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Research on mesenchymal stem cells (MSCs) starts from the earliest assumption that cells derived from the bone marrow have the
ability to repair tissues. Several scientists have since documented the crucial role of bone marrow-derived MSCs (BM-MSCs) in
processes such as embryonic bone and cartilage formation, adult fracture and tissue repair, and immunomodulatory activities in
therapeutic applications. In addition to BM-MSCs, several sources of MSCs have been reported to possess tissue repair and
immunoregulatory abilities, making them potential treatment options for many diseases. Therefore, the therapeutic potential of
MSCs in various diseases including autoimmune conditions has been explored. In addition to an imbalance of T cell subsets in
most patients with autoimmune diseases, they also exhibit complex disease manifestations, overlapping symptoms among
diseases, and difficult treatment. MSCs can regulate T cell subsets to restore their immune homeostasis toward disease
resolution in autoimmune conditions. This review summarizes the role of MSCs in relieving autoimmune diseases via the

regulation of T cell phenotypes.

1. Introduction

There are abundant sources of MSCs including the umbilical
cord, placenta, bone marrow, adipose tissue, gums, endome-
trium, menstrual blood, synovium, periosteum, skeletal mus-
cle, and ligamentum cruciatum, among other tissues [1-5].
Besides, human induced pluripotent stem cells (iPS) also serve
as a source of MSCs. Although there are variations in the
criteria of surface markers of MSC from different sources, the
literature shows that classic MSCs express CD105, CD73,
CD90, CD34, and CD44, but not CD45, CD34, CD14,
CD11b, CD79a, CD19, and HLA-DR [6, 7]. MSCs have the
potential of self-renewal and multidirectional differentiation,
and their differentiation potential depends on the tissues from
which they originate (Table 1). Because of the low immunoge-
nicity and homing capabilities of MSCs, they are used to treat
multiple disease conditions. For instance, human umbilical
cord-derived mesenchymal stem cells (UC-MSCs) have the

potential to transform into cardiomyocyte-like cells. According
to Peter et al., the cardiomyocyte-like contractile cells are pro-
duced in vitro by MSC differentiation and aggregation on the
cardiomyocyte feeder layer and that only the young MSCs
could maintain their low immunogenicity after differentiation
into cardiomyocyte-like cells [8]. Similarly, Yu and colleagues
found UC-MSCs have higher liver differentiation potential
than bone marrow MSCs (BM-MSCs), hence their superiority
to BM-MSCs in the treatment of end-stage liver disease [9].
This indicates the differential ability of MSCs from varying
sources towards specific tissue repair and regeneration.

Also, the proliferation and differentiation potential of
MSCs can be enhanced by the culture environment via
modification techniques; therefore, the establishment of
various modified culture systems makes the application of
MSCs in regenerative medicine even more promising. These
modification approaches can be roughly divided into genetic
modification and preconditioning modification (using drugs,
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TaBLE 1: The surface markers and differentiation potential of different kinds of MSCs.
Sources Surface marker Differentiation potential Reference
CD271(+), CDS9(), CDI(+), CDA7(+), CDISI(x), 308 BB e SHEOumvie e boor
BM-MSCs  CD147(+), CD98(+), CD143(-), Lin (-) CD45(-), Otgemialpof R it}g1e11a1 o [14-18]
CD140a (PDGFRa) (low/-) P rnea: epr :
and cardiac progenitors
UC-MSCs CD73(+), CD90(+), CD105(+), CD44(+), CDH-1(+), Muscle, neurogenic cells, hepatocyte-like cells, [19-23]
CD29(+), CD34(-), CD45(-) endothelial lineage
Strong adipogenic and osteogenic potential, poor
CD45(-), HLA-DR(-), CD44(+), CD106(+), . ) . S
AD-MSCs CD34(+), CDI0(+), CD105(+) chondrogem.c potential, poor differentiation [14, 16, 17, 24-26]
potential of corneal and muscle
TRO-1(+), CD146(+), CD29(+), CD90(+), . . . .
DP-MSCs CD105(+), CD44(+), CD59(+), CD73(+), CD146(-), OSteOgemc’l*i‘:gofeﬁleirfl“;z‘i;"ffﬁc’ fibroblast (27, 28]
CD34(-), CD45(-), CD11b(-), CD45(-) 86
CD9(+), CD10(+), CD13(+), CD44(+), CD54(+), Strong chondrocyte, osteocyte, and adipocyte
SD-MSCs CD55(+), CD90(+), CD105(+), CD166(+), D7- differentiation ability, as well as muscle [16, 29]

FIB(+), CD14(-), CD20(-), CD45(-), CD133(-)

differentiation

growth factors, and other molecules), which can improve the
inherent biological activities concerning migration, homing
to target site, adhesion, and survival and reduce premature
senescence [10]. Existing research has shown that MSCs
communicate with other cells through direct contact and
paracrine signaling. In effect, MSCs repair tissue by directly
contacting, adhering, and subsequently differentiating into
the injured cells. It also exerts its anti-inflammatory, repair-
ing, and immunomodulatory effects by secreting extracellu-
lar vesicles (EVs) or paracrine factors and mitochondrial
transfer [11].

