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Cushing’s disease (CD) is caused by a pituitary corticotroph neuroendocrine tumor 
inducing uncontrolled hypercortisolism. Transsphenoidal surgery is the first-line treat-
ment in most cases. Nonetheless, some patients will not achieve cure even in expert 
hands, others may not be surgical candidates and a significant percentage will expe-
rience recurrence. Many patients will thus require medical therapy to achieve disease 
control. Pharmacologic options to treat CD have increased in recent years, with an 
explosion in knowledge related to pathophysiology at the molecular level. In this review, 
we focus on medications targeting specifically pituitary adrenocorticotropic hormone- 
secreting tumors. The only medication in this group approved for the treatment of CD 
is pasireotide, a somatostatin receptor ligand. Cabergoline and temozolomide may also 
be used in select cases. Previously studied and abandoned medical options are briefly 
discussed, and emphasis is made on upcoming medications. Mechanism of action and 
available data on efficacy and safety of cell cycle inhibitor roscovitine, epidermal growth 
factor receptor inhibitor gefitinib, retinoic acid, and silibinin, a heat shock protein 90 
inhibitor are also presented.

Keywords: Cushing’s disease, hypercortisolemia, adrenocorticotropic hormone-secreting adenoma, pasireotide, 
cabergoline, roscovitine, retinoic acid, gefitinib

iNTRODUCTiON

Clinical hypercortisolism is associated with significant morbidity and mortality (1). The vast majority 
of cases of endogenous Cushing’s syndrome are caused by a pituitary corticotroph neuroendocrine 
tumor; Cushing’s disease (CD). Surgery is the mainstay of therapy in most cases (2). However, 
20–40% of patients, depending on tumor size and surgeon expertise, will not be cured by trans-
sphenoidal surgery, and for patients in remission, 20–35% will relapse within 10 years (3–5). Options 
include medical treatment, which has a significantly increased role over the last several years, repeat 
surgery, radiation, and bilateral adrenalectomy. From an initial disease description by Cushing (6), 
advances in understanding corticotroph adenoma pathology have hugely increased, more so in the 
last decade (7–9). Today, accumulated CD knowledge allows for development of precise molecular 
targeting for adrenocorticotropic hormone (ACTH) secretion and cell proliferation. Future advances 
may also contribute to development of medication for other pituitary neuroendocrine tumors for 
which few options exist, for example, silent corticotroph tumors (10). In this review, we will discuss 
the array of pituitary-directed medical therapies for CD, including approved medications and new 
medical therapies on the horizon.
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HiSTORiCAL Review OF PiTUiTARY 
TARGeTeD DRUGS

Largely abandoned over the years, it is important to review targets and/
or pathways for some previous pituitary targeted drugs. Peroxisome 
proliferator-activated receptor gamma(γ) agonists, mostly utilized 
and abandoned as an antidiabetic therapy, have been attempted in 
treatment of Nelson syndrome and CD with controversial results 
(11–13). Peroxisome proliferator-activated receptor-γ nuclear 
receptors are highly expressed in ACTH adenomas; however, high 
doses were necessary to induce an antiproliferative effect and ACTH 
inhibition; and escape phenomenon was frequent (14, 15). Valproic 
acid inhibits gamma-aminobutyric acid (GABA) aminotransferase, 
increasing GABA, thus leading to an inhibitory effect on ACTH 
release, yet, placebo controlled studies failed to demonstrate efficacy 
(16). Cyproheptadine is an anti-serotonergic, histaminic and cho-
linergic agent. Since ACTH may be under serotoninergic control, 
cases reports of response were described (17, 18), but data consisted 
mostly of unsuccessful trials (15). Other serotonin antagonists have 
been also previously studied, however, with limited results (19). 
Finally, in murine and human pituitary tumors, doxazosin decreased 
tumor growth and ACTH levels (20), but no evidence actually sup-
port clinical use of alpha-1 adrenergic receptor antagonists in CD.

MeDiCATiONS APPROveD FOR CD

Somatostatin Receptor Ligands  
(SRLs)—Pasireotide
Somatostatin (SST) is an inhibitory polypeptide hormone with 
ubiquitous receptors (SSTR) and pleiotropic actions (21). 
Corticotroph adenomas express mainly SSTR subtypes 5 and 2 
(21, 22). Pituitary SSTR5 expression seems to be unaffected by 
high cortisol levels, whereas expression of SSTR2 is suppressed, 
but can upregulate with eucortisolemia (21, 23). The activated 
SSTR decrease cyclic adenosine monophosphate and increase 
potassium efflux, preventing ACTH release. In addition, SSTR are 
G-protein-coupled receptors and downstream effects of the SSTR2 
and SSTR5 receptors encompass Ras–Raf mitogen-activated pro-
tein kinase (MAPK) and extracellular signal-regulated kinase 1/2 
pathways, leading to cell growth arrest (23–25) (Figure 1).

Pasireotide is a SRL with 40 times the binding affinity to SSTR5 
compared with octreotide; it also has high affinity for SSTR1, 2, 
and 3 (21, 23). Treatment with pasireotide has been shown to 
restore SSTR2 membrane density thus improving drug efficacy 
(26). Pasireotide is now approved for subcutaneous administra-
tion twice a day (27, 28) in many countries around the world; 
bioavailability is excellent and half-life with subcutaneous 
administration is approximately 12  h (29). Long-acting pasire-
otide LAR in CD (10 and 30 mg once a month administration) 
has also been studied in a large clinical trial (30).

