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Abstract

Background: Many genetic variants have been reported from sequencing projects due to decreasing experimental
costs. Compared to the current typical paradigm, read mapping incorporating existing variants can improve the
performance of subsequent analysis. This method is supposed to map sequencing reads efficiently to a graphical
index with a reference genome and known variation to increase alignment quality and variant calling accuracy.
However, storing and indexing various types of variation require costly RAM space.

Methods: Aligning reads to a graph model-based index including the whole set of variants is ultimately an NP-hard
problem in theory. Here, we propose a variation-aware read alignment algorithm (VARA), which generates the
alignment between read and multiple genomic sequences simultaneously utilizing the schema of the Landau-Vishkin
algorithm. VARA dynamically extracts regional variants to construct a pseudo tree-based structure on-the-fly for seed
extension without loading the whole genome variation into memory space.

Results: We developed the novel high-throughput sequencing read aligner deBGA-VARA by integrating VARA into
deBGA. The deBGA-VARA is benchmarked both on simulated reads and the NA12878 sequencing dataset. The
experimental results demonstrate that read alignment incorporating genetic variation knowledge can achieve high

sensitivity and accuracy.

Conclusions: Due to its efficiency, VARA provides a promising solution for further improvement of variant calling
while maintaining small memory footprints. The deBGA-VARA is available at: https://github.com/hitbc/deBGA-VARA.
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Introduction

An accurate and complete understanding of genetic vari-
ation is important in research on human disease [1-3].
A fundamental challenge of high-throughput sequencing
(HTS) data analysis is accurate read alignment to one or
multiple reference genomes. The mostly used procedure
of HTS read alignment is to follow one haplotype at each
reference site to map the reads. It is able to cause inher-
ent mapping biases toward the standard reference, [4, 5],
with great effect to subsequent analyses, such as variant
calling [6], genotyping [7] and haplotype phasing [8, 9].
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It is proven that with no existing variants, mapping reads
directly to a reference genome can have a relatively high
quality outcome in regions with low divergence [10]. How-
ever, complex regions consists a lot of biologically valuable
single mutations and structural variants, e.g., the major
histocompatibility complex (MHC) region that occurs on
human chromosome 6, which includes the human leuko-
cyte antigen (HLA) gene families. Analogous to the com-
plex regions, other locations of high diversity also have
strongly effect gene expression [11] and phenotypes [12],
such as CpG islands [13], microsatellites [14], the HBB
complex [15] and regions of genomic rearrangements [16].

These large genetic variations are likely to lead to
lots of unmapped reads or low-quality mapped reads,
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resulting in poor quality on characterization of individ-
ual genomes and coverage fluctuations [17]. Moreover,
it is still of great significance to characterize the vari-
ants that reside in novel sequences absent from reference
genomes, for instance, Li et al.[18] revealed almost 5Mb
novel sequences absent from reference genome by de
novo assembly of individual genome. These data can be
improved by the discovery of new variants in regions of
segmental duplications and low complexity; A new set
of variants created and a new DISCOVAR method was
developed on this set to prove that 10% of the challeng-
ing genome harbors 30% of the variants, which was done
by Weisenfeld et al. [10]. Also, Dilthey et al. [17] con-
structed a population reference graph (PRG) model which
combined of 8 local assembled haplotypes in GRCh37
and other HLA alleles, in order to promote the perfor-
mance of individual genome inference in the MHC region.
Nam S Vo and Vinhthuy Phan [4, 19] experimentally
demonstrated that incorporating given variants into read
mapping can significantly made variant calling accuracy
better with low-coverage data. To be more detailed, a 2-
19% higher recall rate and a 9-34% higher precision rate
of INDEL identification in that study, than that of GATK
[20]. Beside of its better performance, the strategy is also
be able to raduce the experimental cost.

Defining new data structures that can repersent differ-
ent kinds of genome variants can be very challenging.
Reads mapping to de Bruijn graphs, according to Limasset
et al. [21], was suggested to be an NP-complete prob-
lem. In the meantime, a heuristic algorithm BGREAT was
provided as a practical solution to improve the mapping
capability compared to that of assembly-based strategies.
It is non-trivial to identify optimal mapping candidates
because of the explosively growing number of possible
branching paths leading to massive increases of mem-
ory usage. As to variant-aware graph model indexing and
graphical alignment, a compressed variation graph by
merging a genralized Ferrgina-Manzini index (FM-index)
[22] encoded subgraph was developed by Siren et al. [23]
to generate the novel index GCSA. However, this method
is not able to handle a large sequence graph because of
the exponentially increase of its index size. To align HTS
reads to a collection of genomes, Huang et al.[24] first
proposed the Burrows-Wheeler transform-based method
BWBBLE. BWBBLE reported aligned reads with a higher
confidence than that of the GCSA-based method by com-
pressed representation of multiple genomes and variants
from 1090 individuals. It can achieve better efficiency
in light of the increasing number of personal sequenc-
ing genomes and it shows the potential to improve the
subsequent processing pipeline. Eggertsson et.al. [25] pro-
posed a scalable variation-aware graph structure and a
novel algorithm Graphtyper to genotype and character-
ize sequence variation in population genomes. It showed
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higher accuracy and sensitivity of genotype determina-
tion by realigning reads from local genomic regions to the
graph. Meanwhile, the variation graph toolkit (vg) develo-
ped by Garrison et al. [26] utilized the GCSA2 library
[23] to perform read mapping to an arbitrary variation
graph and improve accuracy over linear references at the
expense of large RAM usage, e.g., the 75 GB RAM theoret-
ical requirement of the GRCh37 linear reference and the
variant set produced in the 1000 Genomes Project (1000
GP) phase3 [27]. The development of vg toolkit provides
the possibility of a big improvement in post-alignment
data analysis algorithms, e.g., realignment, variant call-
ing, haplotype phasing with the gPBWT compression
structure [28, 29].