Autoimmune diseases are caused by imbalanced homeo-
stasis of the autologous environment including T cells.
While peripheral regulatory T cell (pTreg) and T helper type
17 (Th17) cell share a common precursor cell (the naive
CD4 T cell) and require a common signal for initial differ-
entiation (tumor growth factor- (TGF-) f5), they turn to
elicit opposite functions via terminal differentiation: Treg
is anti-inflammatory, inhibits autoimmunity, and maintains
immune homeostasis, whereas Th17 cell causes autoimmu-
nity and inflammation [12]. Moreover, the instability within
T cell phenotypes such as Treg alongside their cellular
plasticity and tissue-specificity also affects the development
of autoimmune diseases [13]. Detailed exploration of T cell
interaction with both immune and nonimmune cells pre-
sents not only deeper insight into disease pathogenesis but
new therapeutic strategies as well.

MSC-based therapy is widely used in refractory immune
diseases and has achieved encouraging results. They effectively
restore T cell balance within the autoimmune environment,
enhancing inflammation resolution through the complemen-
ted effect of both cells. This paper examines the application
of MSCs in autoimmune diseases such as inflammatory bowel
disease (IBD), rheumatoid arthritis (RA), and systemic lupus
erythematosus (SLE), among others, and particularly high-
lights their modulatory effects on T cell phenotypes and the
resultant contribution towards therapeutic strategies.

BM-MSCs: bone marrow-derived MSCs; UC-MSCs:
umbilical cord-derived MSCs; AD-MSCs: adipose-derived

MSCs; DP-MSCs: human dental pulp-derived MSCs; SD-
MSCs: synovium-derived MSCs.

2. Application of MSCs in Autoimmune Diseases

Autoimmune disease is a diverse kind of complex and
heterogeneous abnormal condition caused by immune sys-
tem disorder. Common examples include IBD, RA, SLE, type
1 diabetes (T1D), and multiple sclerosis (MS), among others.
In addition to the difficulties in early detection and poor
curative effect, patients with autoimmune diseases are also
faced with complicated pathogenesis [30]. At present, due
to the low immunogenicity and multidirectional differentia-
tion of MSCs, it is promising to study its therapeutic effect
on patients with autoimmune diseases.

2.1. Application in IBD. IBD refers to a group of chronic and
heterogeneous intestinal inflammatory disorders, including
ulcerative colitis (UC) and Crohn’s disease (CD). The patho-
genesis of IBD is highly complex and not completely clear,
but current literature shows that it is related to several factors
such as genetic susceptibility, environmental triggers, intesti-
nal flora, diet, psychology, and immunity [31, 32]. The
incidence and prevalence of IBD vary from region to region.
European countries such as Norway and Germany have the
highest global prevalence of 505/100,000 in UC and
322/100,000 in CD, respectively, followed by the North
American countries, the United States of America with a
UC prevalence of 286/100,000, and Canada with CD preva-
lence of 319/100,000. Due to the recent modernization of
Asian and Latin American countries, the prevalence of IBD
in such countries is also constantly rising [33-36].

At present, there are several clinical interventions for IBD
patients, including drug therapy such as immunomodulators,
steroids, and antibiotics, surgical treatment, and fecal micro-
biota transplantation (FMT) as a novel therapy. However,
these treatment approaches are insufficient in curing IBD.
Drug therapies are less effective and often associated with
adverse reactions. Surgical procedures have certain
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requirements for patients’ state, and FMT is relatively safe
but linked with many problems such as patient acceptance
[37-40]. In the phase of these challenges, autologous or allo-
geneic MSCs emerged as a potentially effective therapy for
IBD because of their anti-inflammatory and tissue repair
effects, excellent immunomodulatory properties, and low
immunogenicity [41]. Experimental studies illustrate that
MSCs can repair dextran sulfate sodium- (DSS-) induced
acute and chronic colitis in mouse models and prevent the
recurrence of experimental IBD. In this process, MSCs
regulate immune response, reduce inflammatory cell infil-
tration, regenerate intestinal epithelial cells, blood vessels,
and lymphatic vessels, and change gut microbiota [42-44].
A myriad of clinical trials also shows that MSC therapy is
well tolerated with promising efficacy and safety profile.
Most recorded adverse effects described for MSCs are mild
and transient [45].

