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Poznań University of Medical
Sciences, Poland

Reviewed by:
Baby Chakrapani Pulikkaparambil

Sasidharan,
Cochin University of Science

and Technology, India
Weidong Le,

Dalian Medical University, China
Rocco Cerroni,

University of Rome Tor Vergata, Italy

*Correspondence:
Michal Lubomski

mlub6241@uni.sydney.edu.au

†ORCID:
Michal Lubomski

orcid.org/0000-0003-4990-9293
Xiangnan Xu

orcid.org/0000-0002-1910-6126
Samuel Muller

orcid.org/0000-0002-3087-8127
Jean Y. H. Yang

orcid.org/0000-0002-5271-2603
Ryan L. Davis

orcid.org/0000-0003-0512-8989
Carolyn M. Sue

orcid.org/0000-0003-1255-3617

‡These authors share first authorship

§These authors share last authorship

Specialty section:
This article was submitted to

Parkinson’s Disease
and Aging-related Movement

Disorders,
a section of the journal

Frontiers in Aging Neuroscience

Received: 23 February 2022
Accepted: 04 April 2022
Published: 11 May 2022

Citation:
Lubomski M, Xu X, Holmes AJ,

Muller S, Yang JYH, Davis RL and
Sue CM (2022) Nutritional Intake

and Gut Microbiome Composition
Predict Parkinson’s Disease.

Front. Aging Neurosci. 14:881872.
doi: 10.3389/fnagi.2022.881872

Nutritional Intake and Gut
Microbiome Composition Predict
Parkinson’s Disease
Michal Lubomski1,2,3*†‡, Xiangnan Xu4,5†‡, Andrew J. Holmes5,6, Samuel Muller4,7†,
Jean Y. H. Yang4,5†, Ryan L. Davis2†§ and Carolyn M. Sue1,2†§

1 Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia,
2 Department of Neurogenetics, Faculty of Medicine and Health, Kolling Institute, University of Sydney and Northern Sydney
Local Health District, St Leonards, NSW, Australia, 3 School of Medicine, The University of Notre Dame Australia, Sydney,
NSW, Australia, 4 School of Mathematics and Statistics, Sydney Precision Bioinformatics, University of Sydney, Sydney,
NSW, Australia, 5 Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia, 6 School of Life and Environmental
Sciences, University of Sydney, Sydney, NSW, Australia, 7 Department of Mathematics and Statistics, Macquarie University,
Sydney, NSW, Australia

Background: Models to predict Parkinson’s disease (PD) incorporating alterations of
gut microbiome (GM) composition have been reported with varying success.

Objective: To assess the utility of GM compositional changes combined with
macronutrient intake to develop a predictive model of PD.

Methods: We performed a cross-sectional analysis of the GM and nutritional intake in
103 PD patients and 81 household controls (HCs). GM composition was determined by
16S amplicon sequencing of the V3-V4 region of bacterial ribosomal DNA isolated from
stool. To determine multivariate disease-discriminant associations, we developed two
models using Random Forest and support-vector machine (SVM) methodologies.

Results: Using updated taxonomic reference, we identified significant compositional
differences in the GM profiles of PD patients in association with a variety of clinical
PD characteristics. Six genera were overrepresented and eight underrepresented in
PD patients relative to HCs, with the largest difference being overrepresentation of
Lactobacillaceae at family taxonomic level. Correlation analyses highlighted multiple
associations between clinical characteristics and select taxa, whilst constipation
severity, physical activity and pharmacological therapies associated with changes in beta
diversity. The random forest model of PD, incorporating taxonomic data at the genus
level and carbohydrate contribution to total energy demonstrated the best predictive
capacity [Area under the ROC Curve (AUC) of 0.74].

Conclusion: The notable differences in GM diversity and composition when combined
with clinical measures and nutritional data enabled the development of a predictive
model to identify PD. These findings support the combination of GM and nutritional
data as a potentially useful biomarker of PD to improve diagnosis and guide
clinical management.

Keywords: Parkinson’s disease, gut microbiota, gastrointestinal microbiome, dysbiosis, medication, biomarker,
prediction model
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INTRODUCTION

Parkinson’s disease (PD) is a common progressive multisystem
neurogenerative disorder (Rietdijk et al., 2017) that is associated
with significant morbidity and healthcare burden, resulting in
the deterioration of quality of life (QoL) (Lubomski et al.,
2015, 2021b). Gastrointestinal dysfunction is a well-recognized
prodromal non-motor symptom (NMS) in PD (Postuma
et al., 2012; Lubomski et al., 2020b), with constipation and
prolonged intestinal transit times evident many years prior
to the development of classical motor symptoms (Savica
et al., 2009; Pfeiffer, 2011). With GI dysfunction strongly
linked to gut health and the microbiome, causal links have
been established between the gut and the brain in PD,
with the enteric nervous system (ENS) implicated in early
pathogenesis prior to the central nervous system (Hawkes
et al., 2007). Consequently, two subtypes of PD pathogenesis
have been proposed, brain-first or body-first (Horsager et al.,
2020).

There are numerous reports of variations in the gut
microbial composition in PD patients, as well as associations
to a variety of clinical disease outcome measures (Lubomski
et al., 2020b; Romano et al., 2021). Interest in relationships
between PD and the gut microbiome (GM) have increased
since initial studies were published in 2015 (Hasegawa et al.,
2015; Keshavarzian et al., 2015; Scheperjans et al., 2015).
Meta-analyses (Nishiwaki et al., 2020; Romano et al., 2021;
Shen et al., 2021) of these studies also suggest an enrichment
and depletion of various taxa in association with PD. One
mechanism thought to contribute to body-first PD pathogenesis
is underrepresentation of short-chain fatty-acid (SCFA)
producing bacteria considered important in maintaining gut
function, integrity and health. Evidence suggests that gut
dysbiosis in PD may drive gut and systemic inflammation,
leading to impairment of host immune functions that
underlie the prevalent gastrointestinal symptoms observed
in patients with PD (Bullich et al., 2019; Romano et al.,
2021).

More directly, there is evidence of microbe impacts in
the gut that are mechanistically relevant to synucleinopathy
(Sampson et al., 2016), potentially contributing to α-
synuclein (α-syn) aggregation in the ENS that results in
the accelerated caudo-rostral neurodegenerative spread
observed in PD (Bullich et al., 2019; Lubomski et al.,
2020). The GM has also been implicated in the variability
of therapeutic outcomes, most notably the influence of
Enterococcus faecalis on the metabolism of Levodopa (Maini
Rekdal et al., 2019; van Kessel et al., 2019), which could
serve as a modifiable target for improving Levodopa efficacy
(Lubomski et al., 2019).

The aim of this study was to investigate associations between
the GM and clinical parameters to identify relationships that
could indicate the presence of PD. Associations between disease
characteristics, therapeutic regimes, diet and the GM were
explored and used to develop predictive models of PD that
may eventually guide diagnosis and clinical management at
earlier stages of PD.

