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Abstract

A tightly-focused ultrashort pulsed laser beam incident upon a cell membrane has previously been shown to transiently
increase cell membrane permeability while maintaining the viability of the cell, a technique known as photoporation. This
permeability can be used to aid the passage of membrane-impermeable biologically-relevant substances such as dyes,
proteins and nucleic acids into the cell. Ultrashort-pulsed lasers have proven to be indispensable for photoporating
mammalian cells but they have rarely been applied to plant cells due to their larger sizes and rigid and thick cell walls, which
significantly hinders the intracellular delivery of exogenous substances. Here we demonstrate and quantify femtosecond
optical injection of membrane impermeable dyes into intact BY-2 tobacco plant cells growing in culture, investigating both
optical and biological parameters. Specifically, we show that the long axial extent of a propagation invariant (‘‘diffraction-
free’’) Bessel beam, which relaxes the requirements for tight focusing on the cell membrane, outperforms a standard
Gaussian photoporation beam, achieving up to 70% optoinjection efficiency. Studies on the osmotic effects of culture
media show that a hypertonic extracellular medium was found to be necessary to reduce turgor pressure and facilitate
molecular entry into the cells.
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Introduction

The delivery of functional molecules into living eukaryotic cells

is a common research technique to study an organism’s

physiology. Desirable compounds for introduction into cells can

include nucleic acids for gene function and protein expression

studies; biosensors for monitoring response to stimuli; as well as

proteins, antibodies, dyes and drugs. However, the lipid bilayer of

the cell membrane acts as a barrier to defend the cell against

foreign molecules. A number of transfection techniques were

developed to breach this barrier and deliver various molecules of

interest into cells.

Crossing the cell membrane is considerably more challenging in

plant cells compared to mammalian cells due to the additional

presence of a cell wall. The cell wall can be up to 0.2 mm thick, 20

times thicker than the adjacent cell membrane (7–9 nm), and is

selectively permeable to molecules smaller than approximately

4 nm in diameter [1]. Furthermore, the cell wall causes other

complications, for example, during normal homeostasis, the cell

membrane pushes against the wall, conferring an internal turgor

pressure to the cell. This pressure may be increased if cells are

bathed in a hypotonic culture medium [2] making it difficult to

introduce molecules to the protoplast.

Current methods for molecule delivery into plant cells include

microinjection [3–5], particle bombardment [6] and the applica-

tion of cell-penetrating peptide (CPPs) [7]. Microinjection is a

highly selective process but it requires skilled operators and very

few injections can be achieved in a given time. Particle

bombardment and CPPs can target large numbers of cells at

once to achieve a higher frequency of delivery but suffer from a

lack of specificity and in the case of bombardment, cell damage

and death impacts transfection efficiencies. To overcome these

limitations, the use of a tightly focused laser beam to increase the

permeability of the cell membrane could provide a selective and

minimally-invasive method for molecule deliver but with increased

cell throughput compared to microinjection [8].

When compared to the rapidly-expanding mammalian cell

photoporation literature [9], laser-mediated injection of molecules

has rarely been used in plant cells. The first plant optical injection

was demonstrated in [10] where a 343 nm nanosecond (ns) laser

was used for the introduction of fluorescently-labeled DNA into

Brassica napus cells without stating the efficiency of optoinjection.

Other methods have also used a short-wavelength ns laser for

plant cell photoporation [11–15] where cell permeability was

achieved via heating or thermo-mechanical stress [16]. Awazu et al

used an infrared (IR) ns laser beam to inject the nuclear-staining
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dye DAPI, and also DNA, into tobacco BY-2 cells but here it was

reported to have a very low DAPI optoinjection efficiency (,1–

3%) [17].

Previously, femtosecond (fs) near-infrared (NIR) pulsed lasers

have generally been found to be the most effective for single

mammalian cell photoporation with inherent advantages over

other laser-based systems [18]. The laser wavelength allows for

deep penetration while the high repetition rate ultrashort pulses

induce multiphoton absorption leading to photochemical effects in

a limited focal volume. This approach minimizes any collateral

damage to the cell structure [16]. Fs optical injection and

transfection has proven to be valuable for many different

mammalian cell lines, particularly hard-to-transfect cell lines such

as neurons [19,20], stem cells [21] and in vivo systems [22]. With

regard to plant cells, high-precision fs laser-mediated optoinjection

of single cells within Arabidopsis root was reported first by

Tirlapur and König [23] and has been investigated further in

Arabidopsis epidermal cells [24]. While it is useful to explore

single-cell photoporation in higher plant tissue, this cannot be

considered particularly representative of the plant cell system due

to the individual cells’ specialized states. The tobacco BY-2 cells in

suspension used in this study are chosen for their homogeneity and

predictability, which makes them a widely accepted representative

model system [25–27].

In the majority of studies in this field, it was necessary for the

laser to be tightly focused precisely at a specific point on the cell

membrane. However, Tsampoula et al [28] demonstrated that for

mammalian cells, fs optical transfection could be achieved over a

wider range of axial distances from the cell membrane by using a

Bessel beam [29]. This optical field has a transverse profile that is

propagation invariant over a finite distance. Consequently it has a

central maximum which extends several Rayleigh ranges com-

pared to a standard Gaussian beam [30] (Figure 1). A Bessel beam

is created when a Gaussian beam is incident upon a conical lens,

known as an axicon. The resultant transverse intensity pattern

consists of a central core surrounded by concentric rings [31] that

can be described by a Bessel function of order zero. Interference

effects within the Bessel beam lead to an increased axial

propagation when compared to a focused Gaussian beam [32].