BiOCHeMiCAL CONTROL AND CLiNiCAL 
iMPROveMeNTS

A phase II trial suggested efficacy of pasireotide in CD (27), 
and a large phase III clinical trial by the Pasireotide B2305 Study  

Group followed (28). The phase III trial lasted 12 months and 
enrolled 162 patients, randomized to 600 or 900 µg subcutane-
ously, twice daily. A biochemical response [decrease in 24  h 
urinary free cortisol (UFC)] was robust and observed within the 
first month on therapy. At the end of the study, respectively, 13 and 
25% of patients treated with 600 or 900 µg twice daily normalized 
their UFC (Figure 2). Of note, baselines UFCs were significantly 
higher in the 600 µg group (730 compared with 487 nmol/24 h in 
the 900 µg group), which may have attenuated results in the latter. 
An additional 16% in the 600 µg group decreased their UFCs by 
more than 50% at 12 months. In brief, at 6 and 12 months, approxi-
mately 30–40% of patients had partially or completely controlled 
disease (Figure 2). In the study, patients who did not respond 
within 2 months had a high likelihood of being non-responders. 
In addition, a less severe disease, e.g., lower baseline UFC, also 
predicted response. Morning ACTH, late-night salivary cortisol 
(LNSC) and serum cortisol concentrations also changed in 
parallel with a decrease in UFC. Significant improvement in mul-
tiple clinical parameters, including systolic and diastolic blood 
pressure, weight, waist circumference, lipid profile, depression, 
and quality of life were noted [Table 1a,b (28, 30)]. Interestingly, 
significant clinical improvement has been noted even in patients 
without UFC normalization (31). However, the study had a high 
discontinuation rate of more than 50% at 12 months, withdrawal 
being mostly in patients with an unsatisfactory therapeutic  
effect.

Similar results were obtained in the recently published 
pasireotide LAR study (30). UFC normalization was reached 
in 50% of patients with mild disease [UFC 1.5–2 times upper 
limit of normal (ULN)] and one-third of patients with UFCs 
2–5 times normal. Based on previous results of possible lower 
efficacy, patients with UFC > 5 ULN were excluded from this 
study. Of note, those two studies used different UFC assays but 
each study used one assay consistently within its respective 
methodology. The 5-year follow-up study showed that short-
acting pasireotide responders had continued improvement in 
clinical parameters at month 60 (32). The response to pasireotide 
treatment is thus usually long lasting (32, 33). However, loss of 
response was observed in few patients with ACTH-producing 
invasive macroadenomas, in some occurring after treatment 
interruption (34, 35). This may reflect fluctuations in underlying 
tumor secretion, or an escape phenomenon of unknown patho- 
physiology.

TUMOR SiZe

Of the patients who had measurable tumors as assessed by pitui-
tary magnetic resonance imaging, treatment with subcutaneous 
pasireotide had demonstrable decrease in tumor volume at month 
12 (mean decrease of 9% for 600 µg group compared with 44% 
in the 900 µg group) (28). In the pasireotide LAR trial, decreased 
tumor volume was also observed in the two groups (17.8 and 
16.3% in the 10 and 30 mg group) (30). Effects on tumor size are 
likely due to interference with cell growth and cell cycle (25, 36).  
Another possible mechanism may be inhibition of vascular 
endothelial growth factor secretion, as demonstrated in non-
functioning pituitary adenomas treated with pasireotide (37).
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FiGURe 1 | Mechanism of action of pharmacologic therapies. Various mechanisms of action of medications acting at the corticotroph tumor are represented. Each 
agent involves a different cascade of action resulting in both inhibition of pro-opiomelanocortin (POMC) and adrenocorticotropic hormone (ACTH) synthesis and 
secretion, and tumoral cell proliferation. Pasireotide is a ligand for somatostatin receptor (SSTR) 1, 2, 3, and 5, activating a G-protein-coupled receptor. Signaling 
pathways include PTPase and downstream mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) inhibiting tumorigenesis; 
and also closure of the potassium (K+) voltage channel and activation of the phospholipase C (PLC) and inositol triphosphate (IP3) pathway inducing calcium (Ca2+) 
influx that will decrease cyclic AMP (cAMP) formation and ACTH secretion. Cabergoline is a dopamine receptor (DR) agonist, binding to a G-protein-coupled 
receptor activating adenylate cyclase, MAPK and K+ efflux. Retinoic acid binds to its nuclear receptor [retinoic acid receptor (RAR)] to induce its inhibitory effect. 
Silibinin induces conformation changes at the glucocorticoid receptor (GR) level by inhibiting heat shock protein 90 (HSP90); net effect is an increase sensitivity to 
circulating corticosteroids restoring glucocorticoid negative feedback inhibition. Upon ligand binding, epidermal growth factor receptor (EGFR) induces tyrosine 
kinase activity with downstream MAPK, phosphatidylinositol-3-kinase (PI3K) and PLC signaling pathways. Ubiquitination of the internalized receptor targets the 
EGFR to be degraded in the lysosome. In ubiquitin-specific protease 8 (USP8)-mutated tumors, the USP8 mutation increases de-ubiquitination thus decreasing 
EGFR degradation. More EGFR are found at the membrane increasing its stimulatory effect, partly mediated by ERK 1/2 pathway. Gefitinib effectively blocks EGFR 
to decrease its activity.
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ADveRSe eveNTS

