defined as follows. If we “cut” a tree by removing one

of its nodes, by definition of a tree this partitions the remaining nodes

into disconnected components, or “branches”. Taking a node x and

removing x in all n trees T1,. . .,Tn in the ensemble, we obtain n parti-

tions of the remaining nodes into induced branches. For all pairs of

nodes i, j 6¼ x, we then calculate the proportion Bxij of the trees in

which i and j were assigned to the same branch. If Bxij is close to 1,

then cutting at x often placed i and j into the same branch; if it is close

to 0, then i and j were rarely placed into the same branch. If x is a

branch point, we should be able to cluster the points such that pairs of

points taken from within a cluster have a high probability of being

placed into the same branch, and pairs of points taken from different

clusters have a low probability of being placed into the same branch.

We quantify the extent to which each node x satisfies this criterion via

single-linkage hierarchical clustering, using the matrix Bx as a similar-

ity measure, which we use to calculate a raw branching score.

Our raw branching score is the mean size of the clusters indicat-

ing the presence of a branch point, namely the third largest (and

any smaller) clusters; hereafter branch clusters. For a given set of

similarity values, the threshold at which the dendrogram is cut

determines the outputs of hierarchical clustering. The raw branch-

ing score for node x is the mean size of the branch clusters across

100 cut thresholds over the interval [0, 1]; this assesses the average

size of the branch clusters at a putative branch point. The node with

the largest branching score is the identified branch node (and will

correspond to the multiple individual cells assigned to that node).

Note that we evaluate the mean size of the third largest and

smaller clusters, rather than just the size of the third largest cluster.

This is to permit identification of multifurcations. Where a dataset is

sampled from a process joining more than 3 branches, the size of

the third branch is smaller: scoring on the basis of only the third

largest cluster would make multifurcations more difficult to identify.

Relative branching scores
We compare the raw branching scores of prospective branch points

to distributions of scores derived from synthetic data with simple

topologies not containing branch points, termed reference score

distributions. By normalizing raw branching scores by the highest

scores observed in comparable non-branching data, we obtain a

relative branching score indicating the strength of evidence for

branching in a given dataset.

Choice of synthetic reference data topologies for reference

score distributions

The definition of reference score distributions must account for situa-

tions where data have no branch points but may have other struc-

ture. We initially tested permutations of the data [permutations of

data are widely used in statistics to identify the size of an effect

above background rates (Good, 1994)]. However, in this case permu-

tations of the original data (by randomly permuting the set of values

for each input dimension) also disrupted commonly present non-

branching structures. In almost all real and synthetic data that we

tested, this yielded extremely low scores that were lower than those

observed in synthetic and real data known not to contain branch

points (Appendix Fig S15). We addressed this problem by specifying

reference score distributions from synthetic datasets with simple

topologies without branch points, which would then result in the

procedure rejecting the widest range of non-branching datasets.

We assume that the data are sampled from a continuous process,

and that measurement of the data is noisy. To identify a reference

score distribution which gives the highest possible raw branching

scores, while not containing branch points, we therefore considered

synthetic datasets sampled from relatively simple, connected non-

branching topologies. As possible sets of reference score distribu-

tions, we considered embeddings of simple, non-branching, low-

dimensional manifolds in a higher-dimensional space, with Gaus-

sian noise. Analysis of the effect of dimensionality on the raw

branching score shows that the highest raw branching scores derive

from input datasets which are 2-dimensional manifolds embedded

in a higher-dimensional space (Appendix Fig S16). Within 2-dimen-

sional manifolds, we consider only convex manifolds, to exclude

branching processes. Of these, we found that triangular input data

gave the highest raw branching scores (details for generating this

synthetic data are given in Appendix Table S1) and found that the

score distributions from 2-dimensional triangular data consistently

gave the highest branching scores (Appendix Figs S15 and S16). We

therefore used reference score distributions based on triangular

synthetic data for calculating the relative branching scores.
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While we consider synthetic datasets which cover a wide range

of simple non-branching topologies (0-, 1- and 2-dimensional non-

branching manifolds with measurement noise added), we cannot

exclude that more intricate non-branching topologies could also

result in high raw branching scores. However, we expect the data

actually observed are unlikely to follow such non-branching topolo-

gies, as any fine structures will be obscured by measurement and

biological noise, which are known to account for much of the varia-

tion in single cell data (Elowitz et al, 2002).