Furthermore, Most of the state-of-the-art generic align-
ers are implemented in seed-and-extension strategy. The
seed extension as a compute-intensive step accommo-
dates the alignment of the read to local sequences sur-
rounding each candidate seed to determine the most
likely read position. When determining optimal align-
ments, approximate string matching in local extension can
be crucial, especially for variation graph-based models.
The Smith-Waterman (SW) algorithm [30, 31] affected
sequence alignment in a siginficant level, and there have
been multiple different fast SW applications in various
research fields. To be more efficient, vg adopts a graph
striped SW algorithm, GSSW [32], to accelerate local
alignment via single instruction multiple data (SIMD)
implementation. Landau-Vishkin [33] is a banded global
SW algorithm with Levenshtein distance penalty scores.
Comparing with other global or semiglobal sequence
alignment methods, Landau-Vishkin algorithm is an opti-
mization model.

In order to achieve a lower RAM usage during our
dynamically construction of pseudo-tree based struc-
ture variation tree with different genomic sequence and
regional indeded varians in the process of seed extension,
we did not load the whole variation set. Also, we devel-
oped a read-variation tree alignment algorithm, VARA,
utilizing the Landau-Vishkin algorithm and breadth-first
traversal on the paths that may consist of the tree
nodes and their corresponding variation. Comparing
other strategies for tree index-based alignment with reads
and a significant number of sequence in the same time,
this method can be more efficient and effitive. We inter-
gated VARA into deBGA, a de Bruijn graph-based read
aligner, we were able to implement a more comprehensive
mapping tool, deBGA-VARA (https://github.com/hitbc/
deBGA-VARA).

The benchmark of deBGA-VARA was implement on
both one simulation dataset as known variants and the
NA12878 sequencing data from 1000 GP. Accroding to
the out come, deBGA-VARA was able to reach a higher
sensitivity and accuracy than those aligners without
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considering variation knowledge. For example, deBGA
and BWA-MEM [34, 35]. Furthermore, when compar-
ing to other variation-aware aligners such as BWBBLE
and vg, our strategy has a faster speed and higher qual-
ity with smaller memory footprints, showing that seed-
ing with prior knowledge was not able to obviously
improve seeding sensitivity. We hold the belief that such
a lightweight global aligner algorithm, VARA, has enor-
mous potential in variant calling and other subsequent
biological analyses and could play an important role in
prospective genomic studies.

Methods

Overview of the deBGA-VARA approach

The deBGA-VARA implements the variation-aware align-
ment mainly in four steps as follows (a flowchart is in
Fig. 1):
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1) collect local genomic sequences around the candidate
seeds that are generated from the deBGA seeding phase.

2) assemble all the corresponding variant knowledge
and construct the variation tree for the novel seed
extension.

3) variation-aware alignment between variation tree and
the segmental read to generate the candidate paths.

4) optimal alignment selection and output the read
mapping result.

The construction of the variation tree

During genome indexing, the knowledge of INDELSs,
including variant sequence, variant type, the length and its
location, is stored in independent indexing files (ALT-seq)
from the original genome index. Also, we intergrated the
SNP information into the reference sequence in order to
form a variation-aware reference encoded in 4-bit format.
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In the format mentioned before, both genomic charac-
ter and its corresponding SNPs can be recorded at one
site. During seed extension, to perform alignment with a
combination of regional variants, we constructed a pseudo
tree-based structure variation tree on-the-fly for indexing
genomic sequences and known variation.

The sequences for extension are likely to have identi-
cal fragments due to so many repetitive regions in human
reference. The variation tree collects all local sequences
used to construct the tree structure for simultaneous
alignment. The nodes in the tree are created alphabetically
using the identical part of two or more sequences. One
specific node is able to have multiple successor nodes that
are located at the subsequent branches, and the node at its
next layer is the adjacent successor node. Also, the vari-
ants in ALT-seq can connect to the tree node according
to its genomic positional relationship to each sequence.
Thus, there can be multiple insertions with connections
to the same site of an identical node. The long deletion
variant can stretch over several nodes, and it is possible
to finish at a location beyond the sequence length. Under
such circumstance, a new pseudo tree node needs to be
created. As shown in Fig. 2, the tree nodes and edges are
created based on the identical substrings of 15 ordered
reference sequences with length of 22bp. Herein, various
variants including SNP, insertion and deletion are con-
nected to the variation tree. Without any variants, the
variation tree can become a linear sequence for only one
extension sequence.

