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Abstract

Eukaryotic genomes are organized in a three-dimensional spatial structure. In this regard, the development of chromosome
conformation capture methods has enabled studies of chromosome organization on a genomic scale. Hi-C, the high-throughput
chromosome conformation capture method, can reveal a population-averaged, hierarchical chromatin structure. The typical Hi-C
analysis uses a two-dimensional (2D) contact matrix that indicates contact frequencies between all possible genomic position pairs.
Oftentimes, however, such a 2D matrix is not amenable to handling quantitative comparisons, visualizations and integrations across
multiple datasets. Although several one-dimensional (1D) metrics have been proposed to depict structural information in Hi-C data,
their effectiveness is still underappreciated. Here, we first review the currently available 1D metrics for individual Hi-C samples or two-
sample comparisons and then discuss their validity and suitable analysis scenarios. We also propose several new 1D metrics to identify
additional unique features of chromosome structures. We highlight that the 1D metrics are reproducible and robust for comparing and
visualizing multiple Hi-C samples. Moreover, we show that 1D metrics can be easily combined with epigenome tracks to annotate
chromatin states in greater details. We develop a new framework, called HiC1Dmetrics, to summarize all 1D metrics discussed in
this study. HiC1Dmetrics is open-source (github.com/wangjk321/HiC1Dmetrics) and can be accessed from both command-line and
web-based interfaces. Our tool constitutes a useful resource for the community of chromosome-organization researchers.
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Introduction

In recent decades, researchers have made great efforts
to discover how chromosomes are organized in three-
dimensional (3D) space within a eukaryotic genome.
Although experimental approaches such as fluores-
cence in situ hybridization and early-stage chromosome
conformation capture (3C) can be used to investigate
a handful of targeted regions [1], the high-throughput
3C technology Hi-C [2] provides a genome-wide assess-
ment of 3D chromosome organization. The typical Hi-
C analysis segments a genome into fixed-sized bins
(e.g. 10 kb), estimates contact frequencies between all
possible bin pairs and generates a two-dimensional
(2D) contact matrix. The matrix is usually visualized
as a square or triangular heatmap, then analyzed to
identify chromatin structures such as chromatin loops
and topologically associating domains (TADs), the sub-
megabase (average 880 kb) structures [3, 4]. As the cost
of next-generation sequencing has plummeted in recent
years, numerous Hi-C datasets have been generated
for a wide variety of species, with high resolution (up

to hundreds of bp [5] and keep improving [6]). Many
analysis tools also have been developed [7]. However,
Hi-C analysis using a 2D matrix has several limitations.
First, the file for 2D-matrix analysis often becomes large
because the linear increase of resolution requires the
quadratic increase of sequencing reads [8], leading to
the heavy computational task. Second, the visualization
and comparison of multiple Hi-C samples using 2D
heatmaps can be problematic. Although multiple 2D
heatmaps can be displayed side by side, human visual
perception of differences in color intensity is inherently
inaccurate [9]. Third, whereas it is important to integrate
Hi-C data with other epigenomic data such as chromatin
immunoprecipitation sequencing (ChIP-seq), it is not
trivial to directly combine a 2D heatmap with linear
tracks, i.e. combine contact frequency between each pair
of genomic loci with values at each genomic locus of a
particular epigenomic track. This potential inconsistency
can confound the quantitative analysis of Hi-C data.
Consequently, it is necessary and important to utilize
well-designed compressed information extracted from
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Hi-C data in addition to the 2D matrix-based analysis to
analyze chromatin data in detail.

Much effort has been devoted to developing one-
dimensional (1D, linear) metrics for Hi-C analysis.
Lieberman-Aiden et al. [2] applied principal component
analysis (PCA) to the normalized 2D matrix and used
the first eigenvector (PC1) to divide the whole genome
into compartment A (open chromatin, positive PC1
value) and B (closed chromatin, negative PC1 value)
[10]. This ‘Compartment PC1’ was the first 1D metric
for Hi-C analysis. The sign of PC1 is arbitrary and it is
usually fixed by correlating with gene density [11]. At the
finer level of chromatin organization, TADs are highly
conserved across cell lines and species, and associated
with development and diseases [1]. Various 1D metrics
have been proposed for analysis of TAD structure [12]. For
example, Dixon et al. [3] defined a ‘directionality index’
(DI) to describe the bias in contact frequency between
regions upstream and downstream of a TAD boundary;
Crane et al. [13] developed an ‘insulation score’ (IS) to
quantify interactions passing across each genomic locus;
Ramirez et al. [14] suggested a ‘separation score’ (SS) to
represent the degree of TAD separation; Van et al. [15]
applied a ‘contrast index’ (CI) to assess the strength of
TAD boundaries. Except for these 1D metrics designed for
TAD calling, Heinz et al. [16] also tried to measure intra-
and inter-chromosomal compaction for every genomic
locus using ‘distal-to-local ratio’ (DLR) and ‘inter-
chromosomal fraction of interactions’, respectively. 1D
metrics are also useful for comparing two Hi-C samples
by representing the changes of interactions at each locus.
For example, the ‘insulation score change’ (ISC) was
designed to reflect local differences in chromosomal
organization [17]. The ‘correlation difference’ (CD) was
designed to correlate locus-specific interaction profiles
between two Hi-C samples [16]. These 1D metrics have
the advantage [18] of being easily visualized with a
conventional genome browser, which facilitates data
interpretation and analysis of public datasets. Also,
1D metrics are especially helpful for quantitative
comparisons of multiple samples and integration with
other linear tracks.

Despite the usefulness of 1D metrics, there is no thor-
ough tool and review that covers all these 1D metrics,
which has restricted the feasibility of using 1D metrics
for Hi-C analysis. Moreover, recent Hi-C studies have
suggested more specific chromatin structures such as
architectural stripes [19] and chromatin hubs [20], which
cannot be captured by current metrics. Here, at first, we
review the currently available 1D metrics for individual
Hi-C sample or two-sample comparisons and then dis-
cuss their validity and suitable analysis scenarios. Next,
we introduce the new 1D metrics we have developed,
namely ‘intra-TAD score’ (IAS) and ‘adjusted interaction
frequency’ (IF), to explore chromatin stripes and hubs,
respectively. We give examples to demonstrate the bio-
logical relevance of these new metrics. We also devel-
oped another 1D metric, ‘directional relative frequency’

(DRF), for two-sample comparisons. Using DRF, we intro-
duce the novel chromatin structure ‘directional TAD’
(dTAD), which depicts an asymmetric event of inter-TAD
interactions. Then, through analysis of publicly available
Hi-C datasets, we highlight that the 1D metrics-based
approach is reproducible and robust for comparison and
visualization of multiple Hi-C samples. Finally, we show
that the linear tracks of 1D metrics can be combined with
other epigenome data to annotate chromatin states in
greater detail, using ChromHMM [21] as an example.