The most prominent adverse effect with pasireotide treatment is 
hyperglycemia. Both fasting and postprandial glucose concent-
rations were elevated in a dose-dependent manner in both phase 
II and III trials (27, 28). The mechanism in healthy volunteers 
seems to be a decrease in insulin and incretins (gastric inhibitory 
polypeptide and glucagon-like peptide-1) production rather than 
a change in insulin sensitivity per se (38). HOMA-β calculations 
and fasting insulin levels in a small study demonstrated insulin 
secretion decreased by nearly 50% after 12 months’ pasireotide 
usage in patients with CD (p = 0.015; p = 0.007, respectively). 
However, euglycemic hyperinsulinemic clamp evaluation did not 
demonstrate differences in insulin sensitivity before or after ini-
tiation of pasireotide (39). Glucagon levels were also decreased on 
therapy, but to a lesser extent (40). More than 70% of patients in 
both pasireotide twice daily and LAR studies (41), and nearly all 
patients followed for 5 years, had a hyperglycemia-related adverse 
event (32). Patients with preexisting diabetes generally needed 

at least one additional antidiabetic medication and glycemic 
control was readily obtained. Approximately 75% of patients with 
prediabetes progressed to diabetes. Nearly one-third of patients 
who had normal glucose tolerance developed prediabetes, and 
another 50–60% developed frank diabetes at one point in the 
study (27, 28). Fasting plasma glucose levels rose between 20 and 
35 mg/dL after initiation of pasireotide and remained elevated at 
month 12 (31). HbA1c rose by 1–2% points by month 6 on pasire-
otide twice daily and persisted through month 60 (31, 32). This 
probably reflects the integration of glucose homeostasis changes 
by an improvement of glucose sensitivity with CD treatment and 
pasireotide-induced hyperglycemia.

Close observation and rapid management of hyperglycemia 
in patients with CD who have insulin resistance at baseline and 
develop hyperglycemia or diabetes after therapy initiation with 
pasireotide is essential. Furthermore, diabetic patients should 
have their control optimized before initiation of pasireotide. 
Non-diabetic patients should undergo self-monitoring of blood 
glucose at least twice a week in first week, then once weekly 
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FiGURe 2 | Normalized mean urine free cortisol (mUFC) in patients treated 
with short-acting pasireotide (600 or 900 µg twice daily) (28). (A) Cushing’s 
disease (CD) remission by treatment arm by month. Patients treated with 
twice-daily subcutaneous pasireotide obtained normalization of mUFC at 
months 3, 6, and 12. Patients’ dosages were up-titrated beginning at month 
3. Patients who were on higher pasireotide doses regardless of treatment 
arm showed better response. Patients who had greater than five times the 
upper limit of normal (ULN) mUFC were more likely randomized to the 600 µg 
twice-daily treatment arm, possibly accounting for discrepancies between 
treatment arms’ responsiveness to pasireotide. Patients with uncontrolled 
hypercortisolism were more likely to stop the study. (B) CD remission at 
month 6 stratified by baseline urinary free cortisol (UFC). Stratification of 
patients by baseline mUFC predicted response to treatment with twice-daily 
subcutaneous pasireotide. The lower the patient’s baseline mUFC, the more 
likely they were to obtain normalized free UFC levels. As above, patients who 
had greater than five times the ULN mUFC were more likely randomized to 
the 600 µg twice-daily treatment arm.
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thereafter (41). Glucose-lowering agents of choice are metformin 
(effect probably via increase in GLP-1) and a dipeptidyl peptidase 
4 inhibitor or GLP-1 agonist, due to the described mechanism 
above (41). Notably, hyperglycemia is reversible after stopping 
therapy (41) and patients need to be followed closely after stop-
ping pasireotide and antidiabetic medications need to be adjusted 
to avoid hypoglycemia. Studies to detect optimal therapy for 
hyperglycemia associated with pasireotide in patients with CD 
are ongoing (42).1

Other common side effects, similar to other SRLs, included  

gastrointestinal (GI) discomfort, diarrhea, nausea, and vomiting. 
Thirty-five percent of study participants developed gallbladder or 

1 https://clinicaltrials.gov/ct2/show/NCT02060383 (Accessed: January 2, 2018).

biliary related adverse effects, most commonly cholelithiasis, but 
a minority underwent cholecystectomy. Transaminases elevation 
was usually less than three times ULN (28, 30, 32).

Rare instances of QTc prolongation were also observed and 
clinicians should be aware to avoid potential drug interactions 
further increasing QT. This may also limit potential therapeutic 
drug-drug combinations in treating CD (e.g., combination with 
ketoconazole or mifepristone may lead to additive QT prolonga-
tion effects). However, in an animal model study, QTc prolonga-
tion in combination with osilodrostat was not observed (43).