After building the tree, a path can be generated from
a traversal from one node to its successor node or the
variant on the way. All possible paths are enumerated in
advance according to sequences and correlations between
variations and tree nodes. Notably, all paths are indepen-
dent from each other with a unique ID. There cannot be
more than one traversal of identical sequences during sub-
sequent alignment, and some of the nodes can never be
reached because of early termination of path traversal due
to mismatch occurrence.

Breath-first traversal on the variation tree

We designed the variation tree-based traversal algorithm
VATR for breadth-first traversal of all paths, as shown
in Algorithm 1. This method adopts a queue with its
basic operations to align a read to a path starting with an
arbitrary node. The whole procedure is majorly classified
into three categories: i) straightforward node sequence
alignment without any variation; ii) traversing nodes
including variants and path ID computation; and iii) read
exact alignment with a variant sequence (insertion). More
specifically, there are also three types of data about to
enter the queue: i) the adjacent successors of the current
node; ii) newly reached variants; and iii) the ending node
of the current variant. Herein, i) P, is a array that records
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the path ID; ii) N, is a array that records the correspond-
ing nodes on the current path; and iii) Pk, is an array that
records cadidate paths. A mismatch-tolerant string com-
parison strategy was also performed by this method, i.e.,
it defines an exact match if one character of a read can
match a genomic base or SNP at the same locus of ref-
erence. Hence, with various types of variation, VATR can
accommodate read alignment to variation trees.

Algorithm 1 Variation tree-based traversal

Require: variation tree(tree), tree node(node), read, start, edit distance matrix,
edit distance, variant type
Ensure: a set of paths, a set of nodes, a set of paths, edit distance matrix
function VATR(tree, node, read, start, L, e, d)
QUEUE.PUSH(tree, node)
while QUEUE is not empty do
node <—QUEUE.POP()
seq <—node seq
start <—seq starting position
rstart <read starting position
while seq([ start + i] = read| rstart + i] and start + i < len(seq) do
i<« i+1
end while

if start + i = len(read) then
Pkas < Pkgs|J current path
end if

if node has variation then
alts < node variation data
while alts[j] .pos < start + i do
QUEUE.PUSH(alts| j])
j<j+1
end while
end if

//node including variants

if start + i # len(seq) then
p < current path
P, < P,
N[ pl < Nyl pl U node
Lip]le]lld] < start +i
else
if node is variation then

//variant sequence
QUEUE.PUSH(ending node)

else //node sequence
QUEUE.PUSH(node subsequent nodes)
end if
end if
end while

return P,,N,, Pk,s, L
end function

Variation-aware alignment with generalization of the
Landau-Vishkin algorithm

The Landau-Vishkin algorithm improved the dynamic
programming strategy over conventional banded global
alignment methods and achieved string matching in O(en)
time complexity, where e is the maximum edit distance
and # is the length of the sequence. This method con-
sidered the fact that it is not necessary that the algo-
rithm tries to expand the computational cells in a typical
dynamic programming matrix (DPM) with an editing dis-
tance greater than the threshold. Herein, DPM[i,j] is
the cell on diagonal d of DPM, such that j — i = d,
where i is the row and j is column of the matrix. Mean-
while, it maintains an editing distance matrix LVM[ e, d],
which stores the longest matching distance along current
diagonal d with edit distance e (Fig. 3a). Herein, the d
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Fig. 2 A schematic illustration of the variation tree construction

Reference Sequence (22 bp)
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in LVM also denotes various types of variation includ-
ing mismatch(zero), insertion(positive value) and dele-
tion(negative value). Landau-Vishkin iteratively calculates
cells of LVM to exploit optimal alignment with the longest
matches, and its recurrence relations are as follows:

LVM[e —1][d] +1
P =max{ LVM[e—1][d — 1]
LVM[e—1][d + 1] +1

(1)

where Ps is the position query read starts. Based on
this principle, we developed a novel global alignment
algorithm, VARA, by embedding the traversal alignment
process for each path on the variation tree in the Landau-
Vishkin framework, as shown in Algorithm 2. The follow-
ing vital structures store temporary results and contribute
to the connectivity of each iteration of traversal alignment.

i) P,;s denotes two-dimensional arrays that record the ID
set of paths. More specifically, P,s[ d] represents the set of
paths corresponding to current variation type d.

ii) Ngs is a three-dimensional array that records the ID
set of nodes, and Ns[e] [d] represents the set of nodes
corresponding to different variant types d under different
edit distances e.

iii) Pk,s is a two-dimensional array that keeps a record
of the ID set of the paths, and Pk,s[ e] represents the set of
paths under current edit distances e.