MATERIALS AND METHODS

Study Settings and Subjects
Consecutive PD patients presenting to the movement disorder
and neurology clinics at Royal North Shore Hospital, Sydney,
Australia, were recruited to this study as reported previously
(Lubomski et al., 2020b, 2021c). Patient inclusion criteria were
(1) >18 years of age, (2) a clinical diagnosis of idiopathic
PD according to the UK Parkinson’s Disease Society Brain
Bank Diagnostic Criteria (Hughes et al., 1992), and (3) being
managed by a specialist neurologist. Household controls (HCs)
were opportunistically recruited when presenting to clinic
with a PD patient. HC inclusion criteria were (1) >18 years
of age, (2) self-reporting and displaying no obvious clinical
signs of PD and (3) a spouse, sibling or child with similar
dietary habits to their respective PD subject. Exclusion criteria
included secondary Parkinsonism, tube feeding, medical or
surgical disorders preventing completion of questionnaires and
significant cognitive impairment demonstrated by incapacity to
provide consent. All participants did not receive antibiotics
or probiotic supplements for at least 1-month prior to
sample collection.

Ethical approval was granted by the Northern Sydney
Local Health District Human Research Ethics Committee
(HREC/18/HAWKE/109) and the North Shore Private
Hospital Ethics Committee (NSPHEC 2018-LNR-009).
Written informed consent was obtained from all subjects at
the time of recruitment.

Clinical Data and Sample Collection
PD and HC participants attending clinics between June 2018 and
June 2019 were recruited to complete questionnaires, as well as
providing a stool (see below) and blood sample (Supplementary
Figure 1). Non-fasting blood samples were assessed with
standard pathology assays for liver function, non-fasting lipid
profiles, Erythrocyte Sedimentation Rate and C-Reactive Protein,
performed by NSW Pathology, Royal North Shore Hospital.

Information regarding socio-demographic factors, lifestyle,
clinical management and comorbidities was collected from
validated surveys, as previously reported (Lubomski et al.,
2020a,b, 2021a,b,c; Palavra et al., 2021). A comprehensive
Food Frequency Questionnaire (Barclay et al., 2008), was
completed by all participants. Dietary questionnaires allowed
for extrapolation of macronutrient intake, including energy,
protein, fat, carbohydrate, sugar, fiber, moisture, and vegetarian
status (Palavra et al., 2021). Patients completed validated
clinical questionnaires assessing upper gastrointestinal symptoms
[Leeds Dyspepsia Questionnaire (LDQ) (Moayyedi et al.,
1998)], constipation severity and gut motility [Rome-IV criteria
(Sood and Ford, 2016) and the Cleveland Constipation Scale
(CCS) (Agachan et al., 1996)], QoL [PDQ-39 (Jenkinson
et al., 1997) and the Short Form Health Survey (SF-36)
(Ware and Sherbourne, 1992)], physical activity [International
Physical Activity Questionnaire (IPAQ) (Hagstromer et al.,
2006)], mood [Beck Depression Inventory (BDI) (Beck et al.,
1961)], cognitive function [Montreal Cognitive Assessment
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(MoCA) (Nasreddine et al., 2005)], chronic pain severity (Visual
Analogue Scale; McCormack et al., 1988) and non-motor
symptoms [Non-Motor Symptoms Scale (NMSS) (Chaudhuri
et al., 2007)]. Clinical motor assessments were performed by
one neurologist (ML) during a patient’s “on” state, as an
objective measure of the prevailing motor function, in accordance
with the Movement Disorder Society—Unified Parkinson’s
Disease Rating Scale—Part III (MDS-UPDRS III) criteria (Goetz
et al., 2008). Medications were compared following standard
methods for calculating daily levodopa equivalent dose (LED)
(Tomlinson et al., 2010).

Fecal DNA Extraction and 16S
Ribosomal RNA Amplicon Sequencing
Stool samples were collected from 103 PD patients (including
27 device-assisted therapy (DAT) patients) and 81 HCs. Stool
samples were collected into sterile pots, snap frozen and stored
at −80◦C within 24 h of collection. Upon receipt, stool samples
were assessed against the Bristol Stool Scale (BSS) (Lewis and
Heaton, 1997). Total fecal DNA isolation was carried out within
2 months of collection, using an optimized protocol for the MP
Biomedicals FastDNATM SPIN Kit for Feces (MP Biomedicals,
Santa Ana, CA, United States), as reported previously (Lubomski
et al., 2021c). DNA integrity was confirmed by polymerase chain
reaction using universal primers to the V3–V4 regions (341f and
805r) and the whole rRNA gene (27f and 1492r) of bacterial
16S ribosomal DNA (Weisburg et al., 1991; Klindworth et al.,
2013). Amplicons were separated by agarose gel electrophoresis
to confirm the presence of an amplicon at the correct size.

16S rRNA V3-V4 amplicon sequencing was performed by
the Ramaciotti Center for Genomics (University of New South
Wales, Sydney, Australia). Sequencing libraries were generated
using standard V3-V4 primers (341f and 805r; Weisburg et al.,
1991) and a two-stage amplicon and indexing PCR with
KAPA HiFi polymerase to generate 300 bp paired-end reads.
Libraries were purified after each PCR using Ampure XP beads
and normalized using the Applied Biosciences SequalPrepTM

Plate Normalization kit (Thermo Fisher). Sequencing was
performed on an Illumina MiSeq platform using MiSeq
v3 chemistry with PhiX control v3. Internal sequencing
controls included replicate patient stool DNA samples and the
ZymoBIOMICS Microbial Community DNA Standard (Zymo
Research, Irvine, CA, United States) for validation of sequencing
and batch normalization.

Computational and Statistical Analyses
Data was assessed by Levene’s test to determine homogeneity
of variances. Clinical data comparisons between groups were
performed using Student’s t-tests and χ2-tests (SPSS v.26 SPSS
Inc., Chicago, IL, United States) for quantitative and categorical
variables, respectively. Pairwise Spearman correlations assessed
non-parametric associations between microbiota and clinical
covariates. For all tests, a p < 0.05 was considered statistically
significant. All microbiome statistical comparisons and data
visualizations were performed with R (v.3.5.1) and figures were
generated with ggplot2 (v.3.1.0).

Pre-processing
The R-package dada2 (v.1.14.1) was used to process sequence
data into amplicon sequence variant (ASV) tables. The forward
and reverse error profiles were trimmed to maintain high
read quality (Supplementary Figure 2). The sequences were
trimmed from 37 to 270 bp and 10 to 222 bp in forward and
reverse reads, respectively. Subsequently, the sequence data was
deduplicated to remove redundancy and combine all identical
sequence reads into a “unique sequence.” Sequences were then
denoised by removing substitution and indel errors. The resulting
sequence was further merged by removing paired sequences
without perfect overlap. Finally, the chimeras were removed
by comparing each inferred sequence to others. ASVs were
assigned to taxonomic groups according to Silva (v.138) reference
database. After processing, a total of 9,479 ASVs were identified.
For the ASV table, we selected all ASVs that were above
the detection threshold for at least 10% (18 patients) of all
participants individuals. The detection threshold was defined
here as any presence of reads.

Microbiological Community Analysis
Alpha diversity metrics, including the Shannon index and
taxon richness, were calculated for each sample, with a
Wilcoxon test performed for differences between PD and HC
groups. Beta diversity was used to assess turnover between
samples with three commonly used metrics, i.e., Bray-Curtis
(BC) dissimilarity, unweighted and weighted unifrac distance.
All diversity indices were calculated using functions in the
R-package vegan. A Principal Component Analysis (PCoA)
was used for both dimension reduction and visualizing the
relationships among samples. To assess the significance of
beta diversity between cohorts, we used a permutational
multivariate analysis of variance (PERMANOVA) model (adonis
function implemented in the vegan package; (v.2.5-7) with
the parameter “by” to margins and “perm” to 9,999 for all
comparisons). To compare the compositional difference between
the PD and HC groups, an ANOVA-like differential expression
(ALDE) model (implemented in R package ALDEXx2; v1.16)
was used at four taxonomic levels (phylum, order, family,
and genus), setting the parameter “mc.samples” to 128 and
“denom” to All.

