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Abstract

Objective: The Chinese Center for Disease Control and Prevention developed the China

Infectious Disease Automated-alert and Response System (CIDARS) in 2008. The CIDARS can

detect outbreak signals in a timely manner but generates many false-positive signals, especially for

diseases with seasonality. We assessed the influence of seasonality on infectious disease outbreak

detection performance.

Methods: Chickenpox surveillance data in Songjiang District, Shanghai were used. The optimized

early alert thresholds for chickenpox were selected according to three algorithm evaluation

indexes: sensitivity (Se), false alarm rate (FAR), and time to detection (TTD). Performance of

selected proper thresholds was assessed by data external to the study period.

Results: The optimized early alert threshold for chickenpox during the epidemic season was the

percentile P65, which demonstrated an Se of 93.33%, FAR of 0%, and TTD of 0 days. The optimized

early alert threshold in the nonepidemic season was P50, demonstrating an Se of 100%, FAR of

18.94%, and TTD was 2.5 days. The performance evaluation demonstrated that the use of an

optimized threshold adjusted for seasonality could reduce the FAR and shorten the TTD.

Conclusions: Selection of optimized early alert thresholds based on local infectious disease

seasonality could improve the performance of the CIDARS.
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Background

Infectious disease remains a major public
health issue in China and contributes to the
high level of morbidity and mortality in the
general population.1 Detecting infectious
disease outbreaks in their early stage can
assist in the timely implementation of con-
trol methods.2 In recent years, computer
technology and aberration detection algo-
rithms have achieved great developments,
and they are now used to detect infectious
disease outbreaks. Several national-level
public health agencies have been established
for infectious disease outbreak detection
by automated early alert systems.3–5 One
such representative system, the China
Infectious Disease Automated-alert and
Response System (CIDARS), was success-
fully enforced in 2005 and became oper-
ational nationwide in 2008.6 The CIDARS
employs the moving percentile method
(MPM), the most commonly used temporal
detection method with which to detect aber-
ration in infectious diseases. In the MRM,
the reported cases in the current observation
period are compared with those in a match-
ing historical period, potentially indicating
the early stages of potential outbreaks.7

Several studies have indicated that many
determinants influence the performance of
outbreak detection accuracy.8,9 Evaluations
of surveillance systems have demonstrated
that the CIDARS can detect many outbreak
signals in a timely manner but generates
many false-positive signals, especially for
infectious diseases with seasonality.10 This
indicates that the performance of infectious
outbreak detection may be influenced by the
epidemiologic features of the infectious dis-
ease in question. Although the CIDARS

incorporates the most recent 5 years of
historical data to model the influence of
seasonality,11 how seasonality influences the
MPM algorithm’s performance of infectious
disease outbreak detection in the CIDARS
remains unclear.

In this study, we evaluated the influence
of seasonality on the performance of
chickenpox outbreak detection. We selected
the optimized early alert thresholds in the
CIDARS during the epidemic and none-
pidemic seasons of chickenpox and exam-
ined whether separately setting the proper
thresholds according to the seasonality can
improve the outbreak detection accuracy
and timeliness.

Methods

Data source

The CIDARS uses the real-time individual
case information housed in the Notifiable
Infectious Disease Reporting Information
System (NIDRIS).6 In this study, data for
chickenpox cases that occurred from 2010 to
2016 were extracted from the NIDRIS. The
data were organized by day and year and
saved in Excel format. Data from 2010 to
2015 were used as the baseline to select the
optimized thresholds by the MPM both in
the epidemic and nonepidemic seasons,
while data from 2016 were used to validate
the outbreak detection performance of the
selected optimized thresholds.

Study design

In this study, a chickenpox outbreak was
defined as five or more cases localizable to
the same mass gathering, village, school, or
community within 7 days.12 Chickenpox
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outbreaks reported in 2015 and 2016 in
Songjiang District of Shanghai were
assumed to be true outbreaks in this study.
All outbreaks were investigated and verified
by local staff members of the China CDC,
and these outbreaks were taken as the
reference standard for optimized alert
threshold selection and outbreak detection
performance verification.