A longer axial propagation distance provides a large operating

region over which the necessary multiphoton effects can occur,

thereby essentially relaxing the requirement for tight focusing of

the laser spot exactly on the membrane [30]. A more power-

efficient membrane targeting method used a spatial light

modulator (SLM) to sequentially apply axially separated Gaussian

laser doses [33] and saw a 60% increase in optoinjection efficiency

over a single dose in mammalian cells. This paper aims to directly

compare Gaussian and Bessel light modes particularly to

determine their effectiveness in a cell line in which the membrane

is significantly more challenging to target when compared to the

standard CHO-K1 model cell line. A third method to reduce

membrane targeting eschews targeting single cells with a tightly-

focused beam in favour of using weakly focused lasers to irradiate

nanoparticles attached to cells in a large field of view [34–37]. The

resulting plasmonic effects cause an increase in membrane

permeability in a large number of cells in a short period of time,

at the cost of single-cell selectivity.

As mentioned above, plant cells are reliant on turgor pressure to

maintain their shape. Standard plant culture medium is hypotonic

with respect to the cell interior so the creation of a pore in the

membrane initiates an outward flux of cytosol as the osmotic

pressure is equalized, seen in Guo et al [12]. Hypertonic treatment

of the cell causes plasmolysis, creating a ‘‘temporary protoplast’’ as

the membrane is pulled away from the cell wall and laser access to

the cell membrane is enhanced [38]. A breach of the cell

membrane will then cause uptake of extracellular medium by the

cell. Ferrando et al showed that subjecting plant cells to high

osmolarities during plasmolysis-deplasmolysis cycles can cause

high cell death rates [39]. Guo et al reported a transformation

efficiency of only 0.5%, but the reasons for the low transformation

efficiency were not elucidated and could be due to frequent cell

death induced by the large osmotic change in medium applied for

the poration of cells in this study [12]. Media which are only

weakly hypertonic, however, reduce the void area produced [39]

and therefore decrease the maximum possible medium uptake by

the plasmolyzed cells. By incrementally changing osmolarity and

studying the effects on both cell death and medium uptake, it

would be possible to optimize photoporation in plant cells.

In this study, the optimal parameters that determine fs optical

injection of intact plant cells are evaluated and described. An

experimental setup, allowing reconfiguration between a Gaussian

Figure 1. Optical set-up applied for plant cell photoporation. A
provides a series of schematics depicting Gaussian and Bessel beams.
The first column shows example microscope images of transverse
profiles of focused Gaussian (i) and Bessel (ii) beams. Illustrative axial
profiles are seen in iii and iv where the regions of multi-photon
absorption are shown in red. The Bessel beam axial extent of multi-
photon absorption is much longer than that of the Gaussian. The white
dotted lines show the corresponding cross-sections of the orthogonal
images. The final column experimentally shows two-photon excitation
of fluorescein of each beam adapted from [30], scale bars represent
100 mm. Laser setup is shown in B. Output from the laser was directed
into either of two arms using a removable mirror, denoted by dotted
lines. A Bessel beam was generated using an axicon and a Gaussian
beam spot was created using a system of telescopes (L1 and L2). The
beam paths were directed into the back of a commercial inverted
microscope where all imaging was performed.
doi:10.1371/journal.pone.0079235.g001

Femtosecond Optoinjection of Intact Plant Cells
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and a Bessel beam at the focus by switching optical components,

was used to vary optical parameters. Comparisons between the

two optical geometries were conducted on tobacco cells in culture

(Nicotiana tabacum L., cv Bright Yellow 2 (BY-2), a model plant cell

line [40]) to determine the effect of beam geometry on plant cell

optoinjection and subsequent viability. In addition, cells were

photoporated in media of differing osmolarity and the effect on

optoinjection efficiency and cellular uptake of membrane imper-

meable molecules was monitored.

Results

Bubble Formation and Optoinjection Success
Successful optoinjection by both beam geometries of the BY-2

cells always was preceded by the creation of a gas bubble at the cell

surface as seen in Figure 2B. These bubbles are caused by multi-

photon absorption leading to photo-ionisation within the focal

volume. If the density of free electrons created exceeds the optical

breakdown threshold of the irradiated material then a cavitation

bubble will be produced [18], disturbing the cell membrane and

transiently increasing its permeability. By increasing the laser

fluence, long-lasting gas bubbles, of the order of a few seconds,

with larger diameters ($5 mm) could be created; however, these

forms of bubbles were observed to be followed by cell death as

damage to the membrane is permanent [41]. The transient nature

of the bubble at low laser intensities is shown in Figure 2C, which

was taken 3 minutes after a laser dose and shows no lasting visible

damage to the area of irradiation.

Determining the Effect of Changing Optical Parameters
on Optical Injection

The effect of the beam geometry on successful photoporation

was determined by irradiating the cells with either a Gaussian

beam or a Bessel beam. The initial experimental conditions used

standard culture medium made hypertonic by the addition of

0.29 M sucrose as the surrounding medium to induce plasmolysis

of cells. Sucrose was chosen as an osmoticum due to the high

viability it allows during plasmolysis-deplasmolysis cycles when

compared to inorganic solutes [42].

