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Prostate cancer (PCa) is the second most common malignancy in men, but its exact
pathogenetic mechanisms remain unclear. This study explores the effect of enhancer
RNAs (eRNAs) in PCa. Firstly, we screened eRNAs and eRNA -driven genes from
The Cancer Genome Atlas (TCGA) database, which are related to the disease-free
survival (DFS) of PCa patients;. screening methods included bootstrapping, Kaplan–
Meier (KM) survival analysis, and Pearson correlation analysis. Then, a risk score model
was established using multivariate Cox analysis, and the results were validated in three
independent cohorts. Finally, we explored the function of eRNA-driven genes through
enrichment analysis and analyzed drug sensitivity on datasets from the Genomics of
Drug Sensitivity in Cancer database. We constructed and validated a robust prognostic
gene signature involving three eRNA-driven genes namely MAPK15, ZNF467, and
MC1R. Moreover, we evaluated the function of eRNA-driven genes associated with
tumor microenvironment (TME) and tumor mutational burden (TMB), and identified
remarkable differences in drug sensitivity between high- and low-risk groups. This study
identified a prognostic gene signature, which provides new insights into the role of
eRNAs and eRNA-driven genes while assisting clinicians to determine the prognosis
and appropriate treatment options for patients with PCa.

Keywords: prostate cancer, enhancer RNA, prognostic gene signature, risk score model, drug sensitivity

INTRODUCTION

Prostate cancer (PCa) is the second most common malignancy in men (No Authors Listed, 2020).
At present, the main treatment for primary PCa is radical prostatectomy (Albertsen, 2020), and
although most patients with PCa benefit from this procedure, the recurrence rate following this
treatment remains high (27–53%) (Van den Broeck et al., 2019). Almost all recurrent PCa will

Abbreviations: PCa, Prostate cancer; eRNAs, Enhancer RNAs; lncRNAs, Long non-coding RNAs; SCCHN, head and
neck squamous cell carcinoma; GO, Gene ontology; GSEA, Gene Set Enrichment Analysis; DEGs, differentially expressed
genes; TCGA, The Cancer Genome Atlas; NIH, National Institutes of Health; GDC, Genomic Data Commons; RNA-seq,
RNA sequencing; GEO, Gene Expression Omnibus; TIMER2.0, Tumor Immune Estimation Resource 2.0; PRAD, prostate
adenocarcinoma; GDSC, Genomics of Drug Sensitivity in Cancer; EMT, Epithelial-mesenchymal transformation; TGF-β,
transforming growth factor β; ECM, extracellular matrix; MSigDB, Molecular Signatures Database; DFS, disease-free survival;
KM, Kaplan–Meier; LASSO, least absolute shrinkage and selection operator; ROC, receiver operator characteristic; AUC, area
under the curve; FDR, false discovery rate; FC, fold change; C-index, concordance index; TME, tumor microenvironment;
TMB, tumor mutational burden; MSI, microsatellite instability; IC50, half-inhibitory concentration.
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develop into advanced PCa and further progress into castration-
resistant prostate cancer (CRPC). For advanced PCa and CRPC,
targeted therapy and chemotherapy are the main treatment
options of disease management (Connor et al., 2021). Therefore,
exploring the mechanisms involved in PCa and identifying
effective PCa biomarkers, are important measures to improve the
prognosis of patients with PCa.

Enhancer RNAs (eRNAs)—important components of long
non-coding RNAs (lncRNAs)—are transcribed from enhancer
regions and important in gene transcriptional regulation (Sedano
et al., 2020). Numerous eRNAs have been found in human
cells, which occupy a high position in the transcriptional
circuit by mediating the activation of target genes (Ding et al.,
2018). eRNAs, induced by tumor suppressors, could suppress
tumors (Wang et al., 2020). On the contrary, oncogene-induced
eRNAs can directly promote tumorigenesis (Liang et al., 2016).
Zhang et al. (2019) also showed that eRNAs play an important
role in the development and treatment of tumors. These
findings illustrate the importance of eRNAs in the process of
human oncogenesis.