The association of microbiota and clinical covariates
was determined by calculating their pairwise Spearman
correlations. Subsequent partial correlations were calculated to
determine clinical and GM associations, whilst controlling
for age, gender and Body Mass Index (BMI). For all
microbiome analytics, the comparisons were performed
with data assigned at four taxonomic levels (phylum, order,
family, and genus).

Data Visualization and Resource
An interactive Shiny app called “PDBug” was developed to enable
further detailed exploration of clinical and GM differences, as
well as associations and relative abundances within the PD and
HC cohorts. PDBug is publicly available from http://shiny.maths.
usyd.edu.au/PDBug/.
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Prediction Analysis
We used random forest (RF) analysis from the R-package
randomForest (v1.6-14) to generate predictive models using
microbiota and clinical covariates at different taxonomic
levels to identify PD.

Prediction performance for PD was assessed using different
models at different taxonomic levels. Model performance at
each taxonomic level was determined by applying leave-one-
out cross validation to calculate the area under the receiver
operating characteristics curve (LOOCV-AUC). Subsequently,
a two-stage model was constructed from both macronutrient
intake and microbiota profile data. The first stage partitioned
samples into two sub-cohorts based on macronutrient intake,
with a cut-off value defined at the splitting point, corresponding
to the decision tree with macronutrient intake as the only
node. The split was based on the maximum information gain
from the entire cohort versus splitting to two sub-cohorts.
The second stage surveyed different RF model prediction
of PD for each of the sub-cohorts. A number of two-
stage models were generated using different macronutrients as
partitioning nodes and calculating the corresponding LOOCV-
AUC for each.

RESULTS

Demographic, Clinical, and Nutrition
Characteristics
103 PD patients and 81 HC’s were enrolled into the study
(Supplementary Figure 1), as previously described (Lubomski
et al., 2020b). Briefly, 56.3% of the PD participants were male
with a mean age of 67.1 years (range 35–88, standard deviation
[SD 12.2]), whilst two thirds of the HCs were female, with a
mean age of 62.4 years (range 18–90, [SD 15.6], p = 0.001).
All relevant demographic, clinical parameter and nutritional
intake information has been reported previously for this cohort
(Lubomski et al., 2020a,b, 2021a,b; Palavra et al., 2021) and
is reproduced in Tables 1, 2 and Supplementary Data, where
relevant to this study.

Microbiome Data for Analysis
The total number of sequencing reads was 11,927,248, with
a mean of 64,822 reads per sample that were assigned to
9,479 ASVs. After filtering low abundance-ubiquity (<10%
of the sample or appeared in less than 18 samples), the
final dataset was represented by 627 ASVs. These ASVs
were assigned to 9 phyla, 31 orders, 48 families and 138
genera. The most abundant taxa were similar for the PD
and HC groups, with the order Clostridiales being the most
represented in the two groups. This is one of the first PD
GM studies utilizing the new taxonomic reference, which
provides a more detailed sub-classification of taxonomic profiles
giving increased resolution of bacterial community composition.
Thus, the bacterial names ascribed here may differ from
previous PD GM studies, but where relevant consistencies have
been highlighted.

Differences in the Gut Microbiota
Between the Parkinson’s Disease and
Household Control Cohorts
Diversity
Alpha diversity (partitioning of biological space in each
community) was assessed by Shannon and Simpson diversity
indices to compare the two cohorts. No significant difference in
the alpha diversity between the PD and HC groups was observed
at the ASV taxonomic level (ANOVA, p = 0.057 and 0.159 for
Shannon and Simpson diversity, respectively) (Figure 1A).

Beta diversity was analyzed separately using PCoA with
BC dissimilarity, unweighted unifrac and weighted unifrac.
Exploring the relationships between the PD and HC groups
(n = 184) at the ASV level, BC ordination showed a significant
difference between the two groups (PERMANOVA, p < 0.0001).
Principle Components (PC) 1 and 2 showed a clustering of
beta diversity for the HC group compared to the more widely
distributed PD cohort (Figure 1B). Further, beta diversity
differences were evaluated between the various PD phenotypes,
but overall no statistically significant differences between the four
groups were apparent (PERMANOVA, p = 0.112). Although, a
trend was observed that suggested most of the diversity change
was within the younger onset (<40 years of age) subgroup
compared to the tremor dominant, akinetic rigid and postural
instability subgroups (Figure 1C).

Relative Abundance
Given the broader diversity considerations of the cohorts,
we then examined characteristics of microbiome community
structure in the PD and HC cohorts. Comparison of the
mean taxon compositions between PD and HC cohorts across
different taxonomic ranks are presented in Figure 2. At each
taxonomic level analyzed, a statistical difference in the mean
relative abundance was noted between the PD and HC groups
(PERMANOVA, p < 0.01 genus, p < 0.01 family, p < 0.01
order, p = 0.02 phylum taxonomic levels). The relative abundance
differences at the family taxonomic level for each individual PD
and HC participant are presented in Supplementary Figure 3.
These results highlight the innate variability of GM composition
across the cohorts, within which we identified cohort-specific
differences in relative abundance.

Exploration of Composition Differences for Indicator
Taxa
Comparing differences in relative abundance for specific taxa
between PD and HC groups with the ALDEx model, statistically
significant compositional differences at the order, family and
genus levels were apparent (Figure 3). Further supporting
divergent GM profiles in PD patients. The largest difference of
2.7-fold was observed for increased Lactobacillaceae abundance
at the family level, consistent with overrepresentation of
Lactobacillales at the order level (Table 3). Six genera were found
to be overrepresented and eight underrepresented in PD patients
relative to HCs, with variable numbers of ASVs contributing to
the abundance differences in the identified genera (Table 3).
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TABLE 1 | Cohort demographic and clinical characteristics.

Parkinson’s disease Household control Test statistic (df) p-value

Number of patients (n = )* 103 81

Age, (years) [SD, range]* 67.1 [12.2, 33–88] 62.4 [15.6, 18–90] t = 2.3 (182)∧ 0.023

Gender, (%)* χ2 = 10.7 (1)8 0.001

Male 56.3 32.1

Female 43.7 67.9

Marital status, (%)* χ2 = 4.2 (3)8 0.244

Married/de facto 76.7 85.1

Single 9.7 9.9

Widowed 5.8 1.2

Other 7.7 3.7

Ethnicity, (%)* χ2 = 2.3 (3)8 0.506

Caucasian 78.6 79.0

Asian 3.9 6.2

Middle Eastern 6.8 2.5

Other 10.7 12.3

Body mass index, [SD] * 25.7 [5.2] 26.2 [4.6] t = -0.7 (182)∧ 0.485

Last antibiotic use (months), [SD, range] * 21.9 [33.8, 1–280] 25.8 [37.8, 1–288] t = -0.7 (182)∧ 0.475