The diameter of the central spot of the Bessel beam (2r0) was

matched to the beam waist of the focused Gaussian beam (2v0)

and the axial extent was approximately 13 times longer than the

Rayleigh range of the Gaussian beam. This is the axial length in

which all multi-photon events occur (see text S1). Two different

modes of laser irradiation were employed using the Gaussian

beam; either a single dose or three doses separated by

approximately 2 mm axially and 1 second temporally, the latter

is intended to increase the chance of targeting the cell membrane

while avoiding any accumulative effect from multiple exposures

[33]. A single shot was applied with the Bessel beam. In this way

we could compare the two methods previously utilised to increase

the chance of targeting the cell membrane alongside the standard

single Gaussian dose. The effect of the laser intensity applied to the

cell was investigated as it has previously been shown that the laser

fluence affects the efficiency of optoinjection [43].

PI was chosen as the optoinjection fluorophore for this part of

the experiment since the lack of background fluorescence makes

small uptake volumes easy to image. PI is membrane impermeable

unless the cell membrane is compromised and it is used as a

standard proof-of-concept photoporation fluorophore [44–46].

Upon entry into a photoporated cell, PI intercalates with nucleic

acids present in the cytosol causing enhanced fluorescence [24],

which is seen experimentally in the cytoplasm. Optoinjection of PI

into the cell can be seen in the fluorescent images from Figure 2.

Prior to laser irradiation, no background fluorescence is seen

except a weak staining of the plant cell wall (Figure 2D) caused by

PI binding to pectins in the cell wall [47]. Upon irradiation, a

broadband autofluorescence was induced at the laser focus, as

shown in Figure 2E. This effect was either transient or permanent

depending upon laser intensity, with permanent autofluorescence

indicating cell death. If photoporation was successful, entry of PI

into cells occurred and cytosolic fluorescence was observed

(Figure 2F).

The application of each of the three laser irradiation patterns

displayed increasing efficiency of optoinjection (O) as the intensity

within the central spot (where all multi-photon effects are assumed

to occur) increased (Figure 3A,B,C). Three doses with the

Gaussian beam (3B) displayed the highest efficiency, achieving

Figure 2. Optical injection of PI into a BY-2 cell. Shown in bright
field (A–C) and fluorescence (D–F). A) Before shooting, B) transient
bubble created on cell membrane during laser dose, C) no visible laser
damage left post-irradiation. D) Pre-irradiation showing faint PI staining
of the cell wall. E) Laser induced transient auto-fluorescence at the point
of irradiation. F) Permanent increase in cytosolic fluorescence as PI
enters the cell. Arrows indicate site of laser irradiation. Scale bar
denotes 10 mm.
doi:10.1371/journal.pone.0079235.g002
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up to 6165%, although viability was severely compromised in this

regime, never rising above 65%. Single shots with the Gaussian

beam (3A) showed the lowest efficiencies overall, (maximum

efficiency of 3267%) but with greater viability than with three

doses. The Bessel beam (3C) displayed the highest viabilities at the

majority of intensities and provided intermediate efficiencies,

reaching a maximum at 5166%.

In order to compare quantitatively the beam geometries, we

consider which irradiation pattern would produce the highest

proportion of cells that are both optoinjected and viable (defined

as N). To determine N, the product of the optical injection

efficiency (O) and viability (V) was calculated at each central beam

spot intensity (Figure 3D). The percentage of the power in the

central spot of the Bessel beam was calculated to be 6.5%. As the

area of the central spot is smaller than the surrounding concentric

rings, only the central spot has a high enough intensity to create

multi-photon interactions and therefore contribute to photopora-

tion [16]. At low laser intensities, N is small due to the low

optoinjection efficiency even though the viability of the optoin-

jected cells can be up to 100%. As the intensity of the laser

increases, so does N as O begins to increase with only a slight

reduction in viability. Figure 3D shows that at higher intensities,

the single shot Gaussian provides the lowest values of N. For all

intensities explored in this study, the Bessel beam and three shots

with the Gaussian beam display comparable values for N; the

higher efficiencies achieved when using the Gaussian beam are

counteracted by the subsequent decrease in viability.

Effect of Medium Osmolarity on Optoinjection Efficiency
Having established that the Bessel Beam geometry was the

optimal configuration for time-efficient optoinjection of dyes into

BY2 tobacco plant cells, the potential role of the extracellular

medium on optoinjection efficiency was investigated. Prior to laser

irradiation in the presence of PI, cells were incubated in media

using differing sucrose concentrations to vary the osmolarity,

starting with the standard hypotonic medium used for culturing

(total osmolarity of 17162 mOsm/L). Experiments were per-

formed using a single 40 ms dose from the Bessel beam with a

power of 1.6 W at the focal plane to maximise photoporation

efficiency.