MONiTORiNG THeRAPY

Monitoring of CD patients’ therapy is challenging. Petersenn  
et al. demonstrated that intra-individual UFC samples may have up 
to 50% variability, and that variability increased as absolute UFC 
values also increased (44). Moreover, no correlations exist between 
UFC and clinical features of hypercortisolism (44). LNSC follow-up 
seems to be the most accurate compared with UFC, serum cortisol 
and plasma ACTH in predicting postoperative recurrence in CD 
(19, 45, 46). In a sub-analysis of pasireotide (short-acting) phase III 
trial, LNSC and UFC concentrations were positively correlated to 
each other at baseline (r = 0.97). Pasireotide decreased LNSC levels 
during 12 months of treatment and it was a moderate correlation 
(r = 0.55) between individual patient LNSC and UFC values when 
all time points on treatment were pooled (47). Multiple LNSC 
values can possibly be used and are more convenient to analyze 
long-term response to pasireotide in lieu of multiple UFC tests, 
provided LNSC was high at baseline (4).

MeDiCATiONS APPROveD FOR OTHeR 
iNDiCATiONS THAN CD

Cabergoline
Dopamine is a catecholamine important for neurotransmission, 
for vasoregulatory effects, and for other neurological functions 
(21, 48). Dopamine receptors are G-protein-coupled receptors 
consisting of five subtypes, which are further classified into 
D1-like stimulating receptors (D1, D5) and D2-like (D2, D3, D4) 
inhibiting receptors. D2 is expressed in approximately 80% of 
corticotroph adenomas and its expression seems a sine qua non 
condition for response to dopamine agonist (49).

Cabergoline is the dopamine agonist (DA) of choice given its 
long plasma half-life, its high affinity for the D2 receptor, and is 
better tolerated compared with bromocriptine (50). Usual doses 
in CD are 1.5–5 mg/week and based on initial studies, response 
to cabergoline is expected to be 30–50% in patients with mild or 
moderate disease in the short term (51–54). This number drops 
by half in prolonged studies as 20–25% persist with response at 
2–3 years (52, 55). Moreover, a recent prospective study on caber-
goline used as a first-line therapy reported a disappointing partial 
response rate (defined as more than 50% decrease in UFC) of 25% 
at 6 weeks; only 10% had an improvement in both LNSC and UFC 
(56). These findings were confirmed by a large retrospective study 
that included 53 patients treated with cabergoline monotherapy. 
Forty percent of patients had normalized UFC with clinical 
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TABLe 1 | Clinical improvement in Cushing’s disease (CD) patients treated with pasireotide.

(a) Overall changes in clinical signs and symptoms of CD when treated by pasireotide (16, 30, 31)

Pasireotide subcutaneous, twice daily Pasireotide LAR

Overall average Median Overall average

6 months (n = 107)a 12 months 
(n = 78)a

60 months  
(n = 16)a

7 months 
(n = 116)a

12 months 
(n = 104)a

Weight, kg −4.4 −6.7 −6.2 −3.3b −5.0b

Body mass index, kg/m2 −1.6 −2.5 −2.3 −1.0b −2.0b

Waist circumference, cm (n) −2.6 −5.0 (69) – −4.5 −5.4
Systolic blood pressure, mmHg −9.1 −6.1 −4.3 −5.6b −4.8b

Diastolic blood pressure, mmHg −4.6 −3.7 −1.7 −3.8b −3.2b

Total cholesterol, mg/dL −14.5b −20.7b −50.3b −17.3b −13.5b

Low-density lipoprotein, mg/dL −11.6 −15.5 −27.1 −15.5b −13.6b

High-density lipoprotein, mg/dL – – −3.6 −1.8b −0.4b

Triglycerides, mg/dL 0 −17.7 −26.6 −9.5b −4.6b

Health-related quality of life score, in points +9.5 +11.1 – +6.8b +6.7b

Tumor volume, % change from baseline, cm3 (n) −3.64% (75) −27.14% (75) +0.006% (6) – −17%
Facial rubor, % patients with improvement (n) 46% (96) 50% (69) 80% 44% (108) 44% (86)
Supraclavicular fat pad, % patients with improvement (n) 41% (93) 54% (68) 85% 34% (108) 38% (86)
Dorsal fat pad, % patients with improvement (n) 39% (93) 55% (67) 60% 35% (107) 39% (85)

(b) improvements in selected parameters at month 6 when treated with pasireotide subcutaneously twice daily compared with baselinec (16)

Baseline (n = 162) Controlled 
(n = 32)

Partially 
controlled 

(n = 22)

Uncontrolled 
(n = 62)

Weight, kg 81.6 −5.6 −3.2 −4.1
Body mass index. kg/m2 30.3 −2.1 −1.2 −1.5
Systolic blood pressure, mmHg 133.5 −13.4 −7.5 −7.3
Diastolic blood pressure, mmHg 86.3 −7.7 −3.9 −3.2
Total cholesterol, mg/dL (n) 224.0 −23.2 (31) −11.6 −11.6 (61)
Low-density lipoprotein, mg/dL (n) 135.3 −15.4 (31) −3.9 −11.6 (61)
Triglycerides, mg/dL (n) 159.4 −8.9 (31) −17.7 −17.7 (61)
Health-related quality of life score, in points (n) 41.1 +9.6 (31) +8.9 +9.7 (61)

aUnless otherwise stated.
bValues are based on calculated weighted averages of data provided in the primary articles.
cControlled patients achieved urinary free cortisol (UFC) ≤ upper limit of normal (ULN), partially controlled patients had UFC ≥ ULN but with >50% decrease from baseline, and 
uncontrolled patients did not have UFC ≤ ULN and who did not achieve >50% decrease from baseline. Regardless of their status, all groups demonstrated tangible improvements in 
blood pressure, weight, BMI, lipid profiles, and quality of life score.
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improvement in the first 12  months on therapy. On long-term 
follow-up, 28% of responders stopped treatment because of loss 
or response or intolerance (55).