To increase the usability of 1D metrics, we developed
a new framework, ‘HiC1Dmetrics’, to summarize all 1D
metrics discussed in this study. HiC1Dmetrics can simul-
taneously deal with various types of 1D metrics and mul-
tiple Hi-C samples. HiC1Dmetrics is an open-source soft-
ware (https://github.com/wangjk321/HiC1Dmetrics) and
can be accessed via both command-line and web-based
interfaces. We believe that our study will enhance the
value of the Hi-C assay and facilitate studies of chromo-
some organization.

Results
Existing 1D metrics for a single Hi-C sample
Our HiC1Dmetrics can calculate multiple published met-
rics including IS, SS, DI, CI, DLR and PC1 (Figure 1A and B).
As a representative dataset, we downloaded a high-
resolution (5 kb) Hi-C data for HCT-116 cells [22] from the
Gene Expression Omnibus (GEO) under accession num-
ber GSE104334. Other datasets used in this study were
summarized in Supplementary Table S1. An example
region is shown in Figure 1B (the same plots for GM12878
and K562 cells are shown in Supplementary Figure S1A).
In this section, we will briefly review the existing metrics
that are included in HiC1Dmetrics. We also summarized
Table 1 to better illustrate the candidate scenarios for
each 1D metric.

IS is defined for each bin as the average number of
interactions that occur across the bin [13]. Therefore,
IS has local minimums at the highly insulated regions,
which also represent TAD boundaries. SS represents
inter-TAD interactions normalized by intra-TAD inter-
actions, and it reaches a local minimum between TADs
[14]. Compared with IS, the additional information
for SS enables the evaluation of the degree of TAD
separation, implying that adjacent TADs with more
contacts between them (less separation) receive a larger
score. DI is used to quantify the degree of downstream
or upstream interaction bias for each genomic position
[3]. DI should have a local minimum at the 3′ end of
each TAD and a local maximum at the 5′ end of each
TAD. Quantitative comparison of DI values between
two Hi-C samples is less interpretable because the
meaningful information of DI is the sharp changes at
TAD boundaries [23]. CI is defined as the local contrast,
for which a high value corresponds to enriched intra-
domain contact relative to inter-domain contacts, which
are generally exhibited by TAD boundaries [15]. CI also
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Figure 1. 1D metrics designed for a single Hi-C sample, and the novel metric IAS. (A) Concept of published 1D metrics and our original metrics.
PCAOE represents the PCA of observed/expected matrix. (B) Visualization of 1D metrics applied to Hi-C data acquired with non-treated HCT116 cells
(chromosome 21, 24.5–34.5 Mb). (C) IAS and IES metrics for Rad21AID-treated or non-treated Hi-C samples (chromosome 21, 27.0–34.5 Mb). Blue shading
denotes regions with decreased intra-TAD interactions and increased inter-TAD interactions. (D) IAS values for two candidate regions reveal that a stripe
can be indicated by the peak IAS value. The lower panel shows the ChIP-seq signals for the indicated factors. B cells dataset from GSE98119 was used.
(E) Spearman correlations between IAS values (or randomized IAS values) and ChIP-seq signals in B cells. (F) 2D heatmap for various cell types. The
arrows indicate a conserved or cell type-specific stripe. (G) IAS signals for different cell lines. The plotted region is the same as in panel C. (H) Spearman
correlation of genome-wide IAS values reveals the overall cell-type specificities of stripes. (I) Number of the various types of TADs identified by IAS.

can be used to assess the strength of boundaries. SS
and CI are more appropriate than IS for comparing
different TAD boundaries within a genome because they
are normalized by local chromatin [15, 24].

Whereas the aforementioned metrics were designed
for TAD calling with additional information, DLR helps

quantify the degree of localized chromatin compaction
for each genomic locus [16]. For example, a larger DLR
value reflects lesser compaction of local chromatin
(i.e. distance <3 Mb), enabling more interactions with
distal sites (i.e. >3 Mb). DLR is related to the bind-
ing of cohesin, a key protein complex that mediates
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Table 1. Candidate scenarios for various 1D metrics

Raw Existing 1D metrics Novel 1D metrics

2D matrix IS CI DI SS DLR PC1 IAS/IES IF DRF

Local visualization © © © © © © © © © ©
Genome-wide visualization � © © © © © © © © ©
Multiple sample visualization � © © © © © © © © ©
Quantitative comparison � © © × © © × © © ©
Integrate other 1D track (e.g. ChIP-seq) � © © © © © © © © ©
TAD analysis � © © © © × × © × ©
Chromatin interaction analysis � � � × � © © © © ©
Hi-C reproducibility × © © © © © � © © ×
Expenditure (file size, running time) � © © © © © � © © ©
‘Stripe’ × × × × × × × © × ×
‘Hubs’ × × × × × × × × © ×
‘Directional TAD’ × × × × × × × × × ©
Information loss © � � � � � � � � �

Note: © Good � Moderate ×Bad.

chromatin architecture [16]. In fact, we observed neg-
ative correlations between DLR and cohesin binding
(Supplementary Figure S1B), implying that cohesin is
required for compaction of local chromatin. PC1 is
used to classify a genome into compartments A and
B but is not appropriate for quantitative comparisons
because PCA is an unbiased method [16]. In practice,
the ‘saddle plot’-based compartment analysis [25], or
binary comparisons using compartment A/B information
(called ‘compartment switching’) are often used. Overall,
compare with 2D matrix, these 1D metrics offer a rapid
way to quantitatively analyze particular chromatin
structure [12, 18, 26].

The novel metric IAS captures
architectural stripes
Considering TAD structures obtained by 2D-based anal-
ysis, all chromatin contacts can be divided into two
classes: intra-TAD, i.e. the rectangular region along the
diagonal with high-density interactions, and inter-TAD,
i.e. the region surrounding TADs which usually have
fewer inter-TAD interactions [27]. As Hi-C is inherently
skewed towards short-range interactions that represent
the vast majority of chromatin interactions, it is diffi-
cult to directly compare contact frequencies within or
between TADs [28]. Although CI and SS represent the
pattern of intra-TAD and inter-TAD interactions based
on their ratio, the information of each is lost. In addi-
tion, CI and SS use fixed window size for calculations,
which is unfair for comparing TADs of different size. To
overcome these aspects, we propose two new metrics,
namely ‘intra-TAD score’ (IAS) and ‘inter-TAD score’ (IES),
that reflect the ratio of measured interactions to the
expected contact frequency within and between TADs,
respectively (Figures 1A and B and Methods). IAS and IES
are normalized by both contact distance and TAD size.