At each of the five osmolarities tested, cells were photoporated

and studied for either injection or ejection of cytosol from the

protoplast (Fig. 4A). Cells were also screened for viability as

described in the previous section. At low osmolarity (lower than

32062 mOsm/L) the primary effect observed was an ejection of

cytosolic medium into the extracellular environment after laser

treatment (Figure 4A,B). Extracellular PI then binds to solutes

ejected from the cell to cause an increase in fluorescence around

the exterior of the cell (Fig. 4B). Conversely, at osmolarities greater

than 32062 mOsm/L, the dominant effect was an intake of

extracellular medium (injection, Fig. 4A). In contrast to optoejec-

tion, optoinjection was characterized by fluorescence within the

protoplast (Fig. 2F). The increase in injection frequency, however,

was counteracted by an increase in the occurrence of cell death in

optoinjected cells. Figure 4A shows that in media with an

osmolarity of 32062 mOsm/L, optoinjection and optoejection

both occur in about 10% of cells.

To relate these photoporation effects seen to plasmolysis

changes within the cell, the degree of plasmolysis at the different

solution osmolarities was measured by the two methods usually

employed [48]: measuring the void space and counting the

number of plasmolyzed cells. By looking at the void space as a

Figure 3. Optoinjection efficiency (O) and viability (V) of the BY-2 plant cells at different laser powers. After irradiation by (A) three
shots or (B) a single shot with the Gaussian beam or (C) a single shot with the Bessel beam. For both beam geometries the optoinjection efficiency
(represented by open squares) increases with power at the focal plane while viability (solid squares) usually decreases. C shows N (the proportion of
cells being both viable and optoinjected) for varying central spot intensities. N increases as the intensity increases. The Bessel beam (black) shows a
higher value for N than the Gaussian beam (red) when considering a single shot. When comparing with three axially separated shots of the Gaussian
beam (blue), N is comparable to the Bessel beam. Each data point represents the mean for n = 5 with 20 cells per experiment. Error bars represent the
standard error of the mean (S.E.M.).
doi:10.1371/journal.pone.0079235.g003
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fraction of the whole cell (Figure 4D), a general increasing trend is

observed as the osmolarity of the surrounding solution is increased.

This trend begins slowly at 171–279 mOsm/L, is steepest around

279–395 mOsm/L and then starts to level off again after

395 mOsm/L. The number of plasmolyzed cells seen in each

solution also shows an increase with osmolarity, but with a much

sharper growth between 171–320 mOsm/L followed by a

saturation point at 399 mOsm/L, beyond which all of the

observed cells were plasmolyzed. Examples of cells in low,

medium and highly osmotic solutions are shown in Figures 4E–

G respectively.

Exploration of Optoinjection Dynamics under Hypertonic
Treatment

Next we explored the dynamics of optoinjection in more detail.

Calcein was used to monitor the continuous uptake of extracellular

medium during photoporation of intact cells in media of differing

hypertonic osmolarities (39566, 69964 and 1024611 mOsm/L;

abbreviated to 0.4, 0.7 and 1 Osm/L in the following section).

These measurements allowed us to establish the time-scales over

which optoinjection occurs and also the volume of extracellular

medium that is taken up and how these change with extracellular

osmolarity. The small size and inert nature of calcein makes it an

ideal fluorophore for monitoring cellular uptake, moreover there is

no time delay (as occurs with PI) in visibility of the fluorescence

inside the cell. As described above, three axially separated shots

using the Gaussian beam at 70 mW at the focal plane were used

for optoinjection, taking advantage of the power-efficiency of the

Gaussian beam. The increase in intracellular fluorescence was

observed using a confocal microscope to eliminate background

fluorescence.

For each solution osmolarity a least squares fit was performed in

order to determine the asymptotic value for the maximum

fluorescence (the value reached if we could observe at later

timescales, given by Imax). This strategy avoids selection of

spurious maxima and gives an accurate estimate of the late time

behaviour. The asymptotic value of the maximum fluorescence

reached has a direct correspondence to the volume of extracellular

medium taken up by the cell as a fraction of the cell volume. Using

these fitted curves also allows us to establish the time taken to

reach 50% of that value (t1/2), which gives an indication of the rate

of medium uptake.

It can be seen from Fig. 5A that for each solution, the average

fluorescence increases relative to the background and shows a

sharp increase in the first few minutes followed by a trend towards

a horizontal asymptote. The 1.0 Osm/L curve decreases once a

maximum point is reached which could indicate the onset of cell

death caused by the large physiological changes discussed in the

previous section. Data for the first 200 seconds only are used to

perform the fit for the 1.0 Osm/L curve and thereafter

extrapolated to accurately fit the initial rapid increase. This allows

more appropriate values for Imax and t1/2 to be determined which

are independent of the observed decrease.

In Table 1, the asymptotic maximum fluorescence for the

different molarity solutions is compared. As the molarity increases,

Imax also increases, more than doubling between 0.4 and

1.0 Osm/L. From inspection of the time taken to reach half of

the maximum fluorescence (t1/2, Table 1), we can gain an insight

into the rate at which calcein is taken up by the cell. Each of the

curves appears close to saturation after three minutes (Figure 5A)