Smoking history, (%)*

Current smoker 1.9 3.7 χ2 = 0.6 (1)8 0.457

Prior smoker 36.9 33.7 χ2 = 0.2 (1)8 0.659

Pack year history, [SD] 13.3 [13.8] 14.4 [14.6] t = -0.3 (63)∧ 0.758

Alcohol consumption, (%)* 70.0 87.7 χ2 = 8.7 (1)8 0.003

< Weekly 23.5 27.2 χ2 = 0.3 (1)8 0.574

Several times weekly 31.1 33.3 χ2 = 0.8 (1)8 0.778

Daily 16.7 28.4 χ2 = 3.6 (1)8 0.057

Caffeine consumption (Coffee/Tea), (%)* 85.4 91.4 χ2 = 1.5 (1)8 0.219

Number of daily cups, [SD] 2.3 [1.7] 3.1 [1.8] t = 3.0 (182)∧ 0.003

History of diabetes, (%)* 4.9 6.2 χ2 = 0.2 (1)8 0.695

Gastrointestinal symptoms*

Cleveland constipation score, [SD] 7.2 [4.7] 3.1 [2.9] t = 6.9 (182)∧ <0.001

Constipation score as per Rome IV criteria, [SD] 4.4 [3.5] 1.1 [1.4] t = 7.9 (182)∧ <0.001

Functional constipation as per Rome IV criteria, (%) 78.6 28.4 χ2 = 46.6 (1)8 <0.001

Bristol stool score, [SD] 2.8 [1.5] 3.9 [1.3] t = 4.0 (182)∧ <0.001

Leeds dyspepsia questionnaire (LDQ) score, [SD]* 8.3 [7.7] 4.6 [6.1] t = 3.5 (182)∧ 0.001

Most troublesome symptom, (%) χ2 = 15.2 (7)∧ 0.034

Indigestion 18.4 8.6

Heartburn 7.8 9.9

Regurgitation 6.8 7.4

Belching 7.8 6.2

Nausea 15.6 7.4

Vomiting 1 0

Excess fullness/bloating 20.4 14.8

None 22.3 45.7

Chronic pain over last 3 months, (%)* 72.8 39.5 χ2 = 20.7 (1)8 <0.001

Pain score (visual analog scale), [SD] 4.9 [2.5] 3.9 [1.7] t = 2.0 (105)∧ 0.046

International physical activity questionnaire (IPAQ) score (MET-minutes/week), [SD]* 1823.6 [1693.6] 2942.4 [2620.9] t = -3.5 (182)∧ 0.001

IPAQ categorical score, (%) χ2 = 7.1 (2)8 0.029

Low 35.2 19.8

Moderate 37.9 39.6

High 26.2 40.7

Sitting hours/day, [SD] 6.5 [3.5] 4.8 [2.3] t = 3.7 (182)∧ <0.001

Able to walk 1 km, (%) 73.8 97.5 χ2 = 19.3 (1)8 <0.001

Able to climb 1 flight of stairs, (%) 86.4 100 χ2 = 11.9 (1)8 0.001

(Continued)
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TABLE 1 | (Continued)

Parkinson’s disease Household control Test statistic (df) p-value

Biochemical characteristics, [SD]*

Erythrocyte sedimentation rate (mm/h) 9.5 [13.4] 9.5 [10.4] t = -0.1 (181)∧ 0.991

C-reactive protein (mg/L) 3.9 [10.8] 2.2 [2.5] t = 1.4 (182)∧ 0.177

Total cholesterol (mmol/L) 4.8 [0.9] 5.2 [1.1] t = -2.5 (182)∧ 0.014

Low density lipoprotein (mmol/L) 2.7 [0.7] 2.9 [0.9] t = -1.5 (178)∧ 0.132

High density lipoprotein (mmol/L) 1.4 [0.4] 1.6 [0.4] t = -2.2 (181)∧ 0.033

Trigl ycerides (mmol/L) 1.3 [1.0] 1.5 [0.9] t = -1.2 (182)∧ 0.239

Random glucose (mmol/L) 5.8 [0.6] 5.9 [0.9] t = -0.8 (182)∧ 0.438

HbA1c% 5.3 [0.4] 6.0 [5.2] t = -1.2 (182)∧ 0.217

Albumin (g/L) 38.7 [3.5] 39.8 [3.1] t = -2.3 (182)∧ 0.023

Dietary intake

Vegetarian diet, (%) 2.9% 2.5% χ2 = 0.1 (1)∧ 0.865

Energy (kJ/day), [SD] 11130.9 [5782.6] 10188.2 [4799.9] t = 1.2 (181)∧ 0.241

Protein (g/day), [SD] 118.4 [79.3] 116.7 [74.5] t = 0.1 (181)∧ 0.883

Fat (g/day), [SD] 101.7 [49.7] 95.7 [43.6] t = 0.9 (181)∧ 0.392

Carbohydrate (g/day), [SD] 278.8 [161.8] 232.2 [124.8] t = 2.1 (181)∧ 0.034

Total sugars (g/day), [SD] 153.3 [86.3] 118.7 [60.6] t = 3.0 (181)∧ 0.003

Fiber (g/day), [SD] 41.1 [31.2] 38.1 [22.7] t = 0.7 (181)∧ 0.475

Moisture (mL/day), [SD] 2877.9 [1236.2] 3044.3 [1050.6] t = -0.1 (181)∧ 0.337

Depression characteristics

Beck’s depression inventory total score, [SD] 11.9 [8.8] 5.2 [5.5] t = 5.9 (182)∧ <0.001

Beck’s depression inventory categories, (%) χ2 = 25.2 (3)8 <0.001

Minimal depression (0–13) 64.1% 95.1%

Mild depression (14–19) 19.4% 2.5%

Moderate depression (20–28) 10.7% 1.2%

Severe depression (39–63) 5.8% 1.2%

Clinically depressed, (> 13 for Parkinson’s disease and > 9 for control groups), (%) 38.9% 20.1% χ2 = 6.8(1)8 0.009

Montreal cognitive assessment (MoCA), [SD]

MoCA total score, (/30) 24.4 [4.8] 27.6 [2.5] t = -5.4 (182)∧ <0.001

Mild cognitive impairment (< 26/30), (%) 48.6 18.5 χ2 = 17.9 (1)8 <0.001

Parkinson’s disease dementia (< 21/30), (%) 16.5 -

36—Item short form health survey (quality of life assessment), [SD]

Health change over last year 38.8 [21.7] 50.6 [16.3] t = -4.0 (182)∧ <0.001

Physical component summary 51.6 [22.7] 79.9 [17.7] t = -9.3 (182)∧ <0.001

Mental component summary 60.9 [22.2] 80.8 [17.4] t = -6.6 (182)∧ <0.001

∧(Independent Sample t-test), 8(Pearson’s chi-squared test), df (degrees of freedom), SD, (Standard Deviation). *This data is partially reproduced (Lubomski et al., 2020b).

Associations of Gut Microbiota
Characteristics Within the Parkinson’s
Disease Cohort
Clinical Features of Parkinson’s Disease and Beta
Diversity
The association of various clinical characteristics with beta
diversity in the PD cohort was examined by PERMANOVA.
Constipation severity (Rome-IV criteria, p = 0.001; CSS,
p = 0.022; BSS, p = 0.027), cognitive impairment (MoCA
total score, p = 0.041; Mild Cognitive Impairment, p = 0.017),
physical activity (IPAQ score, p = 0.017), pain (chronic pain,
p < 0.001; pain severity, p < 0.001) and pharmacological
therapies (Levodopa, p = 0.030; COMT inhibitor, p = 0.009)
all showed a statistically significant association with changes
in beta diversity. These clinical variables highlight a broad
spectrum of influences on the GM species richness in

PD patients. Five PD, but did not show a statistically
different beta diversity from the rest of the PD cohort
(Supplementary Figure 4).