To demonstrate the benefits of IAS and IES, we
implemented a comparative Hi-C analysis before and
after the auxin-mediated depletion of the cohesin

subunit Rad21 in HCT116 cells (GSE104334). As reported
in the original study [22], Rad21 depletion resulted in
decreased intra-TAD interactions and increased inter-
TAD interactions (Supplementary Figure S1C). This ten-
dency was captured by a lower IAS value yet higher IES
value (Figure 1C). Moreover, IAS could distinguish loop-
TAD (28.0–30.0 Mb), according to the peaks at the 5′ and
3′ end of the TAD. IAS also enabled the discovery of the
‘stripe’ structure, which indicates high-level interactions
between a certain locus and a contiguous region [19].
The stripe structures tether highly active regulatory
regions, i.e. tissue-specific enhancers, suggesting their
physiological impact [29]. We also used the original
dataset of the stripe study [19] (GSE98119) and observed
clear IAS peaks at stripe loci (Figure 1D). The IAS peaks
overlapped with the ChIP-seq peaks for the insulator
factor CTCF and active chromatin marks (H3K27ac,
H3K4me1 and RNA Pol2). Genome-wide analysis also
revealed that IASs were significantly correlated with
those marks (Figure 1E), suggesting the importance of
these marks for stripes. Consequently, IAS provides a
quantitative means of studying stripes together with
other 1D tracks (ChIP-seq), which is challenging using
a conventional 2D matrix.

To further evaluate the applicability of IAS, we
compared Hi-C samples from different cell types to
explore the cell-type specificity of stripes, which has
not been fully investigated previously. As shown in
Figures 1F and G, IAS clearly represented the conserved
stripes based on common IAS peaks, as well as the cell-
type specific stripes that can only be observed in B cells.
Over the entire genome, the stripes are more conserved
among embryonic stem (ES) cells, cortical neurons (CN)
and neural progenitor cells (NPC) but not B cells and
hepatocytes (Figure 1H). We again emphasize that it
is difficult to quantitatively evaluate such differences
among multiple Hi-C samples using 2D heatmaps
directly. IAS has merits for integrating with other 1D
tracks and when comparing among Hi-C samples. To
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benefit Hi-C researchers, HiC1Dmetrics also uses IAS
to provide the function for extracting stripes (Methods).
Even though the demand of detecting stripes has been
proposed [30], HiC1Dmetrics is the first tool that can
automatically call stripes.

Because IAS is based on TADs, the results may
be affected by TAD-calling tools and resolution. We
confirmed that the result of IAS was consistent at dif-
ferent resolutions (Supplementary Figure S1D) and TAD-
calling tools (Supplementary Figures S2A–C). Although
different tools may yield a different TAD list, the
TADs obtained with our custom method (IS based
[13]) overlapped substantially with those obtained
with Juicer [31] (Supplementary Figure S2A). We also
observed moderately high correlations (Spearman >0.8)
among the IAS obtained with different TAD-calling tools
(Supplementary Figure S2B and C). HiC1Dmetrics also
supports a parameter that specifies the external TAD
list. In addition, as described by Barrington et al. [29],
TADs can be classified as 5′-stripe, 3′-stripe, loop or other
TADs, with distinct epigenomic and genomic profiles.
For example, stripe-TADs exhibit asymmetric cohesin
binding and regulatory machinery towards the anchored
sites (3′ or 5′). Stripe-TADs are more susceptible than
loop-TADs to structural changes during differentiation.
HiC1Dmetrics applies a Z-test based on IAS and classifies
all TADs as 5′-stripe, 3′-stripe, loop or other TADs
(Figure 1I and Methods).

The novel metric IF identifies chromatin hubs
It has been reported that chromatin hubs, i.e. chromatin
regions having a relatively high frequency of contacts, are
extensively correlate with transcriptional regulation and
histone modifications [20]. Hubs are highly conserved
and tend to serve as super enhancers in gene regulatory
programs that are enriched during development and in
disease-associated variants. Here we defined ‘adjusted
interaction frequency’ (IF), a normalized 1D metric to
quantify the relative frequency of statistically signifi-
cant chromatin interactions for each genomic locus (con-
cept in Figure 1A, example in 1B and also see Meth-
ods). A larger IF value indicates relatively more inter-
actions anchored from the locus. HiC1Dmetrics could
detect 1348 hubs within a whole genome by extracting
genomic loci in the top 10% of IF values (Figure 2A).

To demonstrate the biological relevance of IF, we
compared Hi-C data [32] for MCF-7 cells (MCF_0h),
MCF7 cells treated with estrogen (MCF7_24h) and
tamoxifen-resistant MCF7 cells (MCF7_TamR), which
allowed comparison of the dynamics of chromosome
organization during endocrine resistance (Figure 2B). The
2D heatmap did not reveal any clear differences, but the
IF plot strongly suggested that a hub was established in
early-response cells (MCF7_24h) and drug-resistant cells
(MCF7_TamR; Figure 2C). Notably, transcriptome analysis
(RNA-seq) revealed that the expression of genes nearby
the newly established hub increased significantly in
TamR cells. Moreover, those genes constitute a cluster of

oncogenes, for which high expression is associated with
reduced survival, underscoring the biological relevance
of the newly established hub. Genome-wide analysis also
showed similar results (Supplementary Figures S2D–E).
Thus, IF can provide new biological insights that cannot
be easily elucidated based on the typical 2D heatmap.
Because IF is calculated based on the number of
significant interactions, we downsampled the Hi-C data
to test the changes of IF values. Figure 2D showed that IF
is changed slowly and gradually as downsampling rate
increased.

In summary, 1D metrics for Hi-C data provide unique
information pertaining to chromosome structures.
Figure 2E depicts the correlation across metrics. SS is
positively correlated with IS but negatively correlated
with CI, suggesting that they provide similar but not
identical information for boundaries. The other 1D
metrics had relatively lower coefficients between each
other, suggesting that each metric provides distinct
information. Supplementary Figure S2F summarizes the
distribution of the 1D metrics, revealing that most
metrics, except DI and PC1, exhibited a unimodal
distribution without obvious skew, for which the IF value
was zero for a small subpopulation owing to centromeres
or other regions with no detected interactions. These
distributions agreed with the feasibility of quantitative
comparisons.