With the advent of high-throughput sequencing, it is possible
to explore the function of eRNAs across the whole genome.
Previous studies have conducted preliminary investigations
of the functions of eRNAs. For example, Xiaolian et al.
found that AP001056.1—a key immune-related eRNA in
head and neck squamous cell carcinoma (SCCHN)—has a
positive effect on clinical outcomes in patients with SCCHN
(Liang et al., 2016). However, the role of eRNAs in PCa is
not clear. Therefore, we used high-throughput sequencing
technology and bioinformatics to screen eRNAs and target
genes that may influence the prognosis of patients with
PCa and constructed a robust prognostic model. Moreover,
we explored the mechanism of eRNAs’ influence on PCa
development, as well as the predictive power of the model for
PCa drug sensitivity and potential PCa drug identification.
We also investigated the functions of prognostic genes
associated with PCa using a multi-omics, multi-database
approach involving various methods. The workflow of
our research is shown in Figure 1A. In total, 835 prostate
samples were included, and the pathogenesis and treatment of
PCa was explored.

MATERIALS AND METHODS

Data Collection and Pre-processing
The transcriptome data of PCa and paracancerous tissues, as well
as clinical data of patients with PCa as per The Cancer Genome
Atlas (TCGA) database, were obtained from the National
Institutes of Health (NIH) Genomic Data Commons (GDC Data
Portal1). Using the Gene Expression Omnibus (GEO2) and the
cBioPortal (cBio3), we searched for PCa datasets that included:
(1) PCa and RNA-seq or micro-array dataset types; (2) more

1https://portal.gdc.cancer.gov/
2http://www.ncbi.nlm.nih.gov/geo/
3http://www.cbioportal.org/

than 100 PCa samples in survival data; and (3) information
on the expression of the genes in the gene signature. Per these
parameters we obtained two datasets, namely GSE54460 and
GSE70768 from the GEO and one dataset, MSKCC (Cerami
et al., 2012), from cBio. We also obtained data on the lncRNA-
target gene relationships, as predicted by PreSTIGE (Predicting
Specific Tissue Interactions of Genes and Enhancers), and the
lncRNA expressions from active tissue-specific enhancers. Using
the human gene annotation file and Perl, we converted the
Ensembl ID to its corresponding transcript ID and gene name,
respectively. Using the Tumor Immune Estimation Resource
2.0 (TIMER2.0), we downloaded the immune cell infiltration
data of prostate adenocarcinoma (PRAD) tissues from the
Cistrome Project4. We obtained the gene sets associated with
epithelial-mesenchymal transformation (EMT), transforming
growth factor β (TGF-β), and extracellular matrix (ECM)
from the Molecular Signatures Database (MSigDB5) (Zhang
et al., 2020). The copy number alterations (CNAs) analysis was
performed by cBio.

Screening of eRNAs and Target Genes
Associated With the Prognosis of
Patients With PCa
To preliminarily screen eRNAs related to the prognosis of
patients with PCa, we analyzed the eRNAs and their expression
levels along with their corresponding clinical disease-free survival
(DFS) rates. Through application of bootstrapping methods and
the Kaplan–Meier (KM) survival analysis, candidate eRNAs were
narrowed down as follows: 70% of the samples were randomly
selected from the TCGA data cohort for gene survival analysis.
The process was repeated 1,000 times. Genes that appeared more
than 700 times among the samples (robustness test, P < 0.05)
were regarded as robust prognostic genes (Zhou et al., 2019).
The target genes related to prognosis were screened using the
same method. Based on the correlation analysis between the
eRNAs and target genes, we suggested that the target genes
(cor > 0.3; P < 0.05; CNAs of target genes were no significant
correlation with its corresponding eRNAs) are defined as eRNA-
driven genes.