In VARA, we adopted the VATR algorithm to traverse
all paths in the tree index and locate it at the innermost
loop in Landau-Vishkin as a substitution for a straightfor-
ward string exact match. For a certain path in the current
cycle, this method will generate a new path set and its cor-
responding alignment knowledge. Also, those extension
distances of each path with multiple variant types that are
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Fig. 3 A schematic illustration of the edit distance matrix. a The
editing distance matrix Landau-Vishkin algorithm. b The
three-dimensional editing distance matrix

matched were collected by us.identical path IDs (Fig. 1)
repersents multiple paths. For one path ID, one of its cor-
responding paths with the longest extension distance will
be selected for the next round of traversal alignment. This
method serves as the optimal selection strategy in a typical
Landau-Vishkin framework. Herein, we changed LVM to a
three-dimensional matrix (L) for storage of variation types
and editing distances for multiple paths and continuously
updated L in VATR for newly generated paths. As shown
in Fig. 3b, instead of the conventional matching distance
in the LVM, each cell records the paths set for current edit
distance e with the variation d (Fig. 4). Moreover, when
the entire read is matched under a certain editing distance,
VARA will output alignment.

We provide a detailed description of the flowchart of
the VARA algorithm (as shown in Fig. 1). Herein, each
node represents a path, and the rectangle denotes the cur-
rently generated path called pset. The ellipse represents
the newly generated paths set (SET) for different variant

Algorithm 2 Variation aware read alignment

Require: variation tree(tree), read, threshold of edit distance(k), edit distance
matrix(L)
Ensure: a set of paths
function VARA (tree, read, k, L)
P,s[0],N,s[0] [0], Pk,s[ 0], L < VATR(tree, root node, read,0,L,0,0)

fore=1— kdo
P, <disperate paths in P,s
ford = —e — edo
for each path p in P, do
LVM <« L[ p]
start < max(LVM[e—1][d] +1,LVM[e—1][d—1],LVM[e—
1] [d +1]+1)
v < start corresponding variation type
node <— Nys[e — 1] [v][p]
P,s[d],N,le] [d], Pk,le] , L<—~VATR(tree, node, read, start, L, e, d)
end for
end for
end for
return Pk,s
end function

types during the current traversal process (each SET is
given a unique ID, e.g., S1, S», Ss3..). For a specific upper
limit of edit distance e, d denotes edit distance within
the range from —e to e, and the positive value, negative
value and zero represent deletion(D), insertion(I) and mis-
match(M), respectively. This example shows the travers-
ing procedure from the alignment with distance e=1 to
e=2, and the edges in the figure represent the traversal
relationship between paths. For instance, path?2 in the pre-
vious period continues to traverse to path2 and path4 for
three types of variations. We can see that traversals from
different ancient paths can reach the path with the same
ID, and the matrix on the right side is given as a sum-
mary of involved paths for different variation types in the
current period, e.g., pathl is only reached with the dele-
tion type, and path3 can be reached with both mismatch
and insertion types. After the first round of iteration, the
new pset had pathl, path2, path3, path4 and path5. After
the second round for distance e=2, the new SET and pset
were generated in the same way. This pset continued to
update as the edit distance increased via rounds of itera-
tions. By this means, we collected all candidate alignments
of traversed paths before the end of the entire process.

In order to further increase the extension speed, an
optional heuristic strategy to lower the number of tra-
versed paths was also developed by us. More specifically,
we terminated the current path traversal before the align-
ment score exceeded a threshold or there were too many
large variants (3 per 100 bp) on the same path. The thresh-
old was based on the fact that it is less likely for a read
with a length of 100-300 bps to contain several structural
variations simultaneously.

HTS read mapping with variation

We developed the novel mapping tool deBGA-VARA
through integrating VARA into the de Bruijn graph-based
aligner deBGA in the phase of extension to accomplish
alignment with variation knowledge, only if there are no
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Fig. 4 A schematic illustration of the algorithm VARA processing

valid matched seeds for paired-end reads, mainly due
to variant occurrence. To be specific, two sides of each
candidate seed are semiglobal aligned. For example, we
collected all sequences of different regions for the left and
right sides of the current seed. After the collection proce-
dure, we used regional variants to built its corresponding
variation tree. For seeds only found in a single end, we
anchored them to the other end by insertion distance uti-
lizing the strategy in primary deBGA extension. Herein, all
seeds from the anchored side underwent VARA analysis
except for the seed with the maximum matching length.
After such implementations of each end, we merged the
outcomes according to their positions and selected the
optimal alignment.

Because of the alignment containing variation, restor-
ing CIGAR to repersent the matching operations in both

the read and the original reference sequence was consid-
ered to be necessary. We combined the path sequence
including the reference and variant knowledge to gener-
ate the primary reference-based cigar result. As shown
in Fig. 5, it shows the read, the reference sequence
with combination of known variation(Variant Ref seq)
that is used in VARA approach and the standard ref-
erence genome(Ref seq). Herein, the "ALT type, ALT
cigar and Ref cigar" indicate variant type, the cigar in
alignment that comes out of VARA seed extension and
the cigar result based on the original genome respec-
tively. There are four situations in cigar restoration as
following.