Correlation Analyses
Partial correlation analysis, adjusting for patient age, sex
and BMI, was performed to further evaluate significant
associations between clinical variables and GM composition as
indicated by Spearman correlations (Supplementary Table 1).
Supplementary Table 1 describes many of the clinically relevant
and statistically significant GM and PD motor and non-motor
correlations. The majority of statistically significant correlations
were weak (rs = 0.2–0.4), with only 10 comparisons having
a moderate correlation (rs = 0.4–0.6) and three borderline
moderate correlations (rs = 0.398). Relevant correlations of
clinical interest are discussed below.
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TABLE 2 | Parkinson’s disease clinical characteristics.

Age at diagnosis, (years) [SD, range]* 58.8 [13.6, 24–88]

Parkinson’s disease duration, (years) [SD, range]* 9.2 [6.5, 1–30]

Parkinson’s disease phenotype, (%)*

Tremor Dominant 30.1

Postural Instability and gait Impairment 20.4

Akinetic rigid 38.9

Young onset (<40years) 10.7

Late onset (>60years) 49.5

Genetic diagnosis, (%)* 1.9

Disease complications, (%)*

Motor fluctuations 58.3

Dyskinesia 58.3

Wearing off 81.6

Impulse control disorder 19.4

Non-motor symptoms, (%)*

Hyposmia 73.8

REM sleep behavior disorder 48.5

Constipation 60.2

Levodopa equivalent daily dose (mg), [SD, range]* 834.8 [527.3,
0–2,186]

MDS unified Parkinson’s disease rating scale-III (“on” state), [SD, range]* 32.9 [17.7, 5–91]

Quality of life

PDQ-39 summary index, [SD] 29.2 [17.3]

MDS Non-motor symptoms score (NMSS)—total score, [SD]* 62.7 [42.9]

Parkinson’s disease therapy, (%)*

Treatment naïve (n = 5) 4.9

Oral levodopa (n = 92) 89.3

Dopamine agonist (n = 36) 35.0

Monoamine oxidase B inhibitor (n = 19) 18.4

Anticholinergic (n = 13) 12.6

Catechol-O-methyl transferase inhibitor (n = 24) 23.3

Amantadine (n = 13) 12.6

Levodopa-carbidopa intestinal gel (LCIG) (n = 9) 8.7

Deep brain stimulation (n = 11) 10.7

Apomorphine (subcutaneous infusion) (n = 7) 6.8

SD, (Standard Deviation). *This data is partially reproduced (Lubomski et al., 2020b).

Due to the sheer number of possible correlative combinations,
we developed a comprehensive and interactive interface1 to allow
clinicians and researchers to interrogate the entire data set of
microbiome and clinical variables, with capacity to adjust the
analysis for potential confounding factors.

Device-Assisted and Standard Parkinson’s Disease
Therapies
When comparing relative bacterial abundances in the device-
assisted PD therapy sub-cohorts [levodopa-carbidopa intestinal
gel (LCIG) n = 9, DBS n = 11, Apomorphine n = 7], a
number of weak correlations reaching statistical significance
were apparent (Supplementary Table 1). Two moderate
positive correlations were identified between LCIG therapy
and the bacteria Enterococcus (rs = 0.531, p = 0.01) and
ASV_155/Klebsiella spp. (rs = 0.411, p < 0.001), warranting

1http://shiny.maths.usyd.edu.au/PDBug/

further investigation of the validity and specificity of these
associations with this particular therapy, given that it has a
sub-physiological pH and is delivered directly into the upper
GI tract. Separate and distinct correlative associations were
identified for PD patients receiving standard therapies (Levodopa
n = 92, Anticholinergics n = 13, COMT inhibitors n = 24,
Amantadine n = 13, Dopamine agonists n = 36, MAO-B
inhibitors n = 19) (Supplementary Table 1), with borderline
moderate correlations between ASV_166/Bifidobacterium spp.
and Anticholinergics (rs = 0.398, p < 0.001), as well as
ASV_82/Lactobacillus spp. and daily Levodopa Dose Equivalence
(rs = 0.398, p < 0.001).

Specific Associations Between Clinical Features and
Gut Microbiota
While a considerable number of statistically significant
but weak correlations were apparent for a wide range of
clinical features, only a few had a moderate correlation
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FIGURE 1 | The evaluation of diversity measures between the household control (HC) and Parkinson’s disease (PD) groups identified differences in beta diversity
measures but not alpha diversity. (A) Box plots representing alpha diversity showed no significant differences in Shannon (species abundance and evenness within a
community) or Simpson (species richness and evenness within a community) diversity between the HC and PD cohorts (ANOVA, p = 0.057 and 0.159, respectively).
(B) Beta diversity using principal coordinate analysis (PCoA) with Bray-Curtis dissimilarity at amplicon sequence variant (ASV) level. Comparison of the first two
principal components revealed varied beta diversity (extent of species diversity difference between two environments) between the groups (PERMANOVA,
p < 0.0001), suggestive of a disease-related effect on GM composition that might define a PD-related GM profile. Colored ellipses (solid green = HC and dotted
orange = PD) represent a 90% confidence region and the proportion of total variance represented by a given principal component is labeled on the respective axis.
(C) Evaluating the effects of PD phenotypes in terms of gut microbial beta diversity showed no overall statistical significance between the four groups (PERMANOVA,
p = 0.112). Although, the greatest diversity difference was seen for the younger onset < 40 years subgroup, as compared to the tremor dominant, akinetic rigid and
postural instability subgroups.

coefficient (Supplementary Table 1). The physical component
score of the SF-36 assessment gives an indication of
overall physical health and was found to positively
correlate with Fusicatenibacter (rs = 0.444, p < 0.001),
Butyricicoccus (rs = 0.438, p < 0.001) and ASV_32/Blautia
spp. (rs = 0.401, p < 0.001). Consistent with the known
interplay between gut function and dysbiosis, the BSS
had a positive correlation with Butyricicoccus (rs = 0.428,
p < 0.001) and a borderline moderate association with
ASV_350/Clostridium_XIVa spp. (rs = 0.398, p < 0.001).
Additionally, the ROME-IV Score showed an association with
ASV_151/Bacteroides spp. (rs = 0.411, p < 0.001), and the
Leeds Dyspepsia Score correlated with both Desulfomicrobiacaea
(rs = 0.438, p < 0.001) and Desulfomicrobium (rs = 0.422,
p < 0.001). Lastly, a moderate correlation in a small
subgroup of PD patients with Asian ethnicity (n = 4)
and ASV_173/Parasutterella spp. (rs = 0.489, p < 0.001)
was identified, although this inference is underpowered in
the current cohort.

Of the numerous weak associations between the GM and
clinical measures, a number of important considerations were
evident but require validation in larger cohorts. These include
but are not limited to Lactobacillaceae and Lactobacillus as
potential indicators for increased PD severity and duration
(rs = 0.257, p < 0.010) and (rs = 0.323, p < 0.001) respectively.
Lastly, other varied taxa suggested associations with numerous

NMS, namely depression, chronic pain, RBD, in addition to
demographics, dietary markers, and other influences from PD
therapies that are seldom reported in the PD GM literature
(Supplementary Table 1).