1D metrics designed for two-sample
comparisons
The 1D metrics are also powerful approaches for
comparing two Hi-C samples under different conditions.
HiC1Dmetrics also includes several published metrics
that are designed for two-sample comparisons. Here,
we used the same dataset for Figure 1B to compare Hi-
C between Rad21-depleted and control HCT116 cells
(Figure 3A). Because IS is scaled by its average value,
the IS values for treated and control samples can be
compared among samples. As proposed by Viny et al.
[17], a change in IS (i.e. ISC) reflects changes in local
chromosomal contacts. A positive ISC value indicates
a decrease in insulation level. Similarly, we defined the
change in CI (CIC) and the change in SS (SSC), both of
which revealed local structure changes, especially for
TAD boundaries. Delta-DLR was defined previously [16],
and a larger value indicates more interactions with distal
sites, suggesting the ‘decompaction’ of the locus. Delta-
DLR correlates well with changes in transcription of large
genes [16]. In contrast, PC1 is not suitable for direct
comparison of Hi-C samples. Instead, the CD metric
estimates the correlation between interaction profiles of
two Hi-C samples for each locus [33]. A high CD value
implies that two samples have a similar interaction
pattern for a given locus.

As shown in Figure 1C, our two defined metrics IAS and
IES can be used to quantify the relative levels of intra-
and inter-TAD contacts. We also defined two additional
1D metrics, IASC and IESC, to determine the change (log

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
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Figure 2. Novel metric IF. (A) Distribution of IF and the definition of hubs. (B) Hi-C contact heatmap for MCF-7 cells. MCF7_0h: untreated cells; MCF7_24h:
cells treated with estrogen for 24 h; MCF7_TAMR: tamoxifen-resistant MCF-7 cells. (C) IF values for MCF-7 cells treated as noted for panel C. The
middle panel shows the ChIP-seq and RNA-seq signals. The bottom panel shows Kaplan–Meier curves for genes nearby the newly established hubs. (D)
Correlation between the original IF value and the IF values of downsampled Hi-C dataset. (E) Correlation heatmap for genome-wide 1D metrics for the
same Hi-C sample.

ratio) of IAS and of IES, respectively (Figure 3A, Methods).
For instance, a negative IASC value reflects a decrease
in intra-TAD interactions, whereas a positive IESC value
reflects an increase in inter-TAD interactions, each of
which was found to be an important phenomenon in
a cohesin depletion analysis [22]. We also defined a
change in IF (IFC) to evaluate the changes in significant
interactions as described in Methods (Figure 3A). To test
the validity of IASC, IESC and IFC, we compared those
metrics with published tools (FIND [34] and diffHiC [35])
that detect differential chromatin interactions (DCI).
Genomics loci with DCI are expected to have larger
values (either positive or negative) for changes in 1D
metrics. Indeed, loci with DCI exhibited statistically
higher values for IASC, IESC and IFC compared with non-
DCI (Figure 3B).

The correlation and distribution of these two-sample
metrics are shown in Figure 3C and Supplementary
Figure S3A, respectively. IESC was highly correlated with
delta-DLR owing to the consistency between inter-TAD
contacts and distal interactions. Not surprisingly, the
changes in IS, SS and CI (ISC, SSC and CIC in Figure 3C)
still had close relationships. CD shared partial common
information with IFC for contact patterns at each locus.
Overall, these metrics represent various aspects of
changes in chromosome organization.

The novel 1D metric DRF identifies a directional
change of inter-TAD interactions
Although the aforementioned metrics for two Hi-C
samples are effective, we noticed that certain TADs (or
domains) exhibited inconsistent changes on the 5′ (left)
and 3′ (right) sides when comparing two Hi-C samples.

For example, in the TAD region shown in Figure 4A, the
number of contacts clearly increased (red) on the 5′ side
but decreased (blue) on the 3′ side (same dataset for
Figure 3A). Chromatin simulation analysis demonstrated
that the candidate TAD region of the Rad21AID-treated
sample had more interactions with the 5′ side and
fewer interactions with the 3′ side (Figure 4B), compared
with control. Considering this observation, we defined
‘directional TAD’ (dTAD) as TADs (or domains) with
asymmetric changes in inter-TAD interactions and pro-
posed the new 1D metric ‘directional relative frequency’
(DRF, see Methods) to identify them. We could classify all
TADs as ‘5′-dTAD’, ‘3′-dTAD’ or ‘non-dTAD’ in various cell
types (Supplementary Figure S3B and C). For example,
all loci within the 5′-dTAD have negative DRF values,
suggesting that a TAD become oriented to the 5′ side
after treatment.

To investigate the new chromosome structure termed
dTAD, we utilized the precision nuclear run-on sequenc-
ing data obtained from the same study (GSE104334) [22].
We tested whether inter-dTAD directionality correlated
with gene expression. Indeed, expression of genes
upstream of 5′-dTADs was significantly higher than that
measured for genes upstream of non-dTADs, whereas
expression of genes downstream of 5′-dTADs was sig-
nificantly lower (Figure 4C). For the 3′-dTADs, these two
trends were exactly opposite. In addition, genes within
either 5′-TADs or 3′-dTADs were more highly expressed
than those in non-dTADs. These results suggested that
dTADs have distinct transcriptional profiles compared
with other types of TADs, even in non-treated samples.

Next, we assessed changes in gene expression in
regions nearby dTADs, since dTADs were defined based

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
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Figure 3. 1D metrics designed for two Hi-C samples. (A) Visualization of published and our original 1D metrics for comparison between RAD21AID-
treated and non-treated Hi-C samples in HCT116 cells. The visualized region is the same as in Figure 1B. (B) Absolute values of IASC, IESC and IFC
for DCI or non-DCI. DCI were computed using FIND or diffHic. (C) Correlation heatmap for genome-wide 1D metrics for the same comparison of Hi-C
samples.

on the comparison of two Hi-C samples. Figure 4D
shows the percentages of differentially expressed genes
(false-discovery rate, FDR < 0.05) in response to Rad21-
depletion for the indicated regions proximal to dTADs.
Whereas genes upstream of 5′-dTADs tended to be
upregulated compared with non-dTADs, the downstream
genes tended to be relatively downregulated. A similar,
yet opposite tendency was observed for regions upstream
or downstream of 3′-dTADs. The genes within dTADs
were more likely to be upregulated. In short, for dTADs,
which represent asymmetric changes in inter-TAD
interactions, the upstream- and downstream-proximal
regions tended to exhibit opposite trends in gene
expression (Figure 4E).