Common side effects include orthostatic hypotension due to 
dopamine’s vasodilatory effects, nausea, headache, and dizziness. 
Dopamine agonist associated cardiac valvulopathy has been 
reported, when cabergoline was mostly used to treat Parkinson’s 
disease (PD) (57). Doses used in CD are lower than in PD but 
higher than prolactinomas (55, 58); other series in prolactino-
mas have not found a relation (51, 52, 58, 59), but precaution is 
advised.

Cabergoline is advantageous for women in or planning preg-
nancy where therapeutic options are otherwise limited. Its 
innocuous profile during gestation has been confirmed with 
an increasing number of uneventful pregnancies (mostly for 
prolactinomas) (60). Efficacy and safety of cabergoline in CD in 
pregnancy is also supported by a number of case reports (61–63).

Combination Therapy
Most corticotroph adenomas co-express SSTR5 and D2 recep-
tors, and combining pasireotide and cabergoline could have  

additive or even synergistic effects (21, 64). An open-label mul-
ticenter study followed 66 patients initiated on pasireotide and 
receiving add-on cabergoline if not controlled on 900 µg twice-
daily monotherapy. Two-thirds (39/66) of patients required 
combination therapy and cabergoline allowed a third of those 
(13/39) to normalize mean UFC after 35  weeks (65) with no 
additional safety signals.

Pasireotide and/or cabergoline regimens in combination with 
adrenal-steroidogenesis inhibitors have also been used (23, 55, 66).  
In a small study by Vilar et al., adding ketoconazole in patients 
uncontrolled on cabergoline monotherapy has been shown 
to normalize UFC values in two-thirds of patients (66).  
Feelders et al. examined combination therapy of pasireotide with 
cabergoline and ketoconazole in an open-label prospective study 
with 17 participants (67). Although the study did demonstrate 
improvement in UFC normalization with the addition of caber-
goline to pasireotide (from 29 to 53%), the patients included 
in the study had significantly lower mean baseline UFC levels 
compared with the phase III subcutaneous pasireotide trial, thus 
possibly underrepresenting the potential added therapeutic 
effects of cabergoline to pasireotide.
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This approach may allow smaller doses thus minimizing 
side effects without compromising efficacy and is an option for 
patients not achieving control or intolerant (19, 68).

Although no QTc prolongation has been seen in an animal 
model study (43), there are no data on patients treated with 
combination using novel steroidogenesis inhibitors such as osi-
lodrostat and previously described pituitary-directed therapies.

Temozolomide
This oral alkylating agent is also used in the treatment of other 
cerebral neoplasms because of its ability to cross the blood-
brain barrier easily (69). Temozolomide can be used in selected 
cases of aggressive CD caused by macroadenomas, where 
management of a locally progressive disease is also a concern 
(69–71). Temozolomide induces cell apoptosis by methylating 
DNA, specifically at guanine at 06-position, thus interfering 
with the next DNA replication cycle (69). At the cellular level, 
this chemotherapeutic agent induces better cell differentiation 
and a reduction in proliferation, measured by decrease mitosis 
and Ki-67 index (71). Repair enzyme 06-methyl-guanine DNA 
methyltransferase (MGMT) reverses alkylation of the guanine 
and potentially cancels drugs effect. MGMT, evaluated by 
pathologists, has been suggested as a predictive factor and low 
MGMT has been associated with a positive response, but is not 
universally observed (69–71).

The most commonly used regimen is 150–200  mg/m2/day 
for 5  days each month (total cycle dose of 750–1,000  mg/m2). 
Patients must be monitored for cytopenias (mainly neutropenia 
and thrombopenia), and dose reduction or interruption may be 
warranted. Common side effects include GI issues, headache, 
hearing loss and dizziness. In cases of invading tumors, cer-
ebrospinal fluid leak may occur with tumor shrinkage (72). In 
gliomas, temozolomide has synergistic effects with radiotherapy, 
both altering DNA and interfering with cell replication process 
(73). This has not directly been studied in pituitary tumors but 
could potentially be effective.

Temozolomide is used either alone, or in combination therapy 
with pasireotide (74). Partial or complete response is usually 
around 80% (71). Clinical response to temozolomide is rapid, 
and in cases of CD, structural and biochemical improvement can 
be observed within 2 months of therapy (69–71). At macroscopic 
level, tumors become soft and friable and can present as hemor-
rhage, necrosis and cystic changes on imaging (69). Adjuvant 
temozolomide pre-surgery has not been studied, although it can 
be theoretically of benefit in large aggressive tumors if preopera-
tive shrinkage is achieved.