Predictive Modeling of Gut Bacteria and
Macronutrient Intake to Identify
Parkinson’s Disease
We examined the utility of the entire GM as a predictive
signature of PD, developing two models using RF and support-
vector machine (SVM) methodologies. The area under the
curve (AUC) of receiver operating characteristic (ROC) curves
were used to evaluate the predictive capacity of the model
at different taxonomic levels. The RF model showed the best
performance across all taxonomic levels and was used to identify
the contribution of the GM to PD. Figure 4A illustrates the
predictive capacity of the model at different taxonomic levels,
with the highest AUC of 0.71 at the genus level.

As diet has a large influence on the GM, the RF model
was then expanded to incorporate macronutrient data, with
maximal information gain set to apportion the nutrient data
for the best prediction of PD. The splitting nodes for each
of the macronutrients included: protein, 127.77; fat, 85.3;
added sugar, 38.1; fiber, 37.53; total available or digestible
carbohydrate 163.07; percentage of energy intake as protein,
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FIGURE 2 | Microbiota abundance for household control (HC) and Parkinson’s disease (PD) groups. The relative abundance of phylogenetic gut microbiome taxa
composition at the (A) genus, (B) family, (C) order, and (D) phylum level for individual participants (n = 81 HCs and n = 103 PD) showed a statistically significant
compositional difference between PD and HC groups at each studied taxonomic level (PERMANOVA, p < 0.01 genus, p < 0.01 family, p < 0.01 order, p = 0.02
phylum).
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FIGURE 3 | Comparison of taxa abundance between household (HC) and Parkinson’s disease (PD) patients at different phylogenetic levels reveals specific
differences. Volcano plots representing abundance differences (fold change) of different taxa between HC and PD patients showed statistically significant [-log
(p) > 3; fold change > ± 1.2] compositional differences at the genus, family and order levels (represented by red dots), indicative of a PD-related GM composition.
With regards to PD patients, there was statistically significant overrepresentation of Bifidobacterium, Candidatus Soleaferre, Butyricimonas, Flavonifractor,
[Ruminococcus] gnavus group, and Faecalibacterium sp. UBA1819 and underrepresentation of Butyricicoccus, Fusicatenibacter, Lachnospiraceae ND3007 group,
Erysipelotrichaceae UCG-003, Agathobacter, [Eubacterium] xylanophilum group, [Ruminococcus] gauvreauii group, and Firmacutes bacterium CAG:56 at the genus
level (A), overrepresentation of Lactobacillaceae and Enterobacteriaceae at the family level (B) and overrepresentation of Lactobacillales at the order level (C). The
largest fold change was observed for increased Lactobacillaceae taxa abundance (2.7 fold increase).

TABLE 3 | Gastrointestinal microbiota compositional differences between Parkinson’s Disease patients and Household Controls.

Overrepresented in PD cases Underrepresented in PD cases

Order Family Genus Genus

Lactobacillales Enterobacteriaceae
Lactobacillaceae

Bifidobacterium [9]
Butyricimonas [5]
Candidatus Soleaferre [2]
Faecalibacterium sp. UBA1819 [1]
Flavonifractor [2]
[Ruminococcus] gnavus group [1]

Agathobacter [4]
Butyricicoccus [6]
Erysipelotrichaceae UCG-003 [2]
[Eubacterium] xylanophilum group [3]
Fusicatenibacter [1]
Lachnospiraceae ND3007 group [1]
[Ruminococcus] gauvreauii group [2]
Firmacutes bacterium CAG:56 [1]

Square brackets indicate the number of ASVs contributing to the compositional difference in each genera.

15%; percentage of energy intake as fat, 38% and percentage of
energy intake as digestible carbohydrate, 38%. Accordingly, the
incorporation of carbohydrate contribution to total energy, was
shown to provide an improvement to the predictive ability of
the model at the genus level to an AUC of 0.74 (Figure 4B).
This two-stage model uniquely highlights the importance of
incorporating clinical variables, particularly nutritional data, to
define potential multivariate biomarkers of PD. These inferences
require validation in a larger PD GM study and/or meta-
analysis. The approach of using the global microbiome signature
paired with important clinical measures to identify disease
has been developed into a methodological approach pairing
nutritional intake with gut enterotypes to define health state
(Xu et al., 2021).

DISCUSSION

In this cross-sectional PD GM study, we enrolled a broad clinical
spectrum of PD patients, representative of all stages of established
PD and uniquely analyzed the influences of DATs, namely DBS

and Apomorphine infusions, which have not been reported.
When considering the entire GM in our analysis, we identified
fourteen genera, two family and one order level variations in GM
composition of PD patients when compared to HCs (Table 3
and Figure 3). Through our holistic consideration of the entire
GM and extensive clinical parameters, we identified an array
of GM associations with various therapeutic, motor and non-
motor features. We developed predictive models to identify PD
using the GM as a non-invasive fecal biomarker. These study
findings provide further experimental evidence in support of
GM involvement in body-first PD pathogenesis and disease
progression. Iterative development of the foundational models
from this study may eventually provide diagnostic indications at
earlier stages of PD.

An increasing number of studies, mainly from Western
Europe, China, Japan and the United States, have highlighted
important patterns in the GM profiles of PD patients (Gorecki
et al., 2019; Elfil et al., 2020; Lubomski et al., 2020), with more
than 110 differentially abundant taxa described from the level of
phylum to ASV or species (Boertien et al., 2019; Bullich et al.,
2019; Lubomski et al., 2020; Wallen et al., 2020; Kenna et al.,
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FIGURE 4 | Predictive modeling to identify Parkinson’s disease (PD) was optimized by a two-stage model that incorporates nutritional and microbiome data.
(A) Predictive Random Forest modeling was undertaken to identify the utility of the gut microbiome as a potential signature for PD. Comparisons at five taxonomic
levels; phylum, order, family, genus and ASV, were used to predict PD, with greatest predictive capacity provided at the genus level on receiver operating
characteristic curve (ROC), with an area under the curve (AUC) of 0.71. (B) An optimized two-stage predictive Random Forest model analysis was subsequently
undertaken that considered dietary intake as an influence on the gut microbiome. Comparing the utility of the one-stage microbiome model (AUC = 0.71) with the
two stage model, a slightly improved predictability was achieved. when incorporating dietary macronutrient data. Specifically, the incorporation of carbohydrate
contribution to total energy in the model improved the prediction (AUC = 0.74), whereas incorporation of fiber, fat or protein macronutrient data alone into the model
did not improve the predictive potential to identify PD. Accompanying sensitivity and specificity analyses are presented in the tables.

2021; Romano et al., 2021). Although notable differences exist
between the studies (study design, inclusion criteria, ages, gender
proportions, disease durations, methodology, etc.), emerging
consistencies for PD-specific GM changes suggest enrichment
of the genera Lactobacillus, Akkermansia, and Bifidobacterium
and depletion of bacteria belonging to the Lachnospiraceae family
and the Faecalibacterium genus, as the most consistent PD GM
alterations (Romano et al., 2021). One of the pitfalls for previous
studies has been to consider only those differentially abundant
taxa identified when creating disease discriminant models. We
instead performed analyses by considering the entire GM and
a diverse range of clinical measures to develop our disease-
discriminant models.