A randomized, double-blind, parallel-group, placebo-
controlled trial divided 212 patients having a CD with refrac-
tory perianal fistula into two groups, which were treated with
either autologous AD-MSCs or placebo. The comprehensive
remission rates of patients treated with AD-MSCs were
higher than those of the placebo group, 50% and 34%, respec-
tively. The incidence of treatment-related adverse events was
17% in AD-MSCs and 29% in placebo groups [46]. Clinical
trials by Park et al. also demonstrated the effectiveness of
MSCs for perianal fistula repair. A large number of system-
atic reviews and meta-analyses have also reported the effec-
tiveness and safety of MSCs as IBD-related treatment,
especially with long-term effects [47-49]. A study designed
to investigate the occurrence of adverse events related to
acute infusion toxicity, long-term adverse events, and efficacy
of human amnion-derived MSCs (AMSCs) was carried out
among CD patients who only achieve partial symptomatic
relief with traditional therapy. The results of this phase I/II
trial study will be beneficial to further promote the clinical
application of AMSCs in IBD [50]. Different doses of BM-
MSCs were injected locally in CD patients with refractory
perianal fistula to determine the effective dosage that pro-
motes healing of perianal fistulas. The authors concluded
that no severe adverse events were associated with the alloge-
neic MSCs administered and the injection of 3 x 10(7) MSCs
appeared to promote healing of perianal fistulas [51].

However, it is important to note that regardless of the
success witnessed in MSC therapy in IBD, it is still con-
fronted with several challenges such as severe adverse events,
encouraging tumor growth and metastasis, among other
reactions as detailed in recent reviews by Ocansey et al. [52,
53]. There is the need to identify supportive or combined
therapies of MSC transplantation and also choose the most
appropriate stem cell and treatment approach to enhance
effectiveness while avoiding the occurrence of serious adverse
events [54].

2.2. Application in RA. RA is a systemic autoimmune disease,
which mainly affects and damages joints and bones. The
main clinical manifestations are pain, swelling, deformation
of joints, and dyskinesia. In RA, there are unresolved
immune cells infiltrating joints and unregulated autoanti-

body levels. Additionally, RA also affects other organs,
including the blood vessels, kidneys, heart, and lungs, result-
ing in severe pain in patients. The complexity of the defini-
tion of RA makes it difficult to study its incidence.
According to the criteria defined by the American Rheuma-
tology Society 1987, the global prevalence of RA is about
0.24% (95% CI 0.23% to 0.25%), and the number of patients
with RA will reach 4.8 million by 2010 (95% CI 3.7 million to
6.1 million). However, after the revision of the diagnostic cri-
teria of RA in 2010, the number of patients with RA increased
further [55, 56]. The main risk factors of RA are gender
(women usually have a higher risk than men), heredity, envi-
ronment, and psychological factors [57]. Recent studies have
also shown that RA has a strong correlation with periodontal
diseases [58, 59].

At present, there is no effective therapy for RA. The use of
nonsteroidal anti-inflammatory drugs and cortisol can allevi-
ate the symptoms of pain and stiffness, but cannot delay the
progress of the disease. The use of disease-modifying anti-
rheumatic drugs such as methotrexate and sulfasalazine can
delay the disease progression. For example, the depletion of
B cells and the development of B cell inhibitory antibodies,
IL-6 inhibitors, and T cell-targeted drugs can bring a glim-
mer of hope for the treatment of RA, but the adverse reac-
tions and toxic side effects of these drugs still hinder their
application [60]. Presently, the application of MSCs as a
treatment option for RA has demonstrated unique advan-
tages in a host of clinical trials.

According to Wang et al, patients with insufficient
response to traditional RA drugs were divided into two
groups: patients injected with traditional antirheumatic
drugs plus culture medium not containing UC-MSCs and
patients injected with traditional antirheumatic drugs and
culture medium containing UC-MSCs. They found that the
group that received UC-MSCs was significantly relieved,
and only one infusion capably achieved the relief effect for
3-6 months, with no major adverse reactions [61]. Another
group of researchers selected refractory RA patients in phase
Ib/ITa clinical trials and reported similar results without seri-
ous side effects in the short term after intravenous injection
of AD-MSCs [62]. These demonstrated safety and efficacy
studies indicate the encouraging development of MSC ther-
apy in RA, regardless of challenges that demand further
exploration in areas such as maintaining the therapeutic
effect for a long period.

2.3. Application in SLE. SLE, a common autoimmune disease,
involves an inflammatory disorder of multiple organs and
systems of the body such as the kidney, lung, and skin. It
mostly affects females, and some patients develop symmetri-
cal butterfly erythema or other rashes on their faces. The
main cause of mortality and morbidity of SLE patients at
the end stage is lupus nephropathy [63]. SLE also has the
characteristics of complex pathogenesis which largely
remains unclear. Notwithstanding, it is agreed that the path-
ogenesis of SLE is related to the imbalance of factors such as
heredity, environment, and endocrine and autoimmune
system [64]. Although many genes related to SLE have been
found, including complement component-related genes



(Clq, Clr, Cls, and C4) and HLA-DR, the specific effects of
each gene are still unknown [65, 66]. Besides, estrogen and
prolactin have also been identified as risk factors of SLE,
which is consistent with the higher prevalence in women
than men. Ultraviolet radiation can also increase the risk of
SLE. Most SLE patients produce autoantibodies that are
related to the clearance defect of apoptotic cells [67]. The
global incidence and prevalence of SLE vary with gender,
age, race, and time, which are partly explained by the differ-
ences in genetic and environmental risk factors [68].