Medical treatment options (available and on the horizon) 
are summarized in Table 2 (28, 30, 31, 55, 71, 75–80), and their 
respective mechanism of action is depicted in Figure 1.

DRUGS iN DeveLOPMeNT FOR CD

Roscovitine
Roscovitine is an oral cyclin-dependant kinase (CDK) 2/cyclin 
E inhibitor (also called R-roscovitine, seliciclib, or CYC202). 
CDKs are involved in cycle cell progression, differentiation and 

transcription. During the corticotroph cell cycle, the activated 
complex formed by CDK2 and cyclin E normally activates pro-
opiomelanocortin (POMC) transcription and cell proliferation 
with decrease cell senescence (78). Corticotroph adenomas 
uniquely overexpress cyclin E causing ACTH hypersecretion 
(78), therefore potentially making CDK2/cyclin E a very precise 
therapeutic target.

Roscovitine is a purine analog acting by direct competition 
for ATP-binding sites causing inhibition of CDK2 but also CDK 
1, 5, and 7 (81, 82). It has been observed in  vitro in zebrafish 
embryos and murine model to inhibit ACTH secretion and to 
induce cycle cell arrest (83). In vitro human pituitary cortico-
troph tumors treated with roscovitine showed marked reduction 
in ACTH levels, and a lesser inhibitory effect on tumor growth 
(78). In USA, this agent is under phase II study at 400 mg bid for 
4 weeks (84).2

Roscovitine is also being studied in a multitude of cancer 
disease including breast and lung (82, 85) and in other diseases 
such as pain syndromes and nephritis. Data on safety are yet to 
be documented, but phase I clinical trials reported that asthenia, 
nausea, vomiting and hypokalemia are the most frequent side 
effects, mostly observed at doses above 800 mg twice daily (82).

Retinoic Acid (RA)
Vitamin A derivatives, mainly RA, are important modulators 
of cell proliferation and function on target organs such as skin, 
eyes, and brain. RA binds to its nuclear receptor and forms a het-
erodimer with RA and retinoid X receptors (each having alpha, 
beta, and gamma subtypes) engendering transcriptional effects 
on target genes (86). Retinoic acid receptor alpha exists in hypo-
thalamic paraventricular nucleus with corticotropin-releasing 
hormone and arginine vasopressin, but its precise physiological 
role is uncertain (86). In the hypothalamus–pituitary–adrenal 
axis, glucocorticoid receptor (GR) activation depends on its 
phosphorylation status and is modulated by RA. When tested 
on murine models of pituitary corticotroph tumors, RA has an 
inhibitory effect (87, 88). RA causes both inhibition of ACTH 
secretion via POMC gene transcription mediated by AP-1 and 
Nur77 (87), and inhibition of corticotroph growth with increase 
cell death mediated by caspase-3-activity (87). Interestingly, 
RA action seems specific to adenomatous cells not affecting 
normal pituitary. More specifically, normal pituitary cells express 
chicken ovoalbumin upstream promoter transcription factor 
1 (COUP-TF1), an orphan nuclear receptor, which prevents 
inhibition from RA (87). Expression of COUP-TF1 in tumoral 
cells seems rare, and its presence could be a reason for RA non-
response. In a characterization study, only 15% of corticotroph 
tumors expressed COUP-TF1; all were macroadenomas (75). In 
addition to its central action, a dual peripheral effect is observed 
and antiproliferative effect is observed at the adrenal level, medi-
ated by bone morphogenic protein 4 action.

Animal studies showed biochemical and clinical benefit in dogs 
with CD treated with RA (89) and RA inhibited ACTH produc-
tion and proliferation indexes in corticotroph cell cultures (87).  

2 https://clinicaltrials.gov/ct2/show/NCT02160730 (Accessed: January 2, 2018).
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TABLe 2 | Summary of pharmacologic therapies for Cushing’s disease (28, 30, 31, 55, 71, 75–80).

Name Dose Route Mechanism 
of action

efficacy to 
normalize 
urine free 

cortisol (%)

Responders 
characteristics

Tumor size 
reduction

Side effects Comments

Pasireotide 600–900 µg twice 
daily

Subcutaneous Agonist
SSTR5 > 2

30–40 UFC < 5× ULN 25–80% GI and biliary issues
Hyperglycemia
QT prolongation

Only drug approved 
for CD

Pasireotide 
LAR

10–30 mg 
monthly

Intramuscular 30–50 UFC < 2× ULN 10–20%

Cabergoline 0.5–6 mg weekly 
(in divided doses)

Oral Dopamine 
agonist (D2)