1) The reference cigar is a mismatch or match if the ALT
cigar is 1bp deletion in the context of the 1bp insertion
variation.
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2) The reference cigar is a mismatch or match if the ALT
cigar is 1bp insertion in the context of the 1bp deletion
variation.

3) The reference cigar is an insertion if there exists a
deletion in the ALT cigar in the context of the insertion
variation with the length of more than 1bp.

4) There exists deletion and mismatch in the reference
cigar if there exists a insertion in the ALT cigar in the con-
text of the deletion variation with the length of more than
1bp.

Moreover, for each match in the ALT cigar, it needs to
restore the cigar according to its corresponding SNP and
genomic base.

Results

The deBGA-VARA was evaluated on two simulation
datasets and an HTS dataset to assess its accuracy, sen-
sitivity and speed. Four state-of-the-art aligners, deBGA,
BWA-MEM, BWBBLE and vg, were employed for com-
parison. Herein, BWBBLE was accessed with multiple
maximum numbers of mismatches and gaps in the align-
ment (-n option in the software). All the benchmarks were
conducted on a server with 2 Intel E5-2630v3 CPUs at
2.4 GHz (12 cores in total), 512 GB RAM and 48 TB
hard disk space (7200 rpm RAID SAS hard disk drive
with XFS File System). A single CPU thread (Time-t1) and
8 CPU threads (Time-t8) were used In the benchmark-
ing. The runtime of index loading was excluded for all
benchmarked methods.

In order to figure out the performance of the startegy to
align reads to regions with different variations, we bench-
marked deBGA-VARA with soft clipping statistics. Soft
clipping that is represented by character S in the CIGAR
specification often appears in the alignment results, indi-
cating the read is not properly aligned to the reference;

this is often caused by sequencing errors and various types
of variation.

Benchmarking on simulation datasets

We collected all the variation knowledge of the individual
sample NA12878 in Variant Call format (VCF) [36] files
that are released from 1000 GP phase3. All these variation
records of multiple chromosomes were combined into a
single VCF file. Then we merged variants of NA12878 into
the hgl9 human reference to generate a novel genome
dataset named hgl9-var. A Mason simulator [37] was
used to simulate two datasets of one million Illumina-
like pair-end reads (insert size: 500425 bp) based on
hg19-var with different read lengths of 100 bp and 250
bp (Sim-i100 and Sim-i250, respectively). In addition, in
order to implement the variation-aware read alignment,
we constructed a novel index of the hgl9 genome with a
combination of variants of this sample.

The results of the simulation dataset are shown in
Table 1. Herein, all methods were assessed by several cri-
teria on these two datasets. The runtimes are in seconds
(s). Three conclusions can be drawn as follows.

i) The deBGA-VARA is several times faster than BWA-
MEM, BWBBLE and vg. For example, it is on aver-
age fourfold as fast as BWA-MEM. The BWBBLE is
almost 250 times slower than deBGA-VARA, even when
it is configured to achieve a comparable higher accu-
racy (e.g., n=10 for 84.4%). Meanwhile, deBGA-VARA
and vg achieved almost 100% accuracy for Sim-i100 and
Sim-i250; while the accuracy of BWBBLE dropped from
95.2% to 84.4%, even with a large allowable maximum
difference (n=10) with the growth of read length. The
deBGA-VARA has fewer unmapped reads than deBGA,
BWA-MEM and BWBBLE but more than vg, mainly
due to that some large known variants are integrated
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Table 1 Statistics on simulated human datasets
Dataset Aligner Accuracy % @ Unmapped # b Soft # ¢ Time-t1(s) Time-t8(s)
Sim-i100 deBGA-VARA 99.9 517 1221 114 41
deBGA 99.9 526 4418 84 39
BWA-MEM 99.9 0 40368 435 114
BWBBLE n=2 86.6 972083 0 958 295
BWBBLE n=6 952 92406 0 7378 1074
vg 99.9 276 23878 10737 1986
Sim-i250 deBGA-VARA 999 32 291 212 70
deBGA 99.9 38 1421 184 61
BWA-MEM 99.9 0 37830 924 182
BWBBLE n=6 80.0 398745 0 16483 2387
BWBBLE n=10 844 310725 0 53126 8897
vg 99.9 12 25451 19164 3761

4The mapping accuracy rate.
"Number of unmapped reads.
“Number of soft clipping reads

in the seeding phase for vg alignment. Future work
should integrate large and complex variants into the seed
collection to further increase accuracy and sensitivity.
The deBGA-VARA has almost as many unmapped reads
as deBGA, mainly because both have identical seeding
strategies.

ii) The deBGA-VARA has fewer soft clipping reads than
all other methods except BWBBLE (there is no clipping
read output of BWBBLE), i.e., the number of soft clipping
reads in BWA-MEM is several orders of magnitude larger
than that of deBGA-VARA. This finding indicates that
reads mapping with known genetic variation can effec-
tively improve the alignment quality. Moreover, there are
more clipping reads in vg as the read length increases;
however, the quantity of clipping reads in deBGA-VARA
decreases greatly.

iii) Vg often requires large amounts of space and time to
construct the index, i.e., it requires approximately 320 GB
RAM and 20 TB disk space (-X=3 option in the software)
to build the xg and gcsa2 index of the human refer-
ence genome (GRCh37/hgl19) and 200 MB VCF dataset in
approximately 40 hours (16 CPU threads). Meanwhile, the
deBGA-VARA and BWBBLE require fewer resources to
index this identical reference and variation dataset, e.g., 40
GB RAM and 27 mins for BWBBLE and 30 GB RAM and
4 hours for deBGA-VARA. Herein, the index used in the
VARA algorithm only requires 2.5 GB memory footprints
in alignment.