Building the Predictive Signature for
Patients With PCa
For the training cohort from TCGA dataset, we adopted a least
absolute shrinkage and selection operator (LASSO) regression
analysis using the R package glmnet 4.0-2 (Friedman et al., 2010;
Simon et al., 2011), to narrow down the range of eRNA-driven
genes related to the prognosis of patients with PCa. Using the
R package survival 3.2-7, we developed a risk model through
performing multivariate Cox regression analysis. Applying the
formula:

risk score =
∑n

k=1
(

risk genes expressionk × coefficientk
)
,

we were able to obtain the prognostic risk scores.

4http://www.cistrome.org/
5https://www.gsea-msigdb.org/
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FIGURE 1 | (A) The workflow of the study. The eRNAs (B) and target genes (C) results of nodes 10, 40, 90, 240, 490, 990 compared with nodes 20, 50, 100, 250,
500, and 1,000. As the number of repetitions increased, we compared the results at the node with the previous 10 times, and found that the consistency of the
results increased continuously. At the level of 1,000 repetitions, the consistency reached about 100%.

Assessment and Validation of the Risk
Score Model
Due to the differences between the sequencing data and the
chip data, the risk scores of the training set (TCGA) and
the Validation sets (GSE55460, GSE70768, and MSKCC) were
calculated, respectively, according to the above risk scoring
calculation formula. Then, using the median value of their
risk scores, we divided the training set and the Validation sets
into high- and low-risk groups, respectively. We further used
the survival data of the two groups of patients with PCa, to
generate KM survival curves through a log-rank test (the model
has predictive value when P < 0.05). Using the R package
survivalROC 1.0.3 (Kamarudin et al., 2017), we conducted a
time-dependent receiver operating characteristic (ROC) analysis
to determine the accuracy of the prediction model. An area
under the curve (AUC) of > 0.60 was considered to reflect
minimum predictive value, while AUC > 0.75 showed good
predictive value.

Enrichment Analysis of Prognostic
Genes in PCa
We identified the differentially expressed genes (DEGs)in high-
and low-risk groups from TCGA cohort using the R package
limma 3.42.2. An absolute log2 fold change (| FC|) > 1
and an adjusted false discovery rate (FDR) < 0.05 were set
as cutoff criteria. Using the R package limma 3.42.2, 609
DEGs were subjected to Gene Ontology (GO) enrichment
analysis. Furthermore, Gene Set Enrichment Analysis (GSEA)
was conducted using GSEA 3.0, per the methods specified in the
user guide (gsea-3.0.jar6).

Screening of Prognostic Clinical Factors
in PCa
Using the R package survival 3.2-7, we performed univariate
Cox regression analysis to appraise the predictive value of the

6http://software.broadinstitute.org/gsea/index.jsp
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risk score and other clinical factors for DFS in patients with
PCa. Then, we conducted multivariate Cox regression analysis
to remove confounders. The bilateral significance level was 0.05,
and the hazard ratio (HR) and 95% confidence interval (CI)
were calculated.

Establishment and Evaluation of the
Nomogram
Combining the prognostic factors analyzed using the above
methods, we used the R package rms 6.1-0 to construct a
nomogram. Using the R package pec v2019.11.3 (Mogensen
et al., 2012), we performed Harrell’s concordance index (C-index)
analysis to assess the performance of the nomogram. A robust
C-index was obtained using 1,000 bootstrap resamples. The
closer the score was to 0.5, the less discriminative it was deemed
to be, and vice versa for scores closer to 1. The efficiency of the
nomogram was evaluated using the time-dependent ROC curve.

Drug Sensitivity Analysis
We used R package pRRophetic to compare half maximal
inhibitory concentrations (IC50) of two drugs (docetaxel,
bicalutamide) used in treatment of PCa, as per the Genomics
of Drug Sensitivity in Cancer database. Results were recorded
for, and compared between, the high- and low-risk groups. In
addition, we used the Connectivity Map (CMap)7 to screen
small molecule drugs that are beneficial to the prognosis of
PCa. We obtained the P value of the association between
each small molecule compound and the differential genes, by
using the CMap online tool (Ma et al., 2021); P < 0.05 was
statistically significant.