Current treatment of SLE includes immunomodulators
and immunosuppressants such as hydroxychloroquine and
other drugs that prevent complications. While symptomatic
treatment is given to subside various systemic manifestations
[69], monoclonal antibody therapy is administered to target
and deplete B cells as a proposed treatment of lupus nephritis
[70]. Both the traditional and newly developed therapies have
limitations related to drug administration, as well as gradual
drug reduction until withdrawal, both of which may affect
the balance between disease activity control and organ dam-
age caused by long-term and/or unbalanced immunosup-
pression (71, 72].

MSCs have been used in the treatment of lupus nephritis
and refractory SLE patients for more than ten years. Most
documented clinical trials are self-controlled studies with
only a few being randomized controlled trials. In a meta-
analysis study that evaluated the efficacy and safety of MSC
treatment in SLE patients, the researchers report that the
MSC group showed significantly decreased SLE disease activ-
ity index, as well as decreased urine protein, and increased
complement C3 [73]. A meta-analysis of the animal model
of lupus nephritis also confirmed that MSC treatment
resulted in lower levels of disease-associated elements such
as double-stranded DNA (ds-DNA), antinuclear antibody
(ANA), serum creatinine (Scr), blood urea nitrogen (BUN),
proteinuria, and renal sclerosis score, as well as higher albu-
min levels [53]. Several other studies have reported the prom-
ising effect of MSCs in SLE experimental studies and clinical
trials [74]. These current pieces of evidence show that MSCs
capably improve the disease activity, hypocomplementemia,
and proteinuria in SLE patients. However, large-scale and
high-quality randomized controlled trials are required to val-
idate the efficacy and safety of MSC treatment in SLE
patients. It is also worth noting that allogeneic and autolo-
gous MSC treatment of SLE may have opposite effects; hence,
allogeneic rather than autologous MSC transplantation could
be potentially advantageous for SLE patients [63, 75, 76].

2.4. Application in Other Autoimmune Diseases. Recent stud-
ies demonstrate the remarkable therapeutic effectiveness of
MSCs towards several other autoimmune diseases such as
type 1 diabetes [77], multiple sclerosis [78], Hashimoto’s
autoimmune thyroiditis [79], autoimmune hepatitis, primary
biliary cirrhosis [80], and vitiligo [81], among others. For
example, MSCs have been shown to prevent inflammation
and neurodegeneration in animal models of multiple sclero-
sis (MS). These experimental studies have set the ground for
clinical trials such as a recent randomized, double-blind,
placebo-compared phase I/II clinical trial with autologous
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BM-MSCs in MS which is currently ongoing (ClinicalTrials.-
gov NCTO01854957) [82]. Autoimmune destruction of
insulin-producing B cells in the pancreas results in type 1 dia-
betes, a disease condition that demands more than a mere
administration of exogenous insulin to gently and sensitively
regulate blood glucose concentration. MSCs can transdiffer-
entiate into insulin-producing cells, support the regeneration
of residual B cells via production of growth and trophic
factors, or participate in the suppression of the autoimmune
reaction against B cells [83, 84]. Hashimoto’s thyroiditis
(HT) is a disease wherein lymphocytes mediate the autoim-
mune damage and destruction of the thyroid gland. MSCs
have been demonstrated to improve HT via reducing the
level of thyroid autoantibody partly by regulating Th17/Treg
interactions [79].

A detailed exposition of research progress on MSC ther-
apy in autoimmune diseases indicating remarkable therapeu-
tic effectiveness has recently been reviewed by Chen and
colleagues [85]. MSCs also capably home to the disease site,
regulating the balance of T cells through direct contact and
secretion of active factors. Table 2 presents some of the
documented studies of MSC’s role in immune regulation of
selected autoimmune diseases.

T1D: type 1 diabetes mellitus; TGF-f/MSCs: TGF-f3
engineered MSCs; MS: multiple sclerosis; SS: Sjogren’s
syndrome; PBC: primary biliary cirrhosis; HT: Hashimo-
to’s thyroiditis.