Defining a reference score distribution specific to the input dataset

For a given input dataset, it is important that the reference score

distribution used for calculating the relative branching scores is

appropriate, i.e., it is based on synthetic data which has similar

dataset-specific parameters to the input dataset. We consider the

following relevant dataset-specific parameters:

1 number of single cell measurements (n_obs),

2 dimensionality of the single cell measurements (d) and

3 standard deviation of the noise (q), comprising biological varia-

tion independent of the branching process and measurement noise.

In addition, we consider an analysis-specific parameter, namely the

number of reference nodes for the TreeTop runs (k), to derive the

final reference score distribution for calculation of relative branch-

ing scores.

This procedure requires identifying comparable dataset-specific

parameters for a given input dataset. This is trivial for number and

dimensionality of single cell measurements. However, accurately

specifying the extent of noise (i.e. unwanted variation due to

measurement and biological variability) is typically not feasible. We

address this difficulty by choosing a reference score distribution to

have the highest scores possible amongst all noise parameter values.

We found that score distributions of raw branching scores derived

from non-branching synthetic data without measurement noise have

higher scores than those from datasets with non-zero measurement

noise (Appendix Fig S17). This makes intuitive sense: the noise we

add means that the synthetic data we generate is a mixture of an

underlying manifold and a multivariate Gaussian, and we have

observed extremely low scores for Gaussian-distributed synthetic

data (Appendix Fig S15). If we knew confidently the type and degree

of noise for the relevant data type (e.g. mass cytometry or single cell

RNA-sequencing data), we could construct data type-specific refer-

ence score distributions, based on appropriately noisy synthetic

data, which might then avoid some possible false negatives

currently resulting from our conservative approach.

On this basis, we define an input dataset-specific reference score

distribution for testing a new input dataset by using synthetic data

with (i) zero measurement noise, and (ii) comparable settings for

the remaining dataset-specific parameters, i.e. the number and

dimensionality of single cell measurements. This dataset-specific

reference score distribution is equally or more conservative than the

ideal, dataset-specific reference score distribution that we would

choose knowing the correct, but unavailable, measurement noise

parameter.

Calculation of relative branching scores

For efficient processing of a new input dataset, we use a set of

precomputed reference score distributions corresponding to a grid

of dataset-specific parameter values covering the range we expect to

see in new input datasets. For each individual input dataset, we

choose the reference score distribution with the most similar param-

eter values to the input dataset. Specifically, for each possible

combination of the following parameter lists, we applied TreeTop to

1000 randomly generated synthetic datasets with this parameter

combination:

1 n_obs = 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000,

80,000, 90,000, 100,000

2 d = 5, 10, 15, 20, 25, 30

3 k = 50, 100, 150, 200

4 q = 0

For each TreeTop run, we took the maximum raw branching

score observed, giving a score distribution of 1,000 maximum raw

branching score values for each of these 240 combinations of

parameter values (i.e. a set of 240 reference score distributions). For

a given input dataset, we apply TreeTop to obtain the raw branching

scores. We then take the maximum raw branching score observed

for the input dataset bmax, and compare it to bref, the 95th percentile

of the observed scores in the reference score distribution with the

most similar parameter values, as a robust measure of the typical

highest score in the reference datasets. We then report bmax/bref as

the relative branching score for this dataset.