Statistical Analysis
All statistical analyses were performed using R software (version
3.6.3). The Mann–Whitney U test was used to compare two
groups with non-normally distributed variables. Furthermore,
Kruskal–Wallis analysis of variance was applied as non-
parametric method to compare the three groups. All statistical
tests were two-sided; P < 0.05 was statistically significant.

RESULTS

Identification of Prognosis-Associated
eRNAs and Target Genes in PCa
Table 1 summarizes the important clinical factors from TCGA
data involved in the study. Based on previous findings (Vučićević
et al., 2015), we constructed a table of the relevant eRNAs
and their predicted target genes. Through bootstrapping, we
performed KM survival analysis on 1,584 eRNAs and 2,095
eRNA-driven genes. Finally, we identified 54 eRNAs and 199
target genes as prognosis-associated genes (Supplementary
Table 1). With this screening method, randomness was
significantly removed and the stability of results improved.

In order to verify that the Bootstrap method is more rational,
we set six nodes (20, 50, 100, 250, 500, and 1,000) and compared

7https://portals.broadinstitute.org/cmap/

TABLE 1 | Clinical information from the 545 PCa patients of TCGA.

Clinical
parameters

Variable Number
(total)

Percentage Hazard ratio

Age (years) ≤60 242 44.40% 1.338 (0.874–2.047)

>60 303 55.60%

Survival status Dead 10 1.83% Not applicable

Alive 482 88.44%

Unknown 53 9.72%

Gleason score 6 48 8.81% 3.907 (2.471–6.178)

7 285 52.29%

8 66 12.11%

9 and 10 146 26.78%

T grade T2 188 34.50% 4.018 (2.224–7.256)

T3 295 54.13%

T4 10 1.83%

Unknown 52 9.54%

N grade N0 348 63.85% 1.820 (1.112–2.980)

N1 79 14.50%

Unknown 118 21.65%

the results at each node as shown in Figures 1B,C. Node 20
indicates the 20th time of Bootstrap, while node 50 indicates
the 50th time, and so on. Taking node 20 as an example, we
compared the result at the 20th-time Bootstrap with that of 10th
time. For each the 10th and 20th times, we identified 66 genes
for further screening and found that intersection for 62 genes
when comparing the two nodes (we defined the intersection gene
number as N). The unique gene number of the 10th time is
defined as X, while that of the 20th time as Y. From these results,
we defined the value of N / (X+ Y+N) as the consistency of the
two results. As shown in Figures 1B,C, as the number of repeats
increases, the consistency of data at the nodes increases to 100%,
while the number of intersected genes gradually tends to be stable.

Acquisition of Candidate Genes and
Labeling of Gene Function
Through comparative examinations, we screened 26 regulatory
relationships and performed correlation analysis of these
relationships (cor > 0.3, P < 0.05). We identified nine
relationships consisting of six eRNAs and nine target genes
(Table 2 and Supplementary Figure 1), from which we obtained
nine candidate genes of which the functions were annotated using
the Uniport database8 (Supplementary Table 2).

Building the Predictive Signature for PCa
The nine target genes were filtered using LASSO analysis. The
filter condition was set to repeat 1,000 times (Figure 2A).
Therefore, the number of candidate genes was narrowed
down from nine to three. We used the three screened
genes in the multivariate Cox regression analysis (without
bidirectional stepwise regression) to establish a prognostic
model for PCa (Table 3). For each of the three genes, the
product of the correlation coefficient and gene expression

8https://www.uniprot.org/
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TABLE 2 | List of eRNAs and eRNAs-driven genes associated with overall survival derived from enhancers.