Figure 1 shows a flowchart of the data
processing in this study. The data processing
involved proper threshold selection (part 1)
and outbreak detection performance verifi-
cation (part 2). In part 1, chickenpox was
selected as the infectious disease with sea-
sonality, 12 percentiles (Pxs) were calculated
by the MPM based on the numbers of
reported cases in 25 7-day data blocks
during 2010 and 2014, and each Px was
used to predict the actual chickenpox

outbreaks that occurred in 2015. One Px
was then selected as the proper threshold
that indicated the shortest detection time or
gave the lowest false alarm rate (FAR) when
the time to detection (TTD) was the same.
In part 2, selected proper thresholds with
consideration of seasonality were entered
into the CIDARS, and the performance of
the selected thresholds for chickenpox was
evaluated according to the actual outbreaks
that occurred in 2016.

MPM and outbreak detection
performance evaluation indexes

In the CIDARS, the MPM is applied to
explore aberrations and determine the opti-
mized threshold of a Px for a common
infectious disease.13 The MPM uses the data
of the most recent 5 years as baseline data,

CIDARS
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Moving percentile method (MPM) 

12 percentiles (Px) are calculated by 
MPM which include 0.40, 0.45, 

0.50….0.95 based on reported case 
numbers in 25 seven day data blocks 

during 2010 and 2014, and set as 
indicator of potential aberration to 

predict the chickenpox outbreaks in 2015 
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detection (TTD), a Px is selected as the proper threshold 
when the Px gives the shortest detection time, or gives the 

lowest false alarm rate when TTD is the same 

Proper threshold selection Outbreak detection performance verification 
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Figure 1. Flowchart of data processing and outbreak detection performance evaluation in the China

Infectious Disease Automated-alert and Response System.
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setting the Px of the baseline data as detec-
tion parameter c. If the current day
count is greater than the detection param-
eter’s corresponding percentile (detection
parameter c), then an outbreak signal is
generated.6,9 Thus, by using the MPM,
aberrations in disease occurrence are
detected by comparing the number of cases
reported during the current observation
period to that reported during a matching
historical period.13 To eliminate the week-
end effect, the current observation period is
defined as the most recent 7-day period, and
the number of cases is the total number
of reported cases in that 7-day period. The
historical period is defined as the 5 years
preceding the current observation year, and
the matching historical period includes the
same 7-day period, the two previous 7-day
periods, and the two subsequent 7-day
periods for each of the previous 5 years.
This results in 25 7-day blocks of historical
data and covers 175 days. The Pxs of the
25 historical data blocks are set as the
indicators with which to detect infectious
disease outbreaks. The data blocks of the
current observation period and the match-
ing historical period are moved forward
dynamically day by day. If the number of
cases in the current observation period is
greater than the Px value of the 25 blocks of
corresponding historical data, then an out-
break signal is produced.

According to previous research,14–17 the
onset of an outbreak is the onset date of
the first case, and the end of an outbreak is
the onset date of the last case associated with
the outbreak. An outbreak is detected if a
signal is generated by a Px of the MPM
during the outbreak. The outbreak detection
performance is evaluated in terms of the
sensitivity (Se), FAR, and TTD.16 The Se is
the proportion of outbreaks detected; it is
calculated as the number of detected out-
breaks divided by the total number of
reported outbreaks. The FAR is the pro-
portion of early warning signals indicating

false outbreaks. The TTD is the duration
between the first true alarm and the onset of
an outbreak; if an outbreak is flagged on the
first day, then the TTD is set as 0. To calculate
the timeliness of detection of all outbreaks,
the total duration of an outbreak is assigned
as the TTD for undetected outbreaks. To
obtain the optimized early alert thresholds of
MPM, 12 alternative Pxs are calculated,
including P40, P45. . .P85, P90, and P95. A
Px is selected as the optimized threshold for
the MPM when that Px gives the smallest
TTD or provides the lowest FAR if the TTD
is the same.17

Optimized threshold verification

In Songjiang District of Shanghai, the
incidence rate of chickenpox has seasonal
characteristics; winter and early spring is the
epidemic season. The seasonality of chicken-
pox is defined according to the epidemic
curve (Figure 2), which is based on retro-
spective baseline data and consultation with
epidemiologists. For 2015, the nonepidemic
season was defined as the period from
12 February 2015 to 16 October 2015, and
all other days in 2015 were defined as the
epidemic season. For 2016, the period from
13 October 2016 to 31 December 2016 was
defined as the epidemic season, and all other
days in 2016 were defined as the nonepidemic
season. The optimized early alert thresholds
for chickenpox with consideration of season-
ality were entered into the CIDARS. The
outbreak detection performance for the opti-
mized thresholds were verified by the Se,
FAR, and TTD according to the chickenpox
outbreaks reported in 2016.