Compared to conventional methods, global alignment
with known variation can improve the mapping quality
and accuracy. To prove the scalability of deBGA-VARA,
we showed six specific examples of read alignments for all
aligners with various types of variation in the simulation

and HTS datasets (Fig. 6). In each example, the read,
reference local sequence, variation in VCF and all align-
ments are displayed. For each method, there are SAM
flags, reference sequence names, positions, mapping qual-
ity, and CIGAR strings. It successfully shows two examples
of alignments on the Sim-i100 dataset, two examples of
alignments on the HTS dataset and the alignments in the
MHC region. We can see that the deBGA, BWA-MEM
and vg generated poor alignments in the Sim-i100 dataset,
e.g., 56 bp and 36 bp soft clipping segments for BWA-
MEM and vg, respectively, mainly due to the variation
of long insertions or long deletions (Fig. 6a). These two
reads in the simulation dataset are unmapped by BWB-
BLE, which demonstrates that BWBBLE can only inte-
grate small variants (such as SNPs and small indels) but
cannot handle relatively larger variations. In this situation,
only deBGA-VARA can achieve an accurate alignment
because prior knowledge can help to locate the correct
genomic sequence on the original reference.

Benchmarking on the HTS dataset

We also benchmarked deBGA-VARA on the sequencing
dataset of the sample NA12878 that was sequenced by
[llumina HiSeq 2000 (the read length is 100 bpx 102 bp,
and the SRA number is ERR174324). As shown in Table 2,
the deBGA-VARA consumes less time than BWA-MEM,
BWBBLE and vg on this dataset. However, it is a bit
slower than deBGA, due to the time elapsed in variation
tree construction and traversal of many paths. Herein, the
deBGA-VARA has better sensitivity than BWBBLE with
two option settings and has nearly identical sensitivity to
deBGA, BWA-MEM and vg. There are more unmapped
reads for all methods than those of the simulation dataset.
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Read: ... TG ACCTATTATAGCTTGCTAAATGGAGGA ATAATTTACCTGAACCATTTTAAAAGTAAA !

Ref: ... TG ATAATTTACCTGAACCATTTTAAAAGTAAA CTGAAAAGATTCCC ATAATCATAATTTCE

| VCF: 2 33541249 . G  GACCTATTATAGCTTGCTAAATGGAGGA| 100 PASS |
| deBGA-vara 147 chu2 33541205 60 100M :
| deBGA 147 chr2 33541207 60 44M2T10MITIMA2S. i
! BWA-MEM 147 chr2 33541207 60 44M568 |
i vg 16 chr2 33541207 60 43M27130M :
UBWBBLE 4 ________ SR S I
| Read: AGAAGAGGCTAGTTAGAAAGTCAGAGITGACAGCTT |

Ref: AGAAGAGGCTAGTTAGAAAGTCAGAGTTGACAGCTT]....... e ]

VCF: 7 126775610 . | TAAGAATTAATGAGATCGCGCCACTGCACTC | T
AGCCTGGGCGACAGCGAGACTCCGTCTCAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA

deBGA-vara 99 chr7 126775662 60 100M

deBGA 99 chr7 126775699 60 28S1IIMITIM4164M
BWA-MEM 99 chr7 126775701 60 36S64M

vg 0 chr7 126775701 60 31864M

BWBBLE 4 * 0 0 x

Read: .... TCTA ...... CTCGTACACCGAGTCTCGTCCCGATT
Ref: ... TCTA/CTC/CTCGTACACCGAGTCTCGTCCCGATT

IVCF: 1 37946426 . G TC| G 100 PASS
! deBGA-vara 83 chrl 37946402 60 100M ]
! deBGA 81 chrl 37946404 60 23M3D7IM
| BWA-MEM 83 chrl 37946404 60 23M3D77M i
g 16 chrl 37946404 60 23M3D77M !
I BWBBLE 16 chrl 37943118 37 100M

Ref: ... TGTACAAATTCTTTGAGAAACACAACTTCCTAA

VEE: 12 42289772 . A AAATCAAACGAG| 100 PASS

deBGA 145 chr12 42289763 60 3382M1166M
BWA-MEM 147 chrl2 42289740 27 33M11158M
vg 16 chrl2 42289740 60 33M11I58M

| deBGA-vara 147 chrl2 42289737 60 102M
42286545 :