3. Regulatory Effect of MSCs on T Cells in IBD

In the experimental IBD model, MSCs regulate the genera-
tion of T cell subsets to alleviate intestinal inflammation
[102, 103]. For instance, the coculture of peripheral blood
mononuclear cells (PBMCs) and MSCs strongly inhibits the
proliferation of CD4+ and CD8+ T cells, as well as natural
killer (NK) cells. The researchers found that the mechanism
involved is not dependent on cell contact, but rather
activated by interferon-gamma (IFN-y) produced by lym-
phocytes. IFN-y stimulates MSCs to produce indoleamine
2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), and IL-
10, wherein the IDO principally inhibits the proliferation of
T lymphocytes [104, 105]. MSCs homing in colon tissue
can promote the proliferation of intestinal epithelial cells
and the regeneration of intestinal stem cells. This effect has
been shown to be related to the downregulation of Th1/Th17.
Other molecules reduced in the process owing to the anti-
inflammatory effect of IFN-y include interleukin- (IL-) 2,
tumor necrosis factor- (TNF-) a, IFN-y, T-bet, IL-6, IL-17,
and retinoic-acid-receptor-related orphan nuclear receptor
gamma (RORyt) [106]. However, in most cases, IFN-y is still
considered a proinflammatory factor. It has been reported
that MSCs significantly inhibit the secretion of IFN-y and
promote the production of IL-10 by T cells. IL-10 acts with
dendritic cells (DCs) to promote anti-inflammatory effect
[107, 108]. These findings show the complex role of IFN-y
in MSC-mediated immune regulation including its role in
inducing T cell inhibition via MSC regulation.

Regulatory T cells (Tregs), the special T cell subset for
immunosuppression, specifically express transcription factor
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TaBLE 2: The application of MSCs in other autoimmune diseases.

Disease  Source of MSCs Effects Reference
UC-MSCs MSCs were safe and tolerable

b TGEF-B/MSCs Hyperglycemia was significantly controlled (77, 86-89]

MS BM-MSCs Clinically feasible and relatively safe and could immediately produce immune regulation [90-94]

SS UC-MSCs Effective in treatment [95, 96]

PBC BM-MSCs MSCs were well tolerated and no obvious side effects were found [97-99]
UC-MSCs Symptoms were significantly alleviated

HT AD-MSCs MSCs inhibited inflammation and helped recover from injury (79, 100, 101]

forkhead box P3 (FoxP3) in the nucleus and CD25 and
CTLA-4 (cytotoxic T lymphocyte-associated protein 4) on
the cell surface [109]. Tregs play a crucial role in the inhibi-
tion of inflammation associated with several diseases such
as IBD [110]. The combination of MSCs and Tregs in
experimental treatment results in longer survival time for
exogenous Tregs, upregulation of endogenous Tregs, and
downregulation of proinflammatory Th17 cells [111, 112].
It is worth noting that endogenous CD4+CD25+Foxp3+ T
cells are differentiated from CD4+ T cells, rather than natural
Treg amplification, which involves TGF-f and/or pro-
grammed cell death- (PD-) 1/PD-L1 mechanism [45, 105].

Studies by Sarah and others indicate that cytokines
secreted by MSCs intensely participate in the immunomodu-
latory role on T cells. TGF-p1, a soluble cytokine produced
by MSCs, can induce Tregs under TCR (T cell receptor) cost-
imulation, promote the activation of monocytes, and
enhance monocyte differentiation into type II macrophages.
Macrophages produce a large amount of IL-10 and CCL-18
(C-C motif chemokine ligand-18), which has been shown
to play an important role in Treg induction; IL-10 further
inhibits the pathogenicity of Th17 [113]. Macrophages can
significantly inhibit the proliferation of CD4+ T cells and
reduce the content of inflammatory factors TNF-a and
IFN-y [114]. TGF- can also induce Foxp3 expression,
inhibit Th17 differentiation, and stimulate Treg development
[103, 115], via its biological activities through transcription
regulation of several genes. Activated TGF-p binds to TGF-
Bl and TGF-p2 receptors, followed by induction of the
formation of phosphor-mothers against decapentaplegic
homolog 2 (pSmad2), pSmad3, and Smad4 complexes, thus
activating the intracellular signal activation of TGF-f signal-
ing [105, 116]. Studies have shown that the lack of TGF-pf1
leads to severe colonic inflammation, while the restoration
of TGF-p1 activity improves the resolution of colitis [117,
118]. MSCs can block the induction of inflammatory-
associated TNF and interleukins while promoting T cells to
secrete anti-inflammatory cytokine like IL-10. The secretion
of polyethylene glycol (PEG) by MSCs in the process of
inflammation resolution has also increased significantly, as
PEG is an important regulator to maintain immune homeo-
stasis [119].