Data analysis

Data analysis was performed using Excel
2013 (Microsoft, Redmond, WA, USA) and
R software (version 2.14.1; R Foundation
for Statistical Computing, Vienna, Austria).
Excel was used to sort the data, and R was
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used to calculate the evaluation indexes
(Se, FAR, and TTD) and identify the
proper Px threshold for chickenpox.

Results

Chickenpox incidence during
2015 and 2016

In Songjiang District of Shanghai, 1335
chickenpox cases were reported in 2015,
with an incidence rate of 80.01 per 100,000.
In 2016, 1484 chickenpox cases were
reported with an incidence rate of 89.43
per 100,000. In both 2015 and 2016, the
number of chickenpox cases reported during
the epidemic season accounted more than
half of that during the whole year. The
incidence rate of chickenpox during the
epidemic season was 51.88 per 100,000 in
2015 and 48.07 per 100,000 in 2016.

Optimized early alert threshold selection

Table 1 shows the Se, FAR, and TTD of the
12 alternative Pxs in the MPM algorithm

based on the 2015 chickenpox data. Using
the number of outbreaks during the whole
year as the reference standard, the optimized
early alert threshold was P50, demonstrating
an Se of 100%, FAR of 18.98%, and TTD of
1 day. In the epidemic season, the Se was
100%, FAR was 20%, and TTD was 0 days.
In the nonepidemic season, the Se was 100%,
FAR was 18.94%, and TTD was 2.5 days.

When considering the influence of sea-
sonality, the optimized early alert threshold
for chickenpox during the epidemic season
was P65, demonstrating an Se of 93.33%,
FAR of 0%, and TTD of 0 days. The
optimized early alert threshold for chicken-
pox in the nonepidemic season was P50,
which was the same as the threshold identi-
fied without consideration of the seasonality
(Table 1).

Optimized early alert threshold
performance verification

Table 2 indicates that the optimized thresh-
old of P65 in the epidemic season and P50 in
the nonepidemic season for chickenpox
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Figure 2. Chickenpox epidemic and nonepidemic season during 2015–2016 in Songjiang District, Shanghai,

China.
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performed well in 2016. In the epidemic
season, the Se was 100%, FAR was 8.69%,
and TTD was 2.5 days. In the nonepidemic
season, the optimized threshold of P50
demonstrated an Se of 100%, FAR of
15.94%, and TTD of 0.5 day (Table 2).

Discussion

The aberration detection performance of
infectious disease automated surveillance
systems is influenced by many determinants,

and understanding how the performance is
affected by these determinants can help to
improve infectious disease aberration detec-
tion.7 The results of the present study indi-
cate that adopting an optimized early alert
threshold with consideration of infectious
disease seasonality can improve outbreak
detection performance.

In selecting outbreak early alert thresh-
olds, we target a minimal FAR with a high
Se and short TTD.17–20. The results of the
present study indicate that the optimized

Table 1. Sensitivity, false alarm rate, and time to detection for 12 alternative percentiles in the moving

percentile method by the whole year, epidemic season, and nonepidemic season in 2015 based on chickenpox

data in Songjiang District of Shanghai, China.

Alternative

percentile

Whole year of 2015 Epidemic season in 2015 Nonepidemic season in 2015

Se (%) FAR (%)

TTD

(days) Se (%)

FAR

(%)

TTD

(days) Se (%) FAR (%)

TTD

(days)

P40 100.00 24.82 0.5 100.00 20.00 0.0 100.00 25.00 2.5

P45 100.00 23.36 0.5 100.00 20.00 0.0 100.00 23.48 2.5

P50 100.00 18.98 1.0 100.00 20.00 0.0 100.00 18.94 2.5

P55 92.00 15.33 1.5 93.33 20.00 0.0 90.00 15.15 6.5

P60 92.00 12.41 1.5 93.33 20.00 0.0 90.00 12.12 6.5

P65 88.00 10.22 1.5 93.33 0.00 0.0 80.00 10.53 8.5

P70 84.00 7.30 3.0 86.67 0.00 0.0 80.00 7.52 8.5

P75 68.00 3.65 3.5 86.67 0.00 1.0 40.00 3.76 14.5

P80 44.00 0.00 15.0 60.00 0.00 3.0 20.00 0.00 21.0

P85 32.00 0.00 18.0 40.00 0.00 11.0 20.00 0.00 27.5

P90 32.00 0.00 18.0 40.00 0.00 11.0 20.00 0.00 27.5

P95 32.00 0.00 18.0 40.00 0.00 11.0 20.00 0.00 27.5

Se, sensitivity; FAR, false alarm rate; TTD, time to detection

The bold italicized text indicates the optimized early alert thresholds and corresponding evaluation indexes.