1D metrics are good indicators for evaluating
similarity across samples
Previous studies have primarily used 1D metrics to iden-
tify particular chromatin structures. Here, however, we
attempted to take advantage of the ‘one-dimensional’

nature of Hi-C metrics and expanded their usage. We
first evaluated the performance of 1D metrics when
dealing with multiple Hi-C samples. To estimate the
reproducibility of 1D metrics under different conditions,
we utilized three publicly available Hi-C datasets for
three murine studies: Data1 (GSE93431) contains Hi-C
data for the cohesin loader Nipbl knockout (two repli-
cates) and non-treated hepatocytes (four replicates) [25];
Data2 (GSE96107) contains Hi-C data for non-treated ES
cells (seven replicates), NPC (four replicates) and CN
(six replicates) [36] and Data3 (GSE98671) contains Hi-
C data for non-treated ES cells (two replicates), con-
trol ES cells (two replicates) and insulator factor Ctcf-
depleted ES cells (two replicates) [37]. We applied 1D
metrics to Hi-C samples from these three datasets and
calculated the pairwise Pearson correlation coefficient
among them, followed by hierarchical clustering. The
1D metrics could classify Hi-C samples into reasonable
clusters (Figure 5A and B), whereas raw contact vectors
generated poor clustering (Supplementary Figure S4A).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
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Figure 4. Novel 1D metric for a directional change in inter-TAD interactions. (A) Contact matrix for the non-treated sample and differential matrix for
RAD21AID-treated versus non-treated samples. The corresponding DRF value was negative for the 5′-dTAD. The dashed rectangles denote increased
(red) or decreased (blue) inter-TAD interactions. (B) Chromosome simulation of the same loci shown in panel C. Red color indicates the region of the
5′-dTAD in panel C. (C) Assessment of gene expression for each indicated region. Statistical comparison between dTADs (5′ or 3′) and non-dTADs was
accomplished with the Mann–Whitney U test. (D) The percentage of significantly changed genes (FDR < 0.05) is shown for the indicated region. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001; Fisher’s exact test. (E) Distinct transcription patterns on the two sides of dTADs. Highly expressed genes were identified based on
a comparison with non-dTADs.

Using CI and IAS as examples, biological replicates for
the same condition always gave the highest correlation.
CI and IAS could also correctly group the same cell types
of non-treated samples from different studies (ES cells of
Data2 and Data3), whereas the treated samples (deple-
tion of Nipbl or Ctcf, each an essential factor for chro-
matin structure) were separated into different clusters.
IAS produced even better clustering than CI, as use of IAS
resulted in fewer breaks in terms of studies and cell types
(Figure 5B, upper panel). These results suggested that the
relative contact frequency within TADs—as indicated by
IAS—is a better indicator of sample similarity than the
boundary information alone. In addition, ES cells can
be grouped separately from NPC and CN, whereas fewer
differences exist between NPC and CN, possibly owing
to dynamic changes in chromatin structure that occur
during cell differentiation that yields NPC and CN [36].

To further evaluate the clustering performance of 1D
metrics, we carried out the same clustering analysis but
applied SCC (stratum-adjusted correlation coefficient
[38]), a designed score (not 1D metric) for measuring
similarities between Hi-C interaction matrices. Unex-
pectedly, the clustering results obtained with SCC
were less biologically appropriate than results obtained
with CI or IAS (Supplementary Figure S4B). We also

defined a reproducible score (see Methods) to further
determine whether 1D metrics can capture similarities
and dissimilarities among samples. We evaluated the
reproducibility score for Hi-C datasets from five studies
(Figures 5C and Supplementary Figure S4C). Although
clustering performance varied among the various 1D
metrics because they are not specifically designed to
evaluate sample similarity, some of them—especially
IAS and IES—performed better than SCC. This result
suggested that 1D metrics are also suitable for comparing
multiple Hi-C samples, thus enabling fast and reliable
estimation of the reproducibility of Hi-C samples among
replicates and under different conditions across studies.

In addition, we applied the metrics CI and PC1 as
examples for the application of 1D metrics to multiple Hi-
C samples. By definition, CI values can be directly com-
pared, and therefore CI values of multiple Hi-C samples
can be visualized as a heatmap (Figure 5D). We evaluated
the variation in CI among samples (analysis of variance,
ANOVA-like test) and could identify statistically signifi-
cant changes (P < 10−14) in TAD boundaries after Rad21
depletion. Because PC1 is not suitable for direct compar-
isons, we converted PC1 into discrete values (i.e. compart-
ment A or B) and constructed a plot using those con-
verted data (Figure 5E). The comparison clearly showed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
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Figure 5. Application of 1D metrics to multiple samples. (A, B) Pairwise Pearson correlation heatmap followed by hierarchical clustering of CI and IAS for
various Hi-C samples. The top panel shows the different datasets, cell types, and treatments for each sample. Data1: Nipbl knockout and non-treated
hepatocytes; Data2: non-treated ES cells, NPC and CN, and Data3: non-treated ES cells, control ES cells, and Ctcf-depleted ES cells. (C) Reproducibility
scores obtained by different 1D metrics and SCC for five different Hi-C datasets. (D) Heatmap based on CI for multiple samples in HCT116 cells. The
P-value for TAD boundaries is indicated (ANOVA-like test). (E) Example of PC1 for multiple samples for mouse cells. The yellow and purple colors indicate
compartments A and B, respectively.

that a switch from compartment B to A occurred from ES
cells to CN and NPC. All these visualization and statistical
analyses are included in HiC1Dmetrics.

Chromatin state annotation using ChromHMM
with 1D metrics information
Because 1D metrics are one-dimensional signals along
genomic loci, we wondered whether they could be used
to segment and annotate entire genomes into distinct
‘chromatin states’, as is commonly done in epigenetics
studies [39]. Here we used ChromHMM, the most popu-
lar tool for chromatin-state annotation, which explicitly
models the observed combination of chromatin marks
based on a multivariate hidden Markov model [21]. We
used Hi-C (GSE99541, GSE64525) and ChIP-seq (CTCF,
RNA Pol2, H3K27ac, H3K27me3, H3K4me1, H3K4me3 and
Input) data for MCF-7 cells [40] and human mammary

epithelial cells (HMEC) [41] (GSE23701, GSE57498). We
trained ChromHMM in two ways: only ChIP-seq markers
(conventional model), and ChIP-seq markers with three
1D metrics (IS, PC1 and IF; with-1D model; see Methods).