Figure 4. Optoinjection efficiency differs depending upon the
osmolarity of the surrounding medium. From looking at A, as we
increase the osmolarity, the efficiency of optoinjection (black squares)
increases from zero up to 50% as the surrounding medium changes
from hypertonic to hypotonic. Conversely, the optoejection efficiency
(red circles) falls from around 10% to 0% above 32062 mOsm/L. As the
molarity of the solution increases, the likelihood of cell death
(represented by blue triangles) is increased. At 32062 mOsm/L the
optoinjection and ejection efficiency are approximately equal. Each
data point was performed in triplicate with 20 cells; error bars represent
S.E.M. B and C show brightfield and fluorescence overlays of a cell prior
to (B) and 2 minutes after (C) laser irradiation in standard culture
medium in the presence of PI. Photoporation induces a flux of cytosol
from the cell into the extracellular medium. The cytosol ejected from
the cell becomes stained with PI and a bright fluorescence is seen
exterior to the cell. Large changes in cell morphology occur and cell
death is induced. D shows the osmotic effect on plasmolysis of BY-2
cells. Both the void space (blue) and fraction of plasmolyzed cells (red)
increases with the osmolarity of the surrounding medium but the red
line shows a much steeper incline around the point of incipient
plasmolysis (50%). Error bars denote the S.E.M. for n = 3 experiments
with 20 cells counted in each. E-G show example cells in standard culure
medium (17162 mOsm/L), very weakly hypotonic (32062 mOsm/L)
and strongly hypotonic (69964 mOsm/L) solutions respectively, with
the resulting plasmolysis occurring slightly in F but seen very strongly in

G as the membrane pulls away from the cell wall in the highly osmotic
solution. Scale bars denote 10 mm.
doi:10.1371/journal.pone.0079235.g004
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but Table 1 shows that higher molarity solutions induce a greater

uptake rate, although the change is less pronounced than for Imax,

with a decrease of less than 20% occurring between 0.4 and

1.0 Osm/L.

An example of calcein optoinjection before and after photo-

poration is shown in Figures 5B and C. The confocal image is

shown in negative to better highlight the entry of the calcein (dark)

into the cell (light). Prior to photoporation, the protoplast interior

is free of calcein and surrounded by strong background

fluorescence. After photoporation, the nucleus and a thin cytosolic

strand can be seen to be filled with calcein as they turn dark.

Effect of Fluorophore Size on Cellular Uptake
Although fluorophores with a molecular weight of less than

1 kDa are useful for investigating and optimizing the optical

injection process, biologically-relevant compounds are usually

much larger than this, with proteins and DNA reaching up to

hundreds of kDa in size. The presence of the cell wall might

therefore present a problem in the delivery of these molecules. To

investigate this, fluorescently-labeled dextrans of varying sizes were

optoinjected into both intact BY-2 cells and BY-2 protoplasts.

Dextrans are non-ionic polysaccharides available in specific

weights that are frequently used in membrane exclusion studies.

Cells were optoinjected using the same irradiation parameters as

the preceding experiment. Confocal images were taken prior to

irradiation and 3 minutes afterwards to monitor how cellular

uptake changes with optoinjectant size.

The effect of dextran size on cell uptake can be seen in Figure 6.

The Stokes radius (SR) is calculated from the molecular weight

(MW) using the empirical formula SR[nm] = 0.81*(MW[kDa])0.46,

taken from [49,50]. Both intact cells and protoplasts display

decreased cellular uptake as the Stokes radius increases. For Stokes

radii equal to and smaller than 4.42 nm (corresponding to 40 kDa

dextrans), the protoplasts show less cellular uptake than the intact

cells. At 3.2 nm (20 kDa), the cellular uptake for intact cells is

three times greater than for protoplasts. At 5.71 nm (70 kDa), the

cellular uptake is severely reduced in both cell types, although four

times more dextrans are taken up by the protoplasts than the intact

cells.

Discussion

This paper demonstrates the optical injection of various

fluorophores into intact plant suspension cells using an ultra-

short-pulsed laser. It was found that by varying the optical and

biological parameters, the optoinjection efficiency and dynamics

vary greatly.

By increasing laser intensity, the optoinjection efficiency was

maximized for both beams because a larger disruption to the cell

membrane occurred. The more severe the disruption to the

membrane, the more likely that the cell will be non-viable post-

Figure 5. Uptake of calcein during photoporation in hypertonic medium. Solid lines in A show the mean increase in intracellular
fluorescence relative to background for n = 20 cells with error bars representing 0.5 S.E.M. for clarity. Each curve shows a sharp increase in
fluorescence in the first few minutes after photoporation, which plateaus after around 3 minutes. The higher molarity solutions show a quicker
increase in calcein uptake and reach a higher level of maximum fluorescence than the lower molarity solutions. Dashed lines denote fitted saturation
curves. B and C show a cell (arrowed), in negative contrast for clarity, before and 60 seconds after photoporation in 0.4 Osm/L medium containing
calcein. The nucleus, indistinguishable from the rest of the unporated cell in B, becomes filled with calcein along with a cytosolic strand (just visible at
arrow tip) but none enters the large vacuole surrounding it.
doi:10.1371/journal.pone.0079235.g005

Table 1. Parameters determined from non-linear fits of
calcein uptake.

Medium Osmolarity
(Osm/L) Imax t1/2 (s)

0.4 0.291(7) 37(1)

0.7 0.468(3) 36.3(3)

1.0 0.521(9) 30.8(5)

As the osmolarity increases, the asymptotic maximum fluorescence value,
which the saturation curve tends towards, increases. The time taken to reach
50% of the maximum fluorescence decreases as the molarity of the solution
increases. The increased pressure difference caused by higher molarity solutions
induces more and quicker uptake of medium to balance it. Brackets denote the
error in the final digit; uncertainties were calculated from the R-squared value of
the fitted curves.
doi:10.1371/journal.pone.0079235.t001
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irradiation as the membrane permeability may become perma-

nently compromised. The maximum optoinjection efficiency

achieved with either beam was over 10-fold higher than those

presented previously applying a ns laser to intact BY-2 cells [17]

and similar to those achieved using a femtosecond Gaussian beam

in Arabidopsis epidermal cells [24].