We include this set of reference score distributions in our

TreeTop package, and we have calculated a lookup table based on

the range of numbers of observations, reference nodes and dimen-

sionalities; for a given run, the package automatically selects the

closest most conservative score distribution for comparison. The

lookup table means that the test is not exactly specific to the data in

question. However, we find the differences between score distribu-

tions that are neighbours in the lookup table to be small, and using

a lookup table makes such an approach practical. The output from

TreeTop, specifically the resulting relative branching score, is in

principle conditional on the selected value of k. However, analysis

of multiple runs on the same data with differing values of k suggests

that the results are not sensitive to this choice (Appendix Fig S14).

The range of dimensionalities made available in the lookup table

is based on what is typical for flow and mass cytometry. Single cell

RNA-seq data typically have much higher dimensionality, with

several thousand features. However, techniques for assessing the

overall structure of single cell RNA-seq datasets (rather than dif-

ferential expression techniques, which seek to identify individual

genes) have the starting assumption that the data exist on some

lower-dimensional manifold. If much of the variance in the data

cannot be explained by a lower-dimensional manifold, then the

proposed macro-structure (such as trajectories) cannot be reliably

inferred from the data. To run TreeTop on single cell RNA-seq data-

sets, we therefore first transform the data into a lower-dimensional

representation, within the range of dimensionalities specified above.

User interpretation of branching score outputs

In Appendix Fig S3, we applied TreeTop to B-cell maturation data,

based on PCA components of this data (first 10 PCs, accounting for

90% of variation), using TreeTop’s default L1 distance. This

resulted in a relative branching score of 0.97, which is just under

the threshold of 1 and could be interpreted as weak evidence in

favour of branching; this is consistent with the underlying biology.

The graphical outputs of TreeTop show clear up-regulation of kappa

and lambda chain expression along a linear trajectory. A larger
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dataset that included more mature B cells would most likely show

completely separated kappa and lambda clusters, and lead to a

conclusion of branching from TreeTop.

TreeTop is intended to have a measure of conservativeness, in

contrast to the other methods discussed. Although this may possibly

result in under-reporting of branching (in this B cell example, the

underlying biology is known to branch at some point in the

process), it can be combined with user interpretation to suggest

weak evidence of branching (i.e. where the relative branching

scores are close to 1), which may indicate an area for further study.

Multi-layer branch point identification
Recursive application of TreeTop can reconstruct deep hierarchies

of branch points. TreeTop applied to a branching dataset identifies

both a branch point, and the corresponding branches induced at this

point. We can recursively apply TreeTop to each of the branches,

potentially resulting in further branch points and branches within

these (Fig 2B). For visualization, we use the force-directed graph

layout for the whole dataset (i.e. the top-level application of

TreeTop) and display all identified branch points obtained via recur-

sive TreeTop application, with leaf nodes to show branches contain-

ing no further branching.

TreeTop Pseudocode
1 Preprocessing of data

2 Calculate density of points, based on an appropriate r
3 Density-based downsampling, removal of outlier cell events (as

described in the section Density-dependent down-sampling

within the Methods of Qiu et al, 2011)

4 Pick reference nodes via k-means ++ (Moseley et al, 2012)

5 Voronoi partition of cells according to closest reference node

6 For n from 1 to N, sample tree Tn:

a Uniformly at random pick one point from each Voronoi parti-

tion

b Join these by MST

c Record details of MST: adjacency matrix with distances, IDs of

cells picked, any gating of selected cells

7 Generate force-directed graph layout embedding based on

ensemble of trees

8 For every candidate branch point x:

a For every tree n:

i Cut at this branch point, giving branches b(i) = b(x, n, i)

for each point i 6¼ x

ii Record induced branches as matrix Bxn

(Bxn)ij = db(i)b(j)
(i.e. 1 where in same branch, 0 where different)

b Take mean of bs across all trees n, giving matrix

Bx = Bxij = P(i, j in same branch | cut at x)

c Do single-linkage hierarchical clustering using Bx as similarity

matrix, to generate dendrogram Dx.

d For each threshold pcut = 0.01, 0.02, . . ., 0.99

i Cut Dx at this value.
1 Cutting at a value pcut induces a clus-

tering of the points. When points i,j are in different clusters,

they have probability < pcut of being connected, on aver-

age over all trees.

ii Calculate the sizes of all induced clusters (i.e. the number

of reference nodes in each cluster).

e Placed in descending order, these are N1(pcut) ≥
N2(pcut) ≥ N3(pcut) ≥ . . .. The raw branching score is defined

as mean third largest or smaller branch size over all cut

thresholds: 1
99

P0:99
pcut¼0:01

P
s� 3 NsðpcutÞ:

9 Compare number of observations and number of reference

nodes to reference score distribution lookup table, to obtain

closest most conservative reference score distribution.