AT...AG A[TATAT

G‘CTTNNAA...CC@?G...GT G[TA..COTCA..AA

"
i .AGICTATAT/A/CTTAIC/AA..CC/IC/GG..GTATA..CCIC CA..AA |
\ VCF: 6 32584295 . A G 100 PASS i
1 6 32584306 5 A L 100 PASS H
] 6 32584319 2 C A 100 PASS L
' 6 32584325 . A G 100 PASS ]
i 6 32584330 (8] A 100 PASS !
: 6 32584346 ¢ A 100 PASS |
! 6 32584355 A G 100 PASS i
: 6 32584371 ¢ T 100 PASS i
E deBGA-vara 83 chr6 32584286 60 100M i
| deBGA 69 chr6 32583979 0 = E
| BWA-MEM 83 chr6 32584296 6 10S90M |
R 16 chr6 32584286 60 100M
\ BWBBLE 16 chr6 32580794 37 100M |

Read: ng“r ;(}GN.AG’

TACTAGGA GA}ALAT‘.,CAFGTAC.‘.CA G|GTATACAT

! Ref: C GTGIGG...AG|C/ACTAGGA GA[T AT..CAT| AC...CA'T|GTATACAT i
I VCF: 6 31311175 G A 100 PASS ]
i 6 31311177 G T 100 PASS !
] 6 31311203 & 100  PASS '
! 6 31311211 G A 100 PASS '
' 6 31311213 T A 100 PASS |
i 6 31311250 T CG 265030. :
i 6 31311265 T G 100 PASS '
ideBGA—vara 83 chr6 31311174 60 100M !
! deBGA 81 chr4 82266297 20 65MID3MII22M9S
| BWA-MEM 83 chr6 31311178 40 4896M ]
| vg 16 chr6 31311178 60 4S96M '
| BWBBLE 16 chr6 31307823 37 100M

Fig. 6 A schematic illustration of read alignments on the HTS dataset and Sim-i100 dataset. a Results on simulation dataset. b Results on HTS
dataset. € Results on MHC region
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Table 2 Statistics on HTS human datasets
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Dataset Aligner Mapped % @ Unmapped # b Soft # ¢ Time-t1(s) Time-t8(s)
ERR174324 deBGA-VARA 98.1 37354 72301 565 79
deBGA 98.1 37479 87653 230 70
BWA-MEM 99.1 13725 116316 590 78
BWBBLE n=2 84.5 309005 0 892 219
BWBBLE n=6 88.8 223736 0 6192 1125
Vg 98.1 28286 91585 13347 2092

@The mapping sensitivity rate.
"Number of unmapped reads.
“Number of soft clipping reads

There are more clipping reads than those in the simu-
lated data set, mainly due to the many sequencing errors
and various unknown variation information. A priori vari-
ation can contribute to reducing soft clipping reads, i.e.,
deBGA-VARA has the minimum number of soft clip-
ping reads in the whole genome. Hence, deBGA-VARA
maintains high accuracy and sensitivity while reducing
soft clipping reads, both on a simulated and sequencing
dataset. This method also shows more advantages over
both typical HTS read aligners and current variation-
aware alignment methods.

Known variation can contribute to determining the
correct result but not arbitrary selection of one of the
optimal alignments. As a result, this factor can effec-
tively reduce false positives for novel variant discovery.
For the known small deletions (3 bp) in the HTS dataset
(Fig. 6b), deBGA-VARA and BWBBLE can identify these
existing variants but do not consider them to be novel
variations and achieve proper alignment. By contrast,
deBGA, BWA-MEM and vg offer variants between the
read and reference, mainly due to tandem repeats in
the region around the known variation, e.g., "CTCCTC".
The relatively longer insertion (11 bp) leads to soft clip-
ping alignment in deBGA and known insertion output in
BWA-MEM and vg. The deBGA-VARA can provide high-
quality alignment results without any clipping segments,
while BWA-MEM and BWBBLE have lower mapping
quality.

Benchmarking on the MHC region

We further benchmarked the read alignments produced
by deBGA-VARA as well as other state-of-the-art align-
ers in MHC region. The 4.6-MB extended MHC region
(chr6: 28477797-33448354) in human genome is highly
reputed by its dense and complex variations, i.e., genomic
variations more frequently occur in this region and the
combinations of the variations are divergent for various
samples. Previous studies [17] have demonstrated that
it is still hard to accurately align the reads from MHC
region for state-of-the-art aligners with a single reference

genome, and the integration of known variations could
provide the opportunity to enhance read alignments.

We evaluated the alignment results in MHC region by
two aspects. Firstly, we assessed the number of seed hits
of the reads to this region. This is critical that, for a given
read, the alignment may fail if the aligner cannot find
the seed(s) successfully hit the correct locus. We found
that the number of correct hits in the reads from MHC
region is to some extent lower than that of the reads from
the regions having less variations. However, there are still
enough hits for them to recognize the correct candidate
regions to implement extension alignment, although there
are dense variations. Two examples are shown in Fig. 6c,
that two reads falling into MHC region respectively have
8 and 6 SNPs, however, deBGA-VARA can still find hits
to their grand truth positions. This is mainly due to that
the reads are fairly long to span the local region with very
dense variations, and its sequencing quality is very high,
so that the aligner can still find seed hits in the read parts
from the flanking genomic regions with less variations.
From this point of view, the introduction of known small
variations (e.g., SNPs and indels) in seeding phase could
be not as helpful as that of structure variations, since the
seeding phase is not seriously affected.