When considering the application of a single dose, using the

Bessel beam over the Gaussian beam provided a higher efficiency

of optoinjection, producing nearly 50% more viable optoinjected

cells, shown in Figure 3D. This could lead to an increase in

throughput in plant cell optoinjection as the total number of cells

that require targeting to achieve a certain number of usable cells is

reduced. The most time-consuming part of the optoinjection

process is aligning the membrane with the focal plane of the

focused Gaussian beam. With the plant cells this is made even

more challenging as (along with the difficulty of the cell wall) plant

cells are much greater in size, barrel-shaped, non-adherent and

relatively less homogeneous in morphology than mammalian cells.

The long propagation invariance of the Bessel beam makes it

easier to target the membrane without the necessity for precise

focusing beforehand, reflected in the higher optoinjection

efficiencies achieved. The time spent focusing is then reduced

and the number of cells that can be photoporated in a given time is

increased. Figure 3D also showed that it is possible to increase the

efficiency of Gaussian beam photoporation to match that of the

Bessel beam by using multiple doses. While this is useful in systems

where power efficiency is critical, it again reduces the possible cell

throughput due the extra time required to apply the doses and

manually align the stage above and below the focal point. Using

the Bessel beam, approximately 300 cells could be irradiated per

hour which is three times higher than an automated protoplast

microinjection system [51]. This frequency could be further

increased with the inclusion of automated cell targeting [52],

raster-scanning system [33] or microfluidic technology [41,53].

The long axial propagation of the Bessel beam and the self-

healing properties may also prove useful when considering other

plant cell types. While the BY-2 cells are genetically identical to

their parent plant Nicotiana tabacum and it can be assumed that the

cell wall will be of a similar composition, differing plant species

and cell types will portray slightly differing cell wall properties,

although the primary constituents of cellulose and hemi-cellulose

will remain. If other cell types requiring optoinjection displayed

thicker secondary cell walls then the Bessel beam could help to

bypass this issue, though a higher power may be required in order

to counteract any abberations introduced to the beam by passing

through this cell wall. Another option to bypass a thicker cell wall

could be to employ wavefront shaping [54].

Changing the osmolarity of the solution the cells were bathed in

allowed us to affect the delivery of molecules into the cell. At low

osmolarities, the cell is fully turgid and the cell membrane is

pushed against the cell wall by osmotic pressure (Figure 4E).

Therefore breaching the membrane allows cytosol to flow from the

cell, reducing the pressure within the cell and ultimately rendering

it non-viable. At higher osmolarities the opposite effect occurs,

with the difference in pressure caused by the osmotic gradient that

draws material into the cell. Higher osmolarities, however, also

caused increased cell death as the amplitude of physical changes

induced in the cell was increased. Higher osmolarity media induce

larger voids between the cell membrane and cell wall (Figure 4G),

which are then partially refilled as medium enters the cell upon

photoporation. Low cell viability following photoporation in high

osmolarity media has also been seen in mammalian cells [55].

The crossover between optoejection and injection occurring at

32062 mOsm/L could represent the approximate internal

molarity of the average BY-2 cell. Figure 4D shows the point of

incipient plasmolysis (taken to be where 50% of cells are

plasmolyzed [56]) occurs between 279 and 320 mOsm/L.

Incipient plasmolysis is the point at which the cell membrane just

starts to pull away from the cell wall, the surrounding medium is

therefore deduced to be isotonic. This is also supported by looking

at the void fraction which increases quickest around 279 and

395 mOsm/L. It appears that the fraction of cells plasmolyzed is a

more sensitive measure of the cell osmolarity whereas determining

the void space better represents the plasmolysis effects at higher

osmolarities, where the first method saturates. The primary

mechanism of molecule delivery at an isotonic osmolarity will be

via diffusion, akin to mammalian cell optical injection [33].

Complementary effects were seen when temporally monitoring

cell uptake for differing osmolarities. The increased Imax at higher

osmolarites is due to the larger osmolarity gradient between the

intra- and extracellular medium producing a greater plasmolyzing

effect which creates a large pressure differential across the cell

membrane. This is also supported by the larger void space at

higher osmolarities, as measured in Figure 4D. A greater volume

of the highly osmotic solution must be taken up by the cell in order

to balance the pressure, hence we see a greater uptake of calcein.

The reduced t1/2 is also caused by the larger pressure differential

Figure 6. Effect of molecule size on cellular uptake. From looking
at A, it can be seen that as the Stokes radius increases, the amount of
dextran taken up by the cell decreases. The protoplasts take up less
dextrans than the intact cells for Stokes radii smaller than 5 nm. Beyond
5 nm, the cellular uptake by the intact cells decreases to practically zero
and more is taken up by the protoplasts. Data points shown are for
n = 30 cells with error bars representing the S.E.M. B shows
representative images (those depicting uptake most comparable to
the average uptake) of intact cells and protoplasts before (1) and 3 mins
after (2) photoporation in the presence of small and large dextrans. The
larger dextrans show less (though still visible) entry into the cell than
the smaller dextrans.
doi:10.1371/journal.pone.0079235.g006
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induced by higher osmolarity solutions creating a higher inward

flux of extracellular medium in accordance with mass conservation

laws and has been observed on mammalian cells too [55].