Using the conventional model, we annotated all
genomes into nine commonly depicted states. The
addition of 1D metrics to ChromHMM enabled the
identification of more detailed chromatin states based on
both ChIP-seq and Hi-C information for both MCF-7 and
HMEC (Figure 6A, Supplementary Figure S5A). First, the
with-1D model could separate the annotation of active
promoters into compartment A or B. We observed that
compartment A and even B (closed, gene-poor region
with less transcription) could be classified into several
chromatin states based on epigenomic patterns, making
it easier to focus on specific genomic structures. Second,
the with-1D model could also identify a state termed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
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‘active promoters on boundaries’. It has been reported
that genes at TAD boundaries are transcribed at signifi-
cantly higher levels [42]. Ramirez et al. [24] also reported
that boundaries with promoters are different from non-
promoter boundaries. Third, as described above, hubs
have been suggested to be physically associated with
the gene regulatory machinery and involved in disease
progression [20]. The with-1D model could identify strong
enhancers with hubs. We compared the conventional
model with the with-1D model and observed a high
correlation between corresponding chromatin states
(Figure 6B, Supplementary Figure S5B), suggesting that
the inclusion of 1D metrics did not substantively affect
the nine chromatin states in the conventional model.
Moreover, three new states identified using the with-
1D model were just derived from the ‘Active Promoter’
and ‘Strong Enhancer’ states in the conventional model
(Figure 6B, Supplementary Figure S5B), indicative of the
importance of structural information when investigating
these active states.

To show the effectiveness of chromatin annotation by
the with-1D model, we visualized the three new states
with the raw Hi-C 1D metrics and ChIP-seq signals for
MCF-7 cells and HMEC (Figure 6C and D). These two cell
lines differed in their repertoires of states derived from
Hi-C contact frequency and ChIP-seq signals. We focused
on ‘Strong Enhancer on Hubs’ (SEH) to investigate
whether the difference was biologically meaningful.
Notably, genes near SEH (red dashed rectangle) in MCF-
7 or HMEC had distinct profiles for breast cancer. PDP1
and TMEM67, which were identified based on the SEH
state for the breast-cancer line MCF-7, are overexpressed
in breast cancer (Supplementary Figure S6A, data from
Oncomine), whereas NECAB1 and SLC26A7, identified
based on the SEH state for normal HMEC, are downregu-
lated in breast cancer. These cell-specific transcriptions
were also shown by RNA-seq tracks (Figure 6C and D,
lower panel). We also assessed the overall survival of
patients with abnormal expressions in these genes.
Kaplan–Meier curves revealed that overexpression of
PDP1 and TMEM67 was significantly associated with
poorer overall survival, whereas elevated expression
of NECAB1 and SLC26A7 was significantly associated
with better overall survival (Supplementary Figure S6B).
Indeed, PDP1 and TMEM67 have been reported to act as
oncogenes [43, 44], whereas NECAB1 and SLC26A7 are
putative tumor-suppressor genes [45, 46]. Considering
the roles of hubs in the gene regulatory machinery
and disease [20], it is reasonable to conclude that
SEH information can distinguish cancer cells from
non-cancer cells. Therefore, the combination of Hi-C
(1D metrics) and ChIP-seq (signal) in ChromHMM can
recognize chromatin patterns with critical functions.

Discussion
The 3D folding of chromosomes in eukaryotic genomes
is key to understanding DNA-dependent processes [47].

Recent advances in next-generation sequencing and Hi-
C technology have enabled us to glimpse chromatin con-
tacts in a genome-wide manner. Hi-C datasets are often
large, and it is difficult to compare multiple samples.
To address this challenge, several studies have used the
1D metrics of Hi-C to derive compressed information
for desired chromosome structures [2, 3, 13–16]. Here,
we focused on current deficiencies of 1D metrics areas
and made improvements in three ways. First, we intro-
duced new 1D metrics, including IAS, IF and DRF, to
help elucidate newly identified chromosome structures.
We demonstrated the biological relevance of these new
metrics. Second, we expanded the utility of 1D metrics,
emphasizing that 1D metrics offer a promising means of
measuring Hi-C reproducibility and comparing multiple
samples. 1D metrics can also be included in ChromHMM
to achieve more detailed annotations. Third, we provide
a framework, called HiC1Dmetrics, for calculating and
analyzing various types of 1D metrics, including both
published metrics and our newly developed metrics, for
multiple samples. To facilitate the development of 1D
metrics, HiC1Dmetrics offers both command-line and
web-based interfaces.

With the Hi-C technique [48], compartments A/B and
TADs have been successively revealed based on a low-
and enhanced-resolution map [2, 3], respectively. Well-
designed 1D metrics have proved to be powerful tools
for defining those structures. More recent research has
shown that additional specific features at the TAD level
could be observed, such as loops [49] and stripes [19].
From the view of 1D metrics, we propose the first linear
score (i.e. IAS) that can simultaneously identify loops
and stripes of each TAD, as they can be reflected by
unique linear patterns along the genome. Although
we did not consider nested TADs for the computation,
our IAS provide a rapid and intuitive way to not only
classify various TAD-level structures but also evaluate
the relative levels of interactions. It is important to
note that IAS is dependent on the used TAD list. The
influence of TAD segmentations should be carefully
considered when comparing multiple samples. First,
the same TAD calling method should be applied to
minimize the variability of the TAD calling algorithm.
Second, in the case of comparing intra-TAD interactions,
for example, cell lines under different conditions (such
as Figure 1C), the same TAD segmentations (i.e. the
one of control) could be used. Third, in the case of
comparing stripes among samples that might have
distinct TADs (such as Figure 1H), the users should
also consider the variability from different TAD seg-
mentations. Our other efforts focused on genomic loci
anchored by enriched interactions [20], which can be
represented by our 1D metric IF to calculate the relative
frequency of interactions at each locus. When com-
paring two Hi-C samples, 1D metrics also can describe
changes in genome folding [16, 17, 33]. In particular, we
describe a new structure, namely dTAD, which reflects
asymmetric changes in inter-TAD contacts, based on

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
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Figure 6. Incorporation of 1D metrics into ChromHMM. (A) Emission matrix for the ChromHMM model trained with seven ChIP-seq signals and three
1D metrics for MCF-7 cells. (B) Correlation between the conventional model trained with only ChIP-seq and the new model with information from 1D
metrics. The result of MCF-7 cells is presented. (C, D) The candidate region for MCF-7 cells or HMEC. Selected states (bar) and 1D metrics as well as
ChIP-seq signals are also illustrated. The lower panel indicates the RNA-seq signals. The red dashed box indicates the genes PDP1 and TMEM57 as well
as SLC26A7 and NECAB1.

a new 1D metric, DRF. We showed that dTADs are
accompanied by distinct transcriptional events. Con-
sidering the continuing increase in our knowledge of
asymmetric chromosome architectures [19, 29, 50, 51],
a possible explanation for dTADs is that a particular
biological perturbation may differentially impact the two
sides of a TAD. Regarding the elevated level of transcrip-
tion of dTADs in control samples, dTADs may be more
involved in transcription-driven genome organization.
Owing to the hierarchies of TADs, it is also possible that
dTADs are nested in other ‘meta-TADs’ or that dTADs

are actually ‘sub-TADs’ of some larger TADs, which may
also explain the inconsistency between the two sides of
a dTAD. Whereas dTADs were found among different
cells and conditions (Supplementary Figure S3C), the
biological mechanism of dTADs remains to be elucidated.
Our newly defined 1D metric DRF and the newly defined
structure dTAD will contribute to future research on
asymmetric changes in inter-TAD interactions.