The immunomodulatory effect of MSCs is not only due
to the role of soluble factors but also the effect of intercellular
contact. MSCs constitutively express FasL and PD-LI. FasL
induces apoptosis of activated T cells, while PD-L1 on the

surfaces of MSCs combine with PD-1 on the surfaces of T
cells, exerting immunosuppression through major histocom-
patibility complex II (MHC II). MSCs can also secrete IFN-f3
to increase the expression of PD-1 on the surface of T cells
and strengthen the inhibition of T cells [105, 107, 120]. Mice
with PD-1 gene knocked out produce autoimmune diseases,
which also prove that MSCs can inhibit the activation,
expansion, and cytokine production of T cells through the
PD-1/PD-L1 pathway [121]. Experiments prove that tonsil-
derived MSCs (T-MSCs) weaken the differentiation of Th17
and directly regulate the phosphorylation of signal trans-
ducer and activator of transcription 3 (STAT3) through the
PD-L1 expression [122]. The imbalance of the IL6/IL6R-
STAT3-SOCS3 (suppressor of cytokine signaling 3) pathway
is closely related to IBD-related diseases [123, 124]. MSCs
express NOD2 (nucleotide-binding  oligomerization
domain-containing protein 2), and its binding with ligand
MDP (muramyl dipeptide) enhances the production of
PEG2 and increases the production of IL-10 and Tregs
through NOD2-RIP2 (receptor-interacting protein 2) path-
way. In several experimental colitis models in mice, MSCs
have been demonstrated to highly express Jagged-1, induce
Notch signaling of T lymphocytes, reduce the activity of
NEF-«B, reduce the production of IL-2 and IFN-vy, and hinder
the proliferation of T lymphocytes [125-128].

Intercellular adhesion molecule-1 (ICAM-1), also known
as CD54, is involved in signal transmission between cells,
regulates immune response, and mediates cell differentiation,
development related to lymphocyte homing and circulation.
Generally, ICAM-1 is not expressed on the surface of MSCs,
but ICAM-1 is upregulated in the inflammatory microenvi-
ronment. MSCs overexpressing ICAM-1 significantly
reduced the percentage of Thl and Th17 cells in the spleen,
increasing the number of Tregs of IBD mice. Further analysis
revealed remarkably reduced mRNA levels of INF-y and IL-
17A and promoted expression of Foxp3, thus alleviating the
experimental colitis [129].

Nitric oxide (NO) produced by MSCs can also inhibit the
expression of CD25 in T cells by regulating LKB1- (liver
kinase Bl-) AMPK- (adenosine 5 monophosphate-
activated protein kinase-) mTOR pathway. It is reported that
the deletion of LKB1 decreases AMPK phosphorylation level
and activates mTORCI1, which leads to T cell activation and
inflammation, while MSCs can increase LKB1 and AMPK
phosphorylation level, thus exerting inhibitory effects on
inflammatory T cell proliferation and increasing anti-
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FIGURE 1: MSCs alleviate IBD by regulating T cells. MSCs induce CD4 T cells to differentiate into Treg and maintain Th17/Thl balance
through a series of cytokines and cell-to-cell contact. This results in decreased inflammatory activities to repair intestinal inflammation.

inflammation [130]. IL-25 can inhibit TNF-y and IL-17A
produced by CD4+ T cells of IBD patients, promote the
secretion of anti-inflammatory IL-10, and inhibit the differ-
entiation of CD4+ T cells of IBD into proinflammatory Thl
and Th17 cells [131, 132].

It is worth mentioning that peripheral circulating T lym-
phocytes play an important role in the MSC treatment mech-
anism of IBD. There are groups of intestinal intraepithelial
lymphocytes (IELs) that are similar to peripheral lympho-
cytes in the intestinal tract and have complex cell subsets,
including TCR-positive and TCR-negative cells. Every ten
intestinal epithelial cells (IECs) in the small intestine contain
about one IEL, which is lower in the colon. IELs reside in
intestinal epithelial cells and do not participate in the circula-
tion. They are associated with the maintenance of the intesti-
nal mucosal immune barrier [133, 134]. The increase of IELs
can be observed in the intestinal tract of children with IBD
[135]. The imbalance of IEL subsets is related to the patho-
genesis of IBD, but it is still unknown whether MSCs can
regulate IELs.

IDO plays an important role in the regulation of MSCs
on experimental enteritis in mice. MSCs can secrete IDO,
which is a rate-limiting enzyme that catalyzes tryptophan
metabolism. IDO and its downstream metabolites kynure-
nine (KYN) and kynurenic acid (KYNA) play a powerful role
in inhibiting T cell proliferation and Treg differentiation
[136, 137]. IDO can alleviate DSS-induced enteritis by regu-
lating tryptophan metabolites KYN and KYNA in MSCs,

activating transcription factor aryl hydrocarbon receptor
(AhR), and upregulating the expression of TNF-stimulated
gene 6 (TSG-6) [138]. Under the action of the inflammatory
microenvironment, MSCs enhance the glycolytic pathway
and upregulate the IDO level through the Janus kinase
(JAK)/STAT1 pathway, which plays an immunosuppressive
role [139, 140]. The activities of MSCs in IBD as discussed
above are summarized in Figure 1.