10 Calculate relative branching scores by dividing raw branching

scores for the input dataset by the 95th percentile of raw branch-

ing scores in the reference score distribution; if > 1, the

reported branch point is the point with the highest relative

branching score. The reported branches are those resulting from

the threshold pcut which gave the largest third branch.

Generation of hierarchically branching synthetic data
As a synthetic test case with known ground truth, we simulated

expression data for proteins organized in a tree of binary toggle-

switches. Each switch stochastically and mutually exclusively

commits to expressing one of two proteins, which subsequently acti-

vates its downstream switch and branch, respectively. Therefore,

one simulated trajectory mimics the multi-step differentiation

process of one single cell. The structure and parameters of the

underlying biochemical model were adapted from (Ocone et al,

2015; supplementary section 2.2.1).

Each protein is modelled with basal production, Hill-type func-

tions for activation (from upstream) and inhibition (for switch) and

mass-action degradation. A protein is up-regulated if activated from

upstream and not inhibited within the switch:

a
gUðtÞhþ

gUðtÞhþ þ jhþþ

jh��
gsðtÞh� þ jh��

;

where a is the basal production rate, gU is the upstream protein, gS
is the other protein in the switch, and j and h are the dissociation

constants and Hill coefficients of the activation (+) and inhibition

(�) according to Appendix Table S2.

The simulation was performed with tau-leaping (Gillespie, 2001),

an approximate stochastic simulation algorithm, implemented in

matLeap (preprint: Feigelman et al, 2016). We simulated 100,000

trajectories with initial counts for each protein drawn from the Pois-

son distribution (k = 100). The protein abundances were saved at

100 uniformly placed time points from t = 0 to t = 150.

Analysis of specific datasets
Parameter settings for each of the runs presented in this paper are

described in Appendix Table S3 for TreeTop, and

Appendix Table S4 for Wishbone.

For Monocle, all data were pre-processed via arcsinh transform,

as for TreeTop. For each dataset, a sample of 2,000 cells was taken

uniformly at random (Monocle becomes slow for large datasets,

making downsampling necessary). Monocle was run using the

Gaussian family, and with default values for other parameters. For

the plots in this paper, the branch point which maximized the size

1Here we mean cutting in the sense used regarding hierarchical clustering, and not in the sense previously used for trees.
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of the smallest branch was chosen manually for each Monocle

output. Monocle was first published in 2014 (Trapnell et al, 2014),

but has since been updated to Monocle 2 (Qiu et al, 2017; our analy-

sis used Monocle 2, which for brevity we have referred to through-

out the manuscript as Monocle.

We performed a comparison of algorithm timings, using the

mass cytometry bone marrow data as an illustrative example

(Appendix Table S5). We ran each method 10 times with dif-

ferent random seeds. TreeTop and Wishbone were both applied

to the full dataset, and complete in comparable lengths of time;

Monocle 2 requires less time, but is applied to a severely

downsampled dataset (2,000 cells relative to 100,000 cells).

Times for the other datasets are similar. We note that we

cannot assess the other methods in terms of how well they

detect the presence or absence of branch points, as the other

methods were not designed for this purpose. The comparisons

shown are included to show a practical aspect of using

TreeTop, and not intended to be an assessment of alternative

methods applied to the same task.

Data availability

A MATLAB package for TreeTop is available on GitHub: (https://

github.com/wmacnair/TreeTop).

Expanded View for this article is available online.
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