Although previous studies have used 1D metrics
merely to identify particular chromosome structures [3,
13–15], we propose that 1D metrics themselves can be

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
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directly compared among samples to provide important
architectural information for each locus. Our results
show that 1D metrics can reliably determine similar-
ities between replicates and dissimilarities between
conditions, which can also be utilized to evaluate Hi-
C reproducibility. Because 1D metrics reflect certain
chromosomal attributes, different metrics are relevant
to different aspects of similarities between Hi-C samples.
Moreover, by utilizing the ‘one-dimension’ trait, we
propose that 1D metrics could be incorporated into
ChromHMM to obtain annotations with information of
chromosome organization. Although much effort has
gone into integrally analyzing Hi-C and ChIP-seq data
[52, 53], 1D metrics provide an opportunity for new
and promising strategies. Therefore, our study greatly
expands the potential utility of 1D metrics, yet there is
abundant room for further progress.

When raw contact matrices of Hi-C contain chromatin
interactions for every possible pair of genomic loci, 1D
metrics merely represent partial information of Hi-C.
Therefore, 1D metrics also have limitations. For exam-
ple, 1D metrics only provide information pertaining to
particular aspects of chromatin contacts, whereas other
information can be lost; this shortcoming could pos-
sibly be rectified by incorporating several 1D metrics
simultaneously [18]. Still, it must be noted that, funda-
mentally, 1D metrics are computational scores, the val-
ues of which might depend on the algorithm or param-
eters used. This could potentially produce misleading
results. For instance, the calculation of IS under dif-
ferent window sizes yields different outcomes [54]. In
addition, the calculation of 1D metrics requires the seg-
mentation of a genome into bins with certain resolutions
(e.g. 10 kb), leading to difficulties in determining exact
matches of the coordinates of 1D metrics with other
linear tracks. Despite these shortcomings, the conver-
sion from 2D contact matrices to 1D metrics offers a
fast and easy way to extract and disseminate detailed
information for particular types of chromosome struc-
tures. The improvement of Hi-C resolution [5] and the
increasing data size also raise the necessity of using
1D metrics and our HiC1Dmetrics. Table 1 summarizes
various scenarios that are applicable to 1D metrics and
2D matrices. Although other information is inevitably
lost from 2D matrices, 1D metrics can be effective when
the primary focus is on identifying specific chromatin
structures (e.g. stripes), comparing among multiple Hi-
C samples, or integrating Hi-C with other 1D tracks such
as ChIP-seq. With the explosive growth of Hi-C research,
further efforts to design new 1D metrics and expand their
usage will still be required for ongoing investigations into
chromatin organization.

In summary, we present a framework, named HiC1-
Dmetrics, to calculate and analyze 1D metrics for Hi-
C samples. We improved certain aspects of 1D metrics
by introducing our original metrics and expanding the
usage of 1D metrics. Our study will facilitate research
concerning the 3D genome.

Materials and Methods
Calculation of one-sample metrics
As described in [13], IS was calculated for each bin i as
the sum of interactions that occur across that bin, which
can be visualized by sliding a l bins ×l bins square along
the matrix diagonal:

ISi =
l∑

j=1

l∑
k=1

Ci+j,i−k

where C is the contact number of the indicated bin and
l is the bin distance from bin i. The obtained score was
then normalized by log

( ISi
ISavg

)
, where ISavg is the average

insulation of a given chromosome. For DI [3]:

DIi = I − H
|I − H|

(
(H − E)2

E
+ (I − E)2

E

)

where H = ∑l
j=1Ci,i−j, I = ∑l

j=1Ci,i+j, and the expected
number of reads E = (

A + B
)
/2. The concept of SS is

described in [14] as a ratio:

SSi = D
min (A + D, B + D)

and the CI is calculated according to [15] and can be
represented by:

CIi = A + B
D

,

where D = ∑l
j=1,k=1Ci+j,i−k; A = ( ∑l

j=1,k=1 Ci−j,i−k
)
/2; B =( ∑l

j=1,k=1 Ci+j,i+k
)
/2. The DLR was used in [16] and can be

formulated by:

DLRi = log

⎛
⎝∑l

j=1 Ci,i−j + ∑l
j=1Ci,i+j∑i−l

j=1 Ci,j + ∑L
j=i+1Ci,j

⎞
⎠ ,

where l is the bin distance from bin i and L is the bin
number of the indicated chromosome.

Compartment PC1 was established as described [2].
First, for each possible distance d between two bins,
the expected matrix was calculated by Expecti,j =∑

Observedi,j

len
(

Observedi,j

) , where
∣∣i − j

∣∣ = d. The expected matrix

was smoothed as indicated in [49]. Second, the observed
matrix was divided by the expected matrix to obtain
an observed/expected matrix. Then, pairwise Pearson
correlation coefficients were calculated for each row to
generate a correlation matrix, on which PCA is used.
The eigenvector of the first component is selected as
PC1. Because the sign of the eigenvector is arbitrary, we
modified it with a gene density file to ensure that regions
of high gene density were assigned as compartment A.

For our metrics IAS and IES, we first called the contact
domain using our custom TAD-calling method. Then, the
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distance-normalized matrix E was generated according
to [49]. For each bin within a TAD from bin s to e, IAS
and IES could be calculated (Figure 1A) by the following
formulas:

IASi =
(∑i−s

j=1

Ci,i−j

Ei,i−j
+

∑e−i

k=1

Ci,i+k

Ei,i+k

)
/ (e − s) ; i ∈ TADs,e

IESi =
(∑s

j=1

Ci,j

Ei,j
+

∑L

k=e

Ci,k

Ei,k

)
/ (L − e + s) ; i ∈ TADs,e,

where L is the bin number of the indicated chromosome.
For the metric IF, we used FitHiC2 [55] to obtain statis-
tically significant interactions with threshold FDR < 0.05
(or custom threshold by users). The number of significant
interactions (NSI) of each bin was assigned by coverage
command of Bedtools [56]. The obtained value was nor-
malized by:

IF = log NSI

meannonzero
(
log NSI

) ,

where log NSI is the log value of the number of significant
interactions.