The general species diversity across the cohort was not
dissimilar, as indicated by a lack of statistical significance in
alpha diversity. When comparing species richness between PD
and HC groups, the statistical significance in beta diversity

was supportive of a PD-specific GM profile. Furthermore,
beta diversity differences were identified in association with
constipation (Rome-IV criteria and CSS), cognitive profiles
(MoCA Total Score), physical activity (IPAQ score), chronic
pain, utilization of levodopa and COMT inhibitor medications,
as well as an apparent trend for the young onset PD phenotype.
This supports the multifactorial nature of the GM and disease
interplay and indicates that a more global consideration of
GM and clinical parameters is necessary. Of note, the longer
mean disease duration of 9.2 years in this study, compared to
many earlier PD GM studies, may explain why beta diversity
changes were associated with so many clinical variables in our
PD cohort, as divergence in beta diversity increases with disease
progression (Barichella et al., 2018). Other studies have identified
beta diversity differences associated with male sex, RBD, smoking
and body-mass-index (Heinzel et al., 2020), although these were
not apparent in the current study.

Frontiers in Aging Neuroscience | www.frontiersin.org 11 May 2022 | Volume 14 | Article 881872

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-881872 May 5, 2022 Time: 16:58 # 12

Lubomski et al. Gut Microbiome and Parkinson’s Disease

Consistent with beta diversity differences, a number
of statistically significant relative abundance differences
between the PD and HC groups were apparent, defining
a PD-specific GM profile. At the family level, increased
abundances of Lactobacillaceae (Scheperjans et al., 2015;
Hill-Burns et al., 2017; Hopfner et al., 2017; Aho et al.,
2019; Barichella et al., 2019; Pietrucci et al., 2019; Nishiwaki
et al., 2020; Tan et al., 2021) and Enterobacteriaceae (Unger
et al., 2016; Lin et al., 2018; Barichella et al., 2019; Pietrucci
et al., 2019) identified here (Table 3), are consistent with
reports from several earlier studies. At the genera level,
overrepresentation of Bifidobacterium (Unger et al., 2016;
Hill-Burns et al., 2017; Petrov et al., 2017; Aho et al., 2019;
Barichella et al., 2019; Wallen et al., 2020) and Butyricimonas
(Heintz-Buschart et al., 2018; Jin et al., 2019; Ren et al., 2020)
and underrepresentation of Lachnospiraceae ND3007 group
(Nishiwaki et al., 2020; Romano et al., 2021) identified here,
have been repeatedly associated with PD in prior studies. The
underrepresentation of Butyricicoccus and Fusicatenibacter
in our cohort have been variably reported (Weis et al.,
2019; Wallen et al., 2020), and in one study of Chinese PD
patients, Butyricicoccus was reported to be overrepresented
(Qian et al., 2018). This highlights the evident inconsistency
across GM studies in PD and emphasizes the difficulties in
differentiating between genuine inherent biological variability
in small sample sizes and inconsistent study methodology.
To our knowledge, the differentially represented genera
Candidatus Soleaferre, Flavonifractor, Faecalibacterium sp.
UBA1819, Erysipelotrichaceae UCG-003, [Eubacterium]
xylanophilum group, [Ruminococcus] gauvreauii group, and
Firmacutes bacterium CAG:56 identified here, have not
previously been described in association with a PD-specific
GM profile and warrant consideration in subsequent studies.
While we acknowledge the significant variation between
studies, a recent consideration is the evolving taxonomic
assignment nomenclature used to assign taxa from ASVs,
which makes comparison with older studies more difficult
but will improve the resolution of GM taxonomy and analysis
in future studies.

A considerable body of evidence suggests underrepresentation
of typically abundant SCFA-producing bacteria in PD can lead
to SCFA imbalances that may have detrimental impacts on
disease progression, including increased colonic inflammation,
gut leakiness, risk of α-syn deposition in the gastrointestinal
tract, and microglial activation in the brain (Bullich et al., 2019;
Romano et al., 2021). In this study, we found overrepresentation
of Bifidobacterium and Butyricimonas in our PD cohort.
Bifidobacterium produces acetate and formate by metabolizing
carbohydrates in plants and dairy (Wallen et al., 2020). They are
a common component of probiotic supplements and have been
shown to induce remission when supplemented in patients with
Inflammatory Bowel Disease (Parada Venegas et al., 2019). On
the other hand, Butyricimonas produces butyrate, which has been
shown to reduce inflammation and maintain gut health (Parada
Venegas et al., 2019). The increased relative abundance of these
bacteria may be a protective attempt in response to systemic
PD pathogenesis or the accompanying underrepresentation of

other SCFA-producing bacteria. The underrepresented genera
Butyricicoccus, Fusicatenibacter and Lachnospiracaea ND3007
group identified in this study all produce butyrate (Geirnaert
et al., 2014), with Lachnospiraceae ND3007 group also producing
acetate and alcohols (Boutard et al., 2014) that are believed to
collectively exert anti-inflammatory effects, helping to maintain
integrity of the gut membrane (Keshavarzian et al., 2020;
Nishiwaki et al., 2020; Wallen et al., 2020). While the impact
of variability in SCFA-producing bacteria in PD is still not
entirely clear (Mulak, 2018; Dalile et al., 2019), there is strong
suggestion of a role in pathogenesis and potential as therapy
(Metzdorf and Tonges, 2021).

We identified many clinically important associations between
the GM and clinical measures. With respect to DATs, after
controlling for age, gender and BMI, two moderate correlations
were identified between Enterococcus and ASV_155/Klebsiella
spp and LCIG use. Associations with overrepresentation of
Enterococcus signifies important implications for patients using
large doses of levodopa and may result in positive selection
of bacterium with tyrosine decarboxylase activity that can
convert levodopa to dopamine in the gut (Lubomski et al.,
2019; Maini Rekdal et al., 2019; van Kessel et al., 2019).
This has implications for the treatment efficacy of levodopa
administration in PD and could be exploited to improve dose
efficiency. LCIG use was also associated with overrepresentation
of Enterobacteriaceae and Klebsiella spp., which are genera of the
family Enterobacteriaceae that is also independently associated
with increased daily LED, Hoehn, and Yahr scores and motor
fluctuations, consistent with motor disease severity, as previously
identified (Li et al., 2017). The influence of DBS has been sparsely
reported in regards to the GM (Lubomski et al., 2021c), but
was associated here with overrepresentation of Streptococcaceae
and Streptococcus spp. and underrepresentation of Rikenellaceae,
potentially suggestive of peripheral effects of DBS on the GM that
warrant further investigation. Uniquely, we identified positive
associations between continuous subcutaneous Apomorphine
infusion (a DAT that has not previously been studied in terms
of the GM in PD) and the genera Intestinibacter, Parasutterella,
and Actinomyces, again justifying further investigation.