25–40 Small subgroup 
of corticotrophs 
adenomas 
expressing D2 
receptor

N/A Hypotension
Nausea
Headache

Usually short-term 
response

Temozolomide 150–200 mg/
m2/day ×5 days 
monthly

Oral Methylation
DNA

80 Possibly patients 
with negative 
MGMT mutation

0 
(stable)–50% 

for most 
patients; rarely 
patients had 
progressive 

tumor growth

GI issues
Headache
Dizziness
Hearing loss

Aggressive 
adenomas or 
carcinomas

Roscovitine 400 mg twice 
daily

Oral Inhibition
CDK/cyclin E

N/A N/A N/A Preliminary:
Asthenia
Nausea
Vomiting
Hypokaliemia

Phase II study 
ongoing

Retinoic acid 80 mg once a day Oral Agonist
RAR

25 Absence of 
COUP-TF1

N/A Mucositis
Photosensitivity
Hypertriglyceridemia

Based on small 
studies

Gefitinib 250 mg once 
a day

Oral Inhibition
EGFR

N/A USP8-mutated 
adenomas

N/A Skin reaction
Diarrhea
Interstitial pneumonitis

Phase II study 
ongoing

Silibinin To be determined To be 
determined

Inhibition
HSP90

N/A N/A N/A Minimal Animal studies only

N/A, not available; HSP90, heat shock protein 90; USP8, ubiquitin-specific protease 8; EGFR, epidermal growth factor receptor; CDK, cyclin-dependant kinase; UFC, urinary free 
cortisol; ULN, upper limit of normal; RAR, retinoic acid receptor; COUP-TF1, chicken ovalbumin upstream promoter transcription factor-1.
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RA also decreased by approximately 60% the expression of mel-
anocortin receptor type 2 (MC2R), the adrenal ACTH receptor 
in adrenal cell cultures (90).

Pecori Giraldi et  al. showed five out of seven CD patients 
treated at doses of 80 mg daily for 6–12 months had favorable 
responses, in which UFCs decreased from 20 to 70% and normal-
ized in three patients (77). Clinical improvement in features of 
hypercortisolism was also observed (77). Interestingly, ACTH 
levels initially decreased then returned to initial values without a 
loss of efficacy. Another small study on CD patients showed that 
4/16 (25%) achieved normal UFC levels after 12 months of treat-
ment with 13-cis-RA (e.g., isotretinoin, an isomer of RA) (91).

Retinoic acid is used in different diseases such as severe acne 
vulgaris and hematologic diseases, and undesirable effects can be 
minimized by prevention and close monitoring. Frequent side 
effects are usually manageable such as photosensitivity, cheilitis, 
mucositis, and hypertriglyceridemia (91, 92). Most serious tera-
togenic effects of RA are well known and in young women with 
CD, a contraceptive method is essential. Doses studied in CD are 
similar than those used for acne (92), and therefore the side effect 
profile should be similar. If combination therapy is entertained, 

clinicians also must consider potential drug interactions with 
ketoconazole that will inhibit isotretinoin metabolism.

epidermal Growth Factor Receptor (eGFR) 
inhibitors
Epidermal growth factor receptor is a cell surface receptor member 
of the ErbB family. Specific ligands such as EGF or other growth 
factors can stimulate tyrosine kinase activity with downstream 
activation of MAPK pathway, phosphatidylinositol-3-kinase, 
phospholipase C gamma, and transcription factors leading to cell 
proliferation and differentiation. EGFR overexpression leads to 
upregulated cell proliferation and is linked with many cancers 
(93). In CD, EGFR activation also induces high levels of POMC 
expression and transcription (76). Notably, EGFR is highly 
expressed in corticotroph tumors (up to 75%) and correlates with 
a more aggressive subtype (8). EGFR overexpression is linked 
to downregulated p27, a CDK inhibitor implicated in cell cycle 
which is depleted in CD and restored by EGFR blockade (76, 94).

The genetic basis of elevated EGFR signaling in CD has 
recently been clarified by whole genome sequencing. EGFR 
overexpression is linked to somatic mutation in the candidate 

https://www.frontiersin.org/Endocrinology/
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ubiquitin-specific protease 8 (USP8) gene (95, 96). USP8 muta-
tion is found in 30–60% of ACTH tumors (95, 96) and appears 
specific to corticotroph tumors (96). Mutated USP8 adenomas 
harbor more EGFR expression, higher EGFR protein and higher 
POMC mRNAs (96). USP8 mutation at the 14-3-3 binding 
motif leads to a hyperfunction of this deubiquinating enzyme 
directed to its target EGFR leading to reduce EGFR degradation 
(95, 96). USP8 knockdown leads to reduce EGFR protein and 
inhibits ACTH secretion. USP8 characterization is not widely 
available, but USP8-mutated corticotroph adenomas causing 
CD appear more frequently in women (70–95% females), 
are smaller in size (most tumors are <0.5  cm) and are less 
radiologically invasive, compared with wild type (95, 97). Of 
note, 30–40% of these tumors were also very large and invasive 
(97). Biochemical parameters such as ACTH levels of degree of 
hypercortisolism were similar, but the secreting ability of USP8-
mutated tumors was proportionally higher (e.g., higher ACTH 
levels compared with size) than other corticotroph adenomas 
(95, 97). These clinical characteristics may help identify tumors 
harboring USP8 mutations pending widely available genetic 
testing.

Blocking EGFR induces reduced POMC promoter activity 
with antiproliferative effects in a dose-dependent manner in cul-
tures of canine and human corticotroph tumors (76). Gefitinib, 
an oral EGFR inhibitor, is actively studied in USP8-mutated CD 
in China (phase II) (98).3 In vivo gefitinib treatment of mice with 
corticotropinomas (AtT20 allografts) both led to decreased tumor 
volume and clinical improvement in omental fat (76). Gefitinib is 
indicated for the first-line treatment of patients with metastatic 
non-small-cell lung cancer with tumors harboring EGFR-specific 
mutations (93). Used at doses of 250  mg daily, gefitinib’s most 
frequent side effects were Grade 1 or 2 skin rash and diarrhea, 
mild elevation of transaminases and rare development of inter-
stitial lung disease (2.6% Grade  >  3), for which monitoring is 
advised (99).