Furthermore, we assessed results of base-level local
alignment during the extension phase, which are shown
in Table 3 (the statistics on the Sim-100, Sim-i250 and
HTS datasets are respectively shown from left to right
columns). The deBGA-VARA has the largest number of
reads successuly aligned to MHC region, and this num-
ber is close to that of grand truth for the two simu-
lated datasets (3862 and 3720 for Sim-i100 and Simi250,
respectively). Meanwhile, the deBGA-VARA and BWB-
BLE align no clipping reads to this area for both of
simulation and HTS datasets. There are 3114 alignments
on the HTS dataset, which is consistent with the num-
bers (3855 and 3716) in the simulation data, indicating
the effectiveness of read alignment to a region with var-
ious complex variants. The numbers of alignments from
deBGA, BWA-MEM and vg are nearly identical to each
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Table 3 Statistics on MHC region of simulation and HTS datasets
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Aligner Sim-i100 # @ Soft Sim-i100 # ° Sim-i250 # Soft Sim-i250 # HTS # Soft HTS #
deBGA-VARA 3855 0 3716 0 3114 0

deBGA 3750 40 3613 26 3025 96
BWA-MEM 3735 113 3618 93 3058 179
BWBBLE n=2 3070 0 2742 0 2785 0
BWBBLE n=6 3616 0 3157 0 3005 0

vg 3765 53 3620 61 3022 119

@number of correct alignments in MHC region on Sim-i100 dataset.
®number soft clipping alignments in MHC region on Sim-i100

other. The BWBBLE offers few alignments in this region,
even with a configuration of n=10 on Simi250. We further
investigated the detailed alignments, and found that with
variant-aware alignment of deBGA-VARA could better
handle the bases spanning genomic variations. For exam-
ple, for the two reads shown in Fig. 6¢, deBGA and BWA-
MEM show low mapping quality and soft clipping align-
ments for both reads. There is a 4 bp clipping segment in
alignment of vg for the second read. Only deBGA-VARA
can output confidential alignment with much higher map-
ping quality than BWBBLE and BWAMEM. Notably, the
38th base in the second read is the reference base ('G’)
but not the alternative allele (A’) of the SNP in position
31311211.

Discussion

Local and global alignments play a fundamental role in
HTS read mapping and downstream sequence analysis,
i.e., the CIGAR outcome of the alignment contributes to
variant calling and structural variation detection. How-
ever, there is still a high demand to decrease the number of
false positive novel variants due to the incorrect alignment
results from current mapping methods. Sequences align-
ment with existing variation can provide a novel strategy
to further improve alignment accuracy and mapping qual-
ity. We found that integrating the whole set of existing
variants into the reference results in explosive growth of
graph size in a typical variant graph paradigm. It is non-
trivial to handle graph construction and traversal with
a large quantity of variation because the possible path
enumeration can theoretically be an NP-hard problem.
Furthermore, this method often has exponential time and
space complexity to reconstruct the index for the contin-
uously updating variation.

Herein, we propose a novel global alignment algorithm,
VARA, and developed the mapping system deBGA-VARA
by integrating it into a deBGA aligner. We regard deBGA-
VARA as a lightweight variant graph-based mapping algo-
rithm. This algorithm combines known variation only to
global alignment in the extension step and dynamically
constructs pseudo tree-based structures to index variants
and sequences in a local genomic scope. The method

can be memory scalable due to its limitation of possi-
ble variants and paths in VARA. This characteristic can
be very beneficial to aligning reads to large variation-
aware references. Moreover, the benchmarking results
on the simulation and sequencing datasets demonstrated
that deBGA-VARA runs much faster than state-of-the-
art approaches while maintaining higher sensitivity and
accuracy. With its scalability, deBGA-VARA can achieve
highly confident alignments both in the whole genome
and MHC region. Seeding with variation cannot signif-
icantly improve the alignment quality but decreases the
mapping efficiency. The deBGA-VARA also showed bet-
ter results with the increase in read length, indicating its
potential for forthcoming sequence analysis.

Conclusion

It is necessary to integrate large structural variations,
e.g., long deletions and insertions, into seed exploration
and merging to furtherly increase the quantity of true
candidate seeds. Other studies should use this approach
in a recurrent framework that will utilize current novel
variation outcomes as the input prior knowledge of the
next loop of alignment in deBGA-VARA. This strategy
can keep improving the quality of novel variants in this
iterative process until convergence.

Overall, deBGA-VARA is a promising tool for variation-
aware read alignment. This method shows enormous
potential in variant calling and complex variation detec-
tion for a large population of genomes.
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