This study also evaluated the effect of changing the fluorophore

to be optoinjected. While it was observed that PI and calcein freely

diffused into the cell upon photoporation, using dextrans of

increasing MW adversely affected the amount of dextran that

could enter the cell. Increasing the Stokes radius of the molecule

decreases the diffusion coefficient, decreasing the likelihood of

molecules entering the cell during the transient pore opening; this

effect was seen in both intact cells and isolated protoplasts. Intact

cells showed higher intracellular concentrations of dextrans at low

MW than isolated protoplasts. This is most likely due to the

osmotic pressure present in the plasmolyzed intact cells actively

drawing more extracellular medium into the cell upon photo-

poration; isolated protoplasts rely solely on diffusion to optically

inject the dextrans [57]. For higher MW dextrans the cell wall

begins to affect the number of molecules that can be porated into

the intact cell protoplast. Even before photoporation has taken

place, as the size of the dextran added to the medium increases,

the fluorescence within the apoplast decreases until at 70 kDa

almost no fluorescence is seen in the apoplast, this will limit the

dextran concentration next to the cell membrane and therefore the

number of molecules which can be photoporated into the intact

cell protoplast. Attempts to directly target the cell wall saw no

increase in fluorescence in the apoplast, implying that photopora-

tion only affects the cell membrane. The reduction in cellular

fluorescence beyond 40 kDa suggests that the exclusion size of the

cell wall for dextrans is between 4.42 and 5.71 nm (although

partial exclusion occurs at lower Stokes radii) which supports

previous experiments which put the dextran cell wall exclusion size

at between 4.6 and 5.5 nm [58]. The isolated protoplast data

suggest that it could be possible to use photoporation to inject

molecules larger than 70 kDa past the plant cell membrane,

although with very low intracellular concentrations achievable.

For comparison, in animal embryonic cells dextrans of up to

500 kDa have been optoinjected [46].

Conclusion

This study has demonstrated the potential for optical delivery of

membrane impermeable molecules into intact plant suspension

cells. When compared to the current molecule delivery methods,

optoinjection can provide increased cell throughput (which

reduces the time required to inject large numbers of cells) while

still maintaining high efficiency and single-cell selectivity. The

viability of successfully optoinjected cells was found to be high

when compared to other molecule delivery techniques [59]. It was

also demonstrated that the Bessel beam provides a more effective

optoinjection method than with Gaussian irradiation, although the

Gaussian beam is more power-efficient and simpler to implement.

External osmotic pressure was found to be critical to be able to

inject cells with the compound of interest. Higher osmolarities

show an increased efficiency of uptake and greater allowable

volume of molecule. Increasing the osmolarity, however, also

increases the amplitude of physiological changes within the cell

and increases the chance of cell death occurring so a compromise

needs to be made between these effects.

The size of molecule for delivery was found to be limited in

intact cells to between 40 and 70 kDa. This limit may be

representative only for polysaccharides and other similar mole-

cules though because cell wall permeability has been shown to vary

for differing molecule types e.g. globular proteins and ionic DNA

[32]. It could also prove useful for future experiments to perform

fluorescence correlation spectroscopy on solutions of dextrans to

confirm that larger dextrans have more difficulty accessing the

interior of the cell in both protoplasts and intact cells. For injecting

larger molecules, isolated protoplasts might prove to be a more

useful receiver vessel, although the number of molecules entering

the protoplasts will still be low and protoplasts have limited use in

research due to the difficulty in regeneration from them.

Possible future experiments could include using FRAP (fluores-

cence recovery after photobleaching) to investigate the membrane

properties post-photoporation [60]. Potential applications for this

technology include extensions to the injection of biosensors and

other functional molecules or for transduction and transfection

experiments. In addition the inherent properties of the Bessel

beam may also allow access to deeper tissue.

Materials and Methods

Photoporation System
The output beam from a Ti:sapphire laser with a central

wavelength of 800 nm, 140 fs pulse duration, 4 W max average

power and 80 MHz pulse repetition rate (Chameleon Ultra II,

Coherent Inc, USA.) was passed through a mechanical shutter

(Newport, USA) capable of providing short exposure times on the

order of tens of milliseconds. It was could then be redirected into

either of two arms using a removable mirror. The photoporation

experiments used powers of 0.07–0.120 W for the Gaussian beam

and 1.2–1.8 W for the Bessel beam at the focal plane. The

Gaussian beam was magnified using a 4x telescope and coupled

directly into an inverted microscope (Ti-Eclipse, Nikon UK

Limited, UK). An air objective (Nikon, 60x NA = 0.8) was used for

optoinjection yielding a Gaussian beam waist diameter of

2v0 = 1.060.1 mm with a corresponding Rayleigh range of

2zR = 2.060.2 mm at the focal plane. An illuminated axicon

(CVI Melles Griot, UK) of opening angle 5u created the Bessel

beam that was magnified using a 4x telescope which, combined

with the 15x demagnification provided by the tube lens and

objective, gave a Bessel beam with a central core diameter of

2r0 = 1.060.2 mm and a propagation distance 2662 mm at the

focal plane. Figure 1A compares the intensity profiles of Gaussian

and Bessel beams, including the regions of multi-photon absorp-

tion. Figure 1B shows a diagrammatic optical set-up of the system

as described in this section.