4. Regulatory Effect of MSCs on T Cells in RA

The mechanism by which MSCs regulate T cells to relieve RA
overlaps with the mechanism of regulating IBD. Just as
reported in other autoimmune diseases, there is an imbalance
of T cell subsets in RA patients too, including Th17/Treg cells
which are capably regulated by MSCs. The expression of
TNF-« inducible protein 3 (TNFAIP3), also known as A20,
from BM-MSCs of RA patients has been found to be reduced.
TNFAIP3 is a protective protein of chronic arthritis, which
can negatively regulate the NF-«B pathway and reduce the
expression of IL-6. MSCs overexpressing A20 can inhibit
the expression of IL-6, thus restoring Th17/Treg balance.
A20 deficiency also increases Th17 and decreases Tregs,
while Thl and Th2 are not affected. Specifically, inflamma-
tory cytokines induce A20 expression in MSCs. Mechanism
studies show that knocking out A20 in MSCs can inhibit
the activation of the p38 mitogen-activated protein kinase
(MAPK) pathway, effectively promote the production of
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TNF-q, and inhibit the production of IL-10. It is worth
noting that the therapeutic effect of MSCs on RA may be
different due to the different expression of A20 [76, 141].
Mitochondrial transfer from MSCs to Th17 cells, as a mech-
anism of MSC regulating immunity, can occur through inter-
cellular contact, resulting in increased oxygen consumption
of Th17 and reduced production of IL-17. At the same time,
the mitochondria of Treg markers on the surface of Th17
cells increase, indicating that mitochondria from MSCs can
increase the production of anti-inflammatory phenotype
[142]. Inflammatory microenvironment can lead to the acti-
vation of the PI3K/Akt/mTORCI1 pathway, which is closely
related to cell metabolism and can enhance glycolysis and
activate lymphocytes. Mitochondrial metastasis can trans-
form energy metabolism into oxidative phosphorylation,
and Treg-related markers are upregulated while proinflam-
matory markers are downregulated [143, 144].

In addition to Th17 cells, T follicular helper (Tth)/T fol-
licular regulatory (Tfr) cells are also closely related to RA. It is
reported that the number of Tth and Tfr in RA patients is
increased, but the ratio of Tfr/Tth is decreased, with a signif-
icantly increased number of circulating B cells related to Tth
[145, 146]. The production of autoantibodies in RA patients,
such as antirheumatoid factor (RF) and anticyclic citrulli-
nated peptide (CCP), leads to the deposition of immune
complexes, while Tth cells can migrate to the germinal center
(GC) to maintain the differentiation of B cells. Tth is closely

related to the production of autoantibodies in B cells. Tth
cells express high levels of CXCR5, PD-1, IL-21, and other
characteristic markers, and their cellular differentiation is
regulated by a complex network of transcription factors,
including positive factors (Bcl6, ATF-3, Batf, IRF4, c-Maf,
etc.) and negative factors (Blimp-1, STATS5, IRFS, Bach2,
etc.) [147, 148]. On the other hand, Tfr is a type of cell in
the Treg subgroup, which can inhibit the reaction in GC
and the production of high-affinity antibody. As an inflam-
matory factor, IL-6 plays a role in the pathogenesis of RA,
by phosphorylating STAT3 and participating in Tth differen-
tiation [149]. MSCs can significantly reduce the production
of IL-6 in vivo, which may have an alleviating effect by regu-
lating Tth/Tfr. Whether MSCs can regulate these transcrip-
tion factors and participate in the regulation of Tth cells in
RA patients is rarely reported at present, which is also the
direction of future research.

MSCs can exert their immune function and relieve autoim-
mune diseases through PEG2, TGF-f3, HGF, IL-10, and IDO,
which are found in RA, IBD, and other autoimmune diseases.
Studies have shown that endoplasmic reticulum- (ER-) stressed
MSCs can produce higher levels of IL-10 and PEG2 than ordi-
nary MSCs and downregulate CD4+CXCR5+ICOS+ T cells
(Tth) in RA patients. It may be that glucose-regulated protein
78 (GRP78) and X-box binding protein 1 (XBP-1) are strongly
induced in ER-stressed MSCs, resulting in a large amount of
PEG2 production. PEG2 receptors, membrane-bound G



protein-coupled receptors termed EP1, EP2, EP3, and EP4,
are expressed on CD4+ T cell surface. PEG2 can also increase
the levels of IL-12 and IFN-y, which triggers Thl cells to
differentiate. The anti-T cell proliferation effect is realized by
the EP/COX2/PEG2 axis, wherein COX2 is upregulated
under the condition of inflammatory stress [150-152].