FUTURe POSSiBLe TARGeTS

Genetic Manipulation of MicroRNA 
(miRNA)
MicroRNAs are small non-coding gene portions that have an 
important role in regulating other genes expression. Evidence 
exists in the cancer field that inhibition of miRNAs could be 
achieved by an antisense oligomer delivered to the tumor (100). 
This evolving area of therapy may be applicable to pituitary 
tumors. miRNAs are implicated in pituitary tumor growth, 
differentiation and aggressiveness by modulating transcription 
factors or enzyme activity by methylation or by other mechanism 
(101). In corticotroph adenomas, there is downregulation of 
several miRNAs, losing their tumor suppressive action. Stilling 
et al. found that miRNA-122 and -493 are implicated in tumor 
development of aggressive corticotroph adenomas and carcino-
mas (102). Their manipulation could potentially lead to tumor 
regression.

3 https://clinicaltrials.gov/ct2/show/NCT02484755 (Accessed: January 2, 2018).

Silibinin; Heat Shock Protein 90 (HSP90) 
inhibition
Heat shock protein 90 is a chaperone protein interacting with 
the GR to induce conformation changes essential for GR action, 
thereby regulating cell proliferation and POMC transcription. 
HSP90 allows proper folding of the GR ligand-binding domain. 
Once cortisol binds to its surface receptor, the unit then trans-
locates to the nucleus where NR3C1 binds to regulatory areas 
on DNA, affecting transcription of genes implicated in synthesis 
of POMC, consequently inhibiting ACTH secretion (8). This 
cascade is the basis of the glucocorticoid (GC) negative feedback 
inhibition. HSP90 is overexpressed in corticotroph adenomas, 
leading to its continued binding to GR, consequent decreased 
sensitivity of GR to circulating GC (and dexamethasone, for 
example), and ultimately increased transcription of POMC (79).

Heat shock protein 90 inhibitors cause release of the GR from 
HSP90. This might restore GC sensitivity by stabilizing GR in a high-
affinity conformation for ligand binding (103). N- and C-terminal 
inhibitors have been studied and act at different levels of the 
cycle. The most promising agent is silibinin, a C-terminal HSP90 
inhibitor extracted from milk thistle seeds. In a murine corticotroph 
cell line (AtT20), silibinin increased the transcriptional activity 
of NR3C1 and GR sites, leading to decrease POMC transcription 
and suppression of ACTH secretion (79). This effect was enhanced 
by dexamethasone. Mice with corticotroph tumors treated with 
silibinin showed decreased tumor growth, lower hypercortisolism 
levels and clinical improvement in their cushingoid features (79).

Silibinin has a very favorable side effect profile, and milk thistle 
herbal supplement is mostly used for liver and biliary issues (104, 
105). Silibinin has been studied for its anti-fibrotic hepatic effect 
(106), but also for its anti-cancerous and anti-inflammatory action 
in prostate cancer, Alzheimer disease and osteoarthritis (107–109).

Testicular Orphan Receptor 4 (TR4) 
inhibition
Testicular orphan receptor 4 is a nuclear receptor and transcription 
factor implicated in many physiological processes (103). TR4 is 
normally expressed in corticotroph cells, and TR4 knockdown leads 
to decreased POMC expression (110). Overexpression of TR4 has 
been observed in corticotroph tumors, thereby increasing POMC 
transcription and ACTH secretion, but also cell proliferation (110). 
These actions are also based on decreased sensitivity to circulating 
GC, as TR4 blunts the interaction between GC and GR with POMC 
gene promoter (111). Increased activity of TR4 could result from 
EGFR signaling, thus also potentially linking its expression to USP8 
(111). These findings make TR4 a potential therapeutic target, but 
no antagonist or inhibitor has been developed to date.

Monoclonal ACTH Antibody
ALD1613 is a specific, high-affinity, monoclonal antibody-
blocking ACTH signaling. This molecule binds to ACTH with 
high-affinity and high-specificity thus inhibiting MC2R signal-
ing in  vitro. It neutralized ACTH activity in  vitro and reduced 
GC levels in rats and in cynomolgus monkeys (112). ALD1613 
treated rats had also a blunted GC response to stress (112). There 
are no published human studies to date.

https://www.frontiersin.org/Endocrinology/
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CONCLUSiON

With increased knowledge of CD pathophysiology (113) at the 
mole cular level, the face of medical therapy for CD is quickly chang-
ing. Pasireotide remains the only drug approved specifically to 
treat CD at the pituitary level, but the pharmacopeia continues 
to expand. Future studies as to precise efficacy and safety of new 
pharmaceutical agents and identification of response predictors, 
are in the wings. A multidisciplinary team with collaborating 
experts remains the basis of complex disease management.  
A personalized and individual-based approach is key to offering 
treatment with highest success rate while minimizing the side 
effects and improving patient quality of life.
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