The intensity of the laser in the central spot was determined by

dividing the power within the central spot by the beam area. In the

case of the Bessel beam, the power in the central spot was

estimated using ImageJ [61].

Culture of BY-2 Cells
BY-2 tobacco cells obtained from the James Hutton Institute

were cultured according to Brandizzi et al [40] in Murashige and

Skoog medium (MP Biomedicals, USA) supplemented with 1 mM

2,4-dichlorophenoxyacetic acid and 0.09 M sucrose in 20 ml

conical flasks. During liquid cultivation the flasks were kept on an

orbital shaker (IKA Labortechnik, Germany) at 120 rpm at 25uC.

Cells were subcultured weekly at a 1 in 20 ratio.

Photoporation of BY-2 Cells
Prior to the experiment, cells were collected by centrifuging

1 ml of a 3–5 day-old culture at 500 g for 2 min. The standard

culture medium was aspirated and replaced with 500 ml of

medium containing varying sucrose concentrations (from 0.09–

0.69 M sucrose) depending on the experiment. The cells were then

left at room temperature for 30 minutes to allow plasmolysis to

occur. 100 ml of this solution was plated on a 10 mm glass-bottom
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dish (World Precision Instruments, USA) with an optical thickness

of 0.17 mm. The cell membrane of individual cells was then

targeted with 40 ms laser doses: either a single shot or three 2 mm

axially separated shots (one shot focused on the membrane, the

other two 2 mm above and 2 mm below the membrane). Axial

separation was performed manually using a calibrated stage.

The osmolarity of each solution was measured using a freezing-

point osmometer (Type 15, Löser, Germany) with each solution

measurement performed in triplicate.

Propidium Iodide Optical Injection
Just prior to laser irradiation, propidium iodide (PI) was added

to a final concentration of 1.5 mM (Life Technologies, USA). The

working concentration was empirically determined so that cell

death was minimized after 1 hour in solution. PI was added post-

incubation to reduce contact time with cells and therefore

maximize cell viability.

Determination of optoinjection success was performed 2–3

minutes after photoporation using epi-fluorescence imaging with a

cooled CCD camera (Clara, Andor, UK) and a TRITC filter cube

(Nikon UK). Successful, viable optoinjection manifested as a low-

level fluorescence over the protoplast interior. Extracellular

fluorescence was indicative of optoejection having occurred.

Unsuccessful photoporation would display either no fluorescence

or only localized autofluorescence, which could be identified by

scanning the imaging plane over the entire cell volume;

autofluorescence was seen to only be present at the site of laser

irradiation. Photoporated yet non-viable cells were identified by a

strong PI fluorescence in the cell nucleus.

Measurement of Plasmolysis
The degree of plasmolysis induced at different solution

osmolarities was determined by two methods. Cells were

incubated in osmotic solutions as described above. For each

experiment, 20 cells were selected at random and the CCD was

used to image a cross-section in brightfield. To measure the void

space, both cell and protoplast were outlined manually in ImageJ

to measure their areas. The number of cells that displayed

plasmolysis for each experiment was also noted.

Optoinjection of Calcein
The final working concentration of calcein (a membrane

impermeable variant of the common viability fluorophore,

calcein-AM) was 30 mM (Life Technologies), which was added

just prior to irradiation. Calcein uptake was monitored using the

488 nm laser attached to a confocal imaging head (C1, Nikon

UK); a cross-sectional image of the cell in the plane of laser

irradiation was taken every 5 seconds for 6 minutes. Analysis of the

images was performed using ImageJ [61]. The normalized

fluorescence within the whole cell relative to the background

was established.

Due to confocal imaging occurring during laser irradiation, it

was impossible to screen the cells during irradiation for bubble

formation (assumed to be the catalyst for optoinjection). Post-

experiment determination of optoinjection success was performed

by using a 3s threshold on the fluorescent data: if the maximum

fluorescence reached was greater than three times the standard

deviation of a control cell in the same field of view then the cell

was assumed to be optoinjected. Curve-fitting was performed by

minimizing the sum of the least squares for the parameters a and b

for a saturation curve of the form I(t) = a(1 2 e2bt) [62], where I(t)

is the relative fluorescence intensity and t is time. Imax and t1/2

were determined from a and ln(2)/b respectively. This equation is

also analogous to the equation used in [44] investigating flow of PI

into cells which was derived from Fick’s law.

Optoinjection of Dextrans
Fluorescein-conjugated dextrans of sizes 3–70 kDa (Sigma-

Aldrich Co., USA) were added to make a working concentration

of 10 mM. For intact cells, dextrans were added prior to incubation

to help draw the dextran through the cell wall and maximize

dextran concentration in the apoplast [42]. Enzymatic digestion of

the cell walls of intact cells to make protoplasts was performed

according to [63] and experiments were performed within 24

hours. Dextrans were added prior to the experiment, no

incubation was required.

Single cross-sectional images of porated cells were taken before

and 3 minutes after irradiation using the confocal system described

in the previous section. The imaging of a bubble upon laser

irradiation was used as a marker for successful optoinjection.

Normalized cellular fluorescence relative to the background was

measured using ImageJ.
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