In RA patients, MSCs can phagocytize apoptotic cells
(ACs) in an actin-dependent way and secrete IL-6, IL-17,
and RANTES (regulated upon activation, normal T cell
expressed and presumably secreted). In this process, MSCs
can express CXCR4, CXCR5, and ICAM-1 and migrate to
inflammatory joints through the SDF/CXCR4 pathway,
which makes synovial CD4+CD25+CD69+ T cells increase
and makes them express IL-17, FoxP3, and RANKL, known
to promote the increase of osteoclasts. Th17 cell differentia-
tion depends on IL-6 and IL-1f3, and intercellular contact
mediated by costimulatory molecules CD25, ICOS (inducible
costimulatory), and TL1A (TNF-like ligand 1A) can also par-
ticipate in Th17 cell differentiation. The MSCs induced by
RA can express IL-6 and MHCII and then increase the level
of IL-17. Cytokines and intercellular contact promote Th17
cells and osteoclast formation. In other studies, RA-induced
MSCs did not change the number of CD4+FOXP3+Treg;
therefore, MSCs may enhance the pathogenic effect of RA
in patients; hence, MSC therapy for RA should be carefully
considered [153, 154].

CD4+ T cells expressed by the granulocyte-macrophage
colony-stimulating factor (GM-CSF) play certain roles in
RA induction. AD-MSCs can reduce the number of GM-
CSF+CD4+ T cells. MSCs participate in regulating immune
response by promoting early adaptive regulatory T cell
signals, which is characterized by a decrease in the level of
T cells secreting pathogenic GM-CSF, an increase in the
number of Tregs, and the development of effector Th17 cells
towards IL-10-driven anti-inflammatory response, thus
restoring the regulation/inflammation balance of RA [155].
The effects of MSCs within the RA environment are illus-
trated in Figure 2.

5. Regulatory Effect of MSCs on T Cells in SLE

Literature indicates that the disorder of AC clearance mech-
anism may be one of the pathogenesis of SLE [67]. It has been
demonstrated that MSCs phagocytize ACs and regulate
immune homeostasis in vivo [154], in a time- and dose-
dependent manner. MSCs exposed to ACs activate the NF-
kB pathway by recognizing phosphatidylserine, which leads
to highly expressed COX2, associated with the production
of a large amount of PEG2. MSCs activated by ACs can also
inhibit the proliferation of CD4+ T cells more strongly than
controls, which are related to soluble cytokines IFN-y and
IL-17. However, how ACs activate the NF-«B pathway in
MSCs is still unknown.

The decreased expression of CD4, CD25, and Foxp3
indicates a reduced number of Tregs in SLE patients.
While MSCs recover Tregs through secretion of TGF-f,
Tregs inhibit the response and the production of autoanti-
bodies by B cells through the induction of apoptosis
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related to the expression of granzyme A, granzyme B,
and perforin [156, 157].

Abnormal methylation of T cells in SLE patients leads to
overexpression of methylation-sensitive autoimmune genes
CD70, ITGAL (integrin subunit alpha L) (CD11a), selectin-
1, IL-4, and IL-13 in lupus. CD70, a costimulatory factor,
activates B cell response. ITGAL is related to the self-
activation of T cells. Studies have shown that MEK/ERK
pathway defects and T cell methylation changes in SLE
patients lead to increased immune disorders. The MEK/ERK
pathway of PBMC from SLE patients can be active after
coculture with BM-MSCs. After coculture, DNA methyl-
transferase 1 DNMT1 was upregulated, and CD7, CD70,
integrin, ITGAL, selectin-1, and IL-13 were downregulated
in PBMC of patients. BM-MSCs downregulate the expression
of methylation-related genes and reduce the self-activation of
PBMC through the MEK/ERK pathway [158-160].

Several other studies have investigated the Th17 and Treg
imbalance found in SLE patients. Stress response and
immune regulation molecule heme oxygenase-1 (HO-1) are
involved in the induction of Tregs. MSCs can express HO-1
and participate in the induction of Treg cell subsets, but there
are big individual differences. Perhaps HO-1 expressed by
MSCs can play certain roles in SLE patients, and the specific
mechanism needs to be studied [161, 162].

6. Conclusion

As a cell-based therapy, MSCs possess the potential of ame-
liorating injury or possibly offering a cure for patients with
immune-mediated conditions. Available document on the
contribution of MSCs in restoring T cell balance within the
autoimmune environment is promising, as the MSCs exert
their immunoregulatory effects via direct contact and secre-
tion of active factors. The mechanism of action of MSCs
overlaps and has quite a few differences in various autoim-
mune diseases, which may be related to the origin of MSCs
and the heterogeneity of autoimmune diseases. Additionally,
MSCs treated with certain factors to overexpress desired
cytokines result in stronger regulation of T cell immunity.
Further explorations of key targets of MSCs during T cell
regulation and their associated mechanisms in autoimmune
diseases are needed to enhance understanding towards
improving the therapeutics of MSCs.
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