Table 2. Sensitivity, false alarm rate, and time to detection for optimal threshold by epidemic season and

nonepidemic season in 2016 based on chickenpox data in Songjiang District of Shanghai, China.

Period

Optimal

threshold

Signals

(n)

Detected

outbreaks (n) Se (%) FAR (%)

TTD

(days)

Epidemic season in 2016 P65 23 21 100.00 8.69 2.5

Nonepidemic

season in 2016

P50 69 58 100.00 15.94 0.5

Whole year of 2016 P50 107 79 100.00 26.17 3

Se, sensitivity; FAR, false alarm rate; TTD, time to detection
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MPM thresholds in the CIDARS differed by
season for an infectious disease with season-
ality, and the use of selected optimized
thresholds for the corresponding seasons
could significantly reduce the number of
false alarm signals and detect outbreaks in
fewer days during the epidemic season. The
outbreak detection performance verification
also demonstrated that the optimized early
alert threshold could achieve a good early
alert effect for infectious disease outbreak
detection in both the epidemic and none-
pidemic seasons.

Our findings can partly explain why
infectious disease seasonality affects the
outbreak detection performance of the
CIDARS, particularly when considering a
previous description of variation of the
chickenpox incidence rates in different epi-
demic seasons.17 Previous studies20–22 have
shown that for infectious diseases with sea-
sonality, the numbers of cases and outbreaks
differed greatly within different epidemic
seasons; thus, the scale of outbreaks and
outbreak-related case characteristics might
also differ during the epidemic season.

Kuang et al.21 reported that outbreak
detection performance in automated surveil-
lance systems is affected by many determin-
ants. Diseases with a long incubation period
have a higher Se but require a longer time for
detection, and outbreaks of diseases with a
short incubation time are severe but transient,
leading to a lower Se. Additionally, diseases
with a lower outbreak magnitude have the
same Se but require more time for detection.
Wang et al.12 reported that the morbidity and
mortality associated with infectious diseases
and the emergency response ability of the
Chinese Center for Disease Control and
Prevention should also be taken into consid-
eration during selection of the optimized early
alert threshold in the CIDARS. We suggest
that both the epidemic features and local
characteristics of infectious diseases should
also be taken into consideration. A lower
threshold may be preferable if the evaluated

infectious disease is associated with a tremen-
dous threat and has reliable treatment and
control measures. However, it may be wiser to
select a relatively higher threshold when the
infectious disease has mild effects but a high
cost of investigation and control.23

A key strength of our study is the use of
data from epidemiologically confirmed out-
breaks. These confirmed outbreak data
objectively reflect the real features of these
outbreaks and related cases. The use of real
data for optimized early alert threshold
selection and performance evaluation could
generate a more reliable reference standard
than simulated outbreaks. Another strength
of this study is that we prospectively eval-
uated the selection of optimized early alert
thresholds for different epidemic seasons
using data external to the study period.

This study also has some limitations. First,
we only evaluated chickenpox as a represen-
tative infectious disease; thus, it is likely that
the study results are unsuitable for other
diseases with seasonality. Second, all
reported chickenpox outbreaks in 2015 and
2016 were investigated and validated, but
some outbreaks were inevitably missed. This
may have affected the Se and FAR, especially
in the nonepidemic season. Third, the selec-
tion of optimized early alert thresholds for
different epidemic seasons was based on
limited epidemiologically confirmed out-
breaks, which may have affected the stability
of the evaluation. Finally, we only evaluated
the influence of the infectious disease season-
ality on outbreak detection performance;
however, other epidemic features including
the outbreak magnitude, incubation period,
and baseline counts may also influence out-
break detection performance. Future studies
should incorporate improvements to fully
evaluate these factors.

Conclusions

Selection of optimized early alert thresh-
olds based on the seasonality of local
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infectious diseases in the CIDARS is crucial
to improve the performance of outbreak
detection.
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