Calculation of two-sample metrics
The ISC is described in [17] to represent the difference
of IS: ISC = IStreat − IScontrol. Delta-DLR is described in
[16] as: DLR = DLRtreat − DLRcontrol. CD is described in
Homer software [33] to correlate the interaction profile of
a locus in one Hi-C sample to the same locus in another
sample. So, for each bin: CorrDi = Pearson

(
Ctreat

i , Ccontrol
i

)
.

The changes in each of CI, SS and IF were calculated by
subtracting the score for the control sample from the
score of the treated sample. The changes in IAS and IES
were achieved by log

(
treat/control

)
.

To generate the differential matrix for DRF, we scaled
the Knight–Ruiz normalized Hi-C contact matrices to the
total number of reads. The differential matrix was: T =
log

(
Ctreat

)− log
(
Ccontrol

)
. Then the DRF, which represents

the inconsistency of relative contacts between the left
side (3′) and right side (5′), could be formulated by:

DRFi =
∑b

j=a
Ti,i+j −

∑b

j=a
Ti,i−j,

where a and b represent the bin distance from bin i.

Hi-C data processing
The Hi-C data for human and mouse were aligned to hg38
and mm10 reference genomes, respectively. Only reads
with a high mapping quality (MAPQ ≥30) were retained
to generate a so-called ‘.hic’ file, which is described
in Juicer software [31]. The intra-chromosomal contact
matrices were extracted from the .hic file with Knight-
Ruiz normalization. For TAD calling, IS was calculated
along a chromosome as described in [13]. The local
minima of normalized IS indicated potential boundaries.
Only loci for which IS was <10% were considered. Then,
a delta vector of IS was calculated for each bin to extract

only those boundaries for which the ‘strength’ was
greater than a threshold value, as described by Crane
et al. [13]. The TADs generated with this custom method
overlapped substantially with TADs discovered by Juicer
software (Supplementary Figure S2A). Chromosome
simulation was accomplished with PHi-C [57] and visu-
alized with VMD software. The reproducible score was
defined as max

(
Preplicate

) − min
(
Pnonreplicate

)
, where P is

the Pearson correlation coefficient between two samples.

ChIP-seq and gene expression analysis
ChIP-seq data for MCF-7 cells and HMEC were down-
loaded from GEO (Supplementary Table S1). The reads
were aligned to the hg38 reference genome using Bowtie
[58] with ‘-n2 -m1’ parameters. We used MACS2 [59] to
call peaks and DROMPA3 [60] for visualization, where
reads were normalized to total read number. Other ChIP-
seq data were visualized in the WashU Epigenome Brower
with the internal public data hubs. Gene expression
analysis of Rad21AID-treated and non-treated HCT116
cells was carried out using the precision nuclear run-on
sequencing of GSE104334. Differential expression analy-
sis was achieved by DESeq2 with internal normalization.

ChromHMM with 1D metrics
For conventional ChromHMM, we used seven ChIP-seq
tracks (binary 1/0 represent peaks or not) including CTCF,
RNA Pol2, H3K4me1, H3K4me3, H3K27ac, H3K27me3 and
Input. For ChromHMM with 1D metrics, we used three
additional tracks: IS was binarized to boundary/non-
boundary; PC1 was binarized to compartment A or
B; IF was binarized to hubs or non-hubs. So, the
observed sequence was y = (

y1, y2, · · · yn
)T, where yn =(

yn,1, yn,2, · · · , yn,t
)
. The binary value of track n at chro-

matin locus t was yn,t ∈ (
0, 1

)
. We applied ChromHMM

[14] software to solve this discrete multivariate hidden
Markov model problem, which assumes the observed
sequences are independent Bernoulli random variables:

P
(
yt

∣∣ zt
) =

∏N

n=1
P

(
yt,n|zt,n

)
,

where zt is the hidden state of locus t. We trained
ChromHMM to partition all genomes into 15 chromatin
states (200-bp resolution) and collapsed the redundant
states into 9 or 12 distinct states. The merged states
were manually annotated by comparison with the
published ChromHMM [21, 61]. For the correlation
between emission matrix of conventional ChromHMM
and ChromHMM with 1D metrics, only seven ChIP-seq
tracks were considered. Gene expression data for cancer
and normal tissues were collected from the Oncomine
database. Data for survival curves were collected from
the Human Protein Atlas database.

Extracting structural information
by HiC1Dmetrics
HiC1Dmetrics provides various functions to identify
chromosomal structures. For the stripe calling, after

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab509#supplementary-data
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extracting the local maximum positions of IAS, only
positions with IAS > IASmean is retained. Then, similar
to [13], we calculate a delta vector of IAS for each bin to
only extract strong IAS peaks. To avoid clustered small
peaks, the IAS value of a ‘stripe’ position should be higher
than any position around 100 kb. For the chromatin hubs,
genomic loci in the top 10% of IF values are extracted and
merged as the hub region.

For the classification of TAD, the enrichment of IAS
was calculated by the Z-test to compare the IAS on a TAD
corner to the background model, which was obtained
by randomly sampling all IAS values. The corner was
defined by the left/right 100 kb of a TAD. A TAD with
either left or right enrichment (FDR < 0.05, Bonferroni)
was classified as a left/right stripe-TAD, respectively,
whereas a TAD with enrichment of both the left corner
and right corner was classified as a loop-TAD. Then the
other TADs were classified as ‘non-stripe TAD’.

For the classification of directional TAD, a TAD with all
negative values for DRF was identified as a 5′ directional
TAD (5′-dTAD). In contrast, a TAD with all positive values
for DRF was identified as a 3′ directional TAD (3′-dTAD).
The default parameters for DRF calculation were a =
500 000 and b= 2 000 000.

Key Points

• We review published 1D metrics and present
new 1D metrics. We present a framework, named
HiC1Dmetrics, to calculate and analyze various
1D metrics for Hi-C samples.

• We propose the novel 1D metrics IAS and IF to
describe the recently proposed structures stripe
and chromatin hubs, respectively. We propose
the original 1D metric DRF to introduce dTAD,
a novel asymmetric event of inter-TAD interac-
tions. We demonstrated the biological relevance
of our new metrics.

• Our results highlight that the 1D metrics-based
approach is reproducible and robust for compar-
ison and visualization of multiple Hi-C samples.

• We show that the linear tracks of 1D metrics
can be combined with other epigenome data to
annotate chromatin states in greater details.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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