In terms of standard therapies, oral Levodopa use was
associated with the families Sutterellaceae and Rikenellaceae
in our cohort, rather than Bacillaceae, as was reported in
another study (Heintz-Buschart et al., 2018). Anticholinergic
use was associated with ASV_166/Bifidobacterium spp.,
a beneficial bacterium known to digest dietary fiber and
maintain healthy gut function (Castelli et al., 2021), although
its association with this therapy has not been previously
reported. Furthermore, COMT inhibitor use was associated
with overrepresentation of Bifidobacteriaceae, Enterococcaceae,
and Lactobacillaceae in our cohort. This is contrary to a
previous report of a negative association with Lachnospiraceae
abundance (Hill-Burns et al., 2017), although the relationships
between the use of COMT inhibitors and gut microbiota have
yielded many discordant findings in several other studies
(Unger et al., 2016; Hill-Burns et al., 2017; Barichella et al.,
2019). Furthermore, overrepresentation of Lactobacillus
and Lactobacillaceae have often been seen as indicators of
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increased PD severity and duration, associating with PD
duration, UPDRS-III total score, Hoehn and Yahr score,
daily LED, adjuvant therapies for advanced disease (like
COMT inhibitors and apomorphine), as well as decreased
QoL, physical activity and increased depression severity
(Lubomski et al., 2020b; Nishiwaki et al., 2020; Romano et al.,
2021). Barichella et al. (2019) also identified a significant
relationship between increased Lactobacillaceae and UPDRS-
III total score. Lactobacillaceae overrepresentation in more
advanced disease may be a relative finding in light of the
underrepresentation of other genera, particularly from the family
Lachnospiraceae, known for their beneficial SCFA production
(Romano et al., 2021).

In terms of NMS in our PD cohort, better physical health,
indicated by a higher physical component score from the SF-36
assessment, showed positive associations with Fusicatenibacter,
Butyricicoccus, and ASV_32/Blautia spp. Whilst the clinical
significance of these taxa associations are still unclear, important
implications arising from favorable SCFA metabolism could
be implicated (Aho et al., 2021), and warrants further study.
Depression severity was positively associated with Veillonella,
Klebsiella, and Pseudoflavonifractor, taxa that have not previously
been described in association with mood changes in PD.
Chronic pain was negatively associated with Enterobacteriaceae,
whilst positively with Bacteroidaceae and Synergistaceae
abundances, although these NMS have not been widely
studied in prior PD GM studies. GI dysfunctions, practically
constipation severity inferred from the BSS score and ROME-
IV score, were most markedly associated with Butyricicoccus
and ASV_151/Bacteroides spp., whilst other taxa including
ASV_350/Clostridium_XIVa spp., Faecalibacterium, Coprococcus,
and Roseburia spp. were also implicated. These bacteria have
also previously been associated with chronic constipation in
the general population (Zhao and Yu, 2016), although are
different from some earlier PD studies reporting associations
with Bradyrhizobiaceae, Verrucomicrobiaceae (Scheperjans et al.,
2015), and Bifidobacteria (Baldini et al., 2020) in constipated
PD patients. Distinctively, we also show moderate associations
between upper GI dysfunction with overrepresentation of
Desulfomicrobiaceae and Desulfomicrobium, associations not
previously reported with regard to PD GM profiles.

Environmental influences of geography and dietary habits are
known to be highly influential on GM composition. We made
attempts to mitigate these by using HCs who resided with their
respective PD patient. Analysis of the dietary FFQ indicated
that significant macro and micronutrient differences did not
exist between the two groups, aside from increased free sugar
intake in the PD cohort, which is likely a function of dopamine
dysregulation (Palavra et al., 2021). Few prior cross-sectional PD
GM studies have evaluated the influences of diet in their analyses
but is of potential importance given the beta diversity changes
associated with clinical parameters and nutrition identified here.
Therefore, we undertook predictive multivariate modeling in
an effort to better define the GM as a biomarker for PD. Our
results using just the GM (AUC 0.71) were comparable to
earlier reports, with AUCs of between 0.64 and 0.84 reported
(Scheperjans et al., 2015; Bedarf et al., 2017; Hopfner et al.,

2017; Qian et al., 2018). A major point of difference was that
in this study we were able to assess the entirety of the GM
data at various taxonomic levels, rather than using individual
taxa showing statistically significant relative abundance changes.
Uniquely, our modeling was expanded and optimized as a two-
stage model that incorporated additional clinical and nutritional
data, in a manner that most accurately predicts PD. We were
able to show that the incorporation of carbohydrate contribution
to total energy was an important consideration in the ability
to accurately predict PD rather than utilizing GM data alone,
resulting in an AUC of 0.74. Future predictive metanalyses of
the GM in PD should consider incorporating clinical variables,
such as macronutrient data, to optimize PD predictability from
GM compositions.

Several limitations to this study should be considered, as it
does not address certain potential confounding factors, including
other comorbidities and other non-PD medication effects.
Medication use for GI dysfunction (e.g., laxatives, anti-diarrhea
medication, and reflux medication), as well as GI tract medical
diagnosis (e.g., inflammatory bowel disease, inflammatory bowel
syndrome and coeliac disease), are important modulators in the
GI measures, but were not available and were not considered
in the analysis, as reported earlier (Lubomski et al., 2020b).
Whether these covariates alter the PD-specific GM profiles is
yet to be analyzed. PD and HC groups non-optimally matched
for age and sex due to spousal recruitment, may have resulted
in confounding in the comparative GM analysis, as age and
sex are known to influence GM composition, and are classical
matching criteria between case and control groups (Baldini et al.,
2020). The utilization of cohabitants or spousal HC is generally
more suitable to adjust for geographic and environmental
confounders, although differences in age, sex distributions and
methodological inconsistencies, may potentially account for
some heterogeneity in outcomes and observed GM profiles.
This highlights the importance for subsequent studies to have
much larger sample sizes, be inclusive of highly diverse cohorts,
include comprehensive clinical and nutrition data and have
consensus study design to allow for large meta-analyses that
may identify more absolute microbial signatures, as have recently
been reported (Nishiwaki et al., 2020; Romano et al., 2021).
The benefit of larger meta-analysis, particularly greater statistical
power, may further allow investigation of smaller subgroups
of patients, such as those with younger onset or genetically
driven PD, those receiving DATs, as well as thoroughly expose
the influences of geography and environmental exposures.
Larger multicenter analyses may also reveal why Lactobacillaceae
and Bifidobacterium have been persistently elevated in PD
across so many studies, determining if their overexpression is
a beneficial compensatory mechanism to overcome dysbiosis
or an unfavorable response to increasing disease progression,
motor severity and daily LED. The findings presented in
this study should be interpreted with consideration for these
and other limitations, including the self-reporting nature of
the data and potential selection bias of the study population
being drawn from specialist PD clinics. Due to the cross-
sectional nature of this study, causal inferences were not
possible. Furthermore, our sample only reflected the experience
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of patients from a single metropolitan area, whereas previous
studies from Australia have shown PD patients from regional
areas to be comparably older with an older age of diagnosis
(Lubomski et al., 2013, 2014).

CONCLUSION

In our cohort of Australian PD patients and HCs, we showed
distinctly differentially abundant bacterial taxa, validating trends
from prior studies, as well as identifying new genera that may
also be implicated. We identified many new motor and non-
motor associations with specific microbiota that create PD-
specific GM profiles, in addition to exploring relationships
between standard therapies and DATs. We utilized the apparent
associations between GM changes in PD with clinical and
nutrition features to define a predictive model that could aid
clinicians in the diagnosis and management of PD, particularly
if developed for prodromal or early disease. Further studies
incorporating larger cohorts and targeted subgroups, such as
younger onset and pre-clinical patients, are required. In addition,
more comprehensive longitudinal studies and meta-analyses are
needed to better understand the causal implications of the GM
in PD, define therapeutic interventions that favorably modify the
GM and develop more accurate predictive models to improve
early diagnosis.
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