Ensembl ID Symbol TANRIC Overall Survival
Analysis, Log-Rank

p-Value

Target gene Correlation between lncRNA and the Neighboring Target

p-value Correlation coefficient

ENSG00000223959 AFG3L1P 0.004207 FANCA P < 0.001 0.418196

ENSG00000223959 AFG3L1P 0.004207 MC1R P < 0.001 0.70217

ENSG00000223959 AFG3L1P 0.004207 SPIRE2 P < 0.001 0.556318

ENSG00000161912 ADCY10P1 4.72E-05 UNC5CL P < 0.001 0.64206

ENSG00000206417 H1FX-AS1 7.75E-06 RPL32P3 P < 0.001 0.372866

ENSG00000242258 LINC00996 0.002828 GIMAP4 P < 0.001 0.678696

ENSG00000254812 AC067930.3 0.006284 MAPK15 P < 0.001 0.435871

ENSG00000197558 SSPOP 0.000238 ZNF467 P < 0.001 0.603343

ENSG00000227297 SSPOP 0.000863 ZNF862 P < 0.001 0.68106

FIGURE 2 | Development and validation of the risk model. (A) Tuning parameter (λ) selection in the LASSO model used 10-fold cross-validation via the maximum
criteria. Time-dependent ROC curve analysis of the prognostic model in the TCGA cohort (B), in the GSE54460 cohort (D), in the GSE70768 cohort (E) and in the
MKSCC cohort (F). Kaplan-Meier curve analysis of high-risk the low-risk groups in the TCGA cohort (C), in the GSE54460 cohort (G), in the GSE70768 cohort (H)
and in the MKSCC cohort (I).
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TABLE 3 | Risk genes in the prognostic risk model.

Gene Coef HR HR.95L HR.95H p value

MAPK15 0.186338 1.204829 0.977376 1.485215 0.080882

ZNF467 0.523366 1.687699 1.345957 2.116209 5.80E-06

MC1R 0.624495 1.867304 1.332502 2.616749 0.000286

was used to determine the relevant risk score. Thus,
we established a risk score model that calculated the
risk score as follows: risk score = (0.186338 × MAPK15
gene expression) + (0.523366 × ZNF467 gene
expression) + (0.624495 × MC1R gene expression). Correlation
analysis between CNVs of model genes and its corresponding
eRNAs showed no significant correlation among them (cor < 0.3)
(Supplementary Figures 3A–C).

Evaluation of the Prognostic Risk Score
Model for PCa
The AUC values for 1-, 3-, and 5-year survival were 0.710, 0.748,
and 0.755, respectively (Figure 2B). Using the median risk score
(0.951), we distributed the 489 samples with complete clinical
data in TCGA cohort into a high-risk group consisting of 244
samples and a low-risk group of 245. The DFS of the low-risk
group was significantly higher than that of the high-risk group
(log-rank test, P < 0.05, Figure 2C).

We also analyzed the performance of individual model
genes in the training set and showed that the AUC values
for 1-, 3-, and 5-year survival of MAPK15 were 0.671, 0.718,
and 0.731, respectively (Supplementary Figure 4A), while
those of ZNF467 were 0.631, 0.715, and 0.719, respectively
(Supplementary Figure 4B), and of MC1R were 0.669,
0.634, and 0.626, respectively (Supplementary Figure 4C). No
significant correlation between the three genes was observed
(Supplementary Figure 4D). The results suggest that the
predictive value of the model is better than that of a single gene.

Validation of the Prognostic Risk Score
Model for PCa
The prognostic risk model was further validated in the GEO
datasets GSE54460, GSE70768, and MSKCC. The clinical
information of the validation cohort is summarized in Table 4. As
shown in Figure 2D, the prognostic risk score model performed
well in GSE54460, and the AUC values for 1-, 3-, and 5-year
survival were 0.629, 0.649, and 0.622, respectively. Using the
median risk score for segmentation (0.502), we distributed the
106 samples into high- and low-risk groups, containing 53
samples each. This result was similar to that obtained in the
KM analysis of the training cohort (Figure 2G). In GSE70768,
the respective AUC values for 1-, 3-, and 5-year survival were
0.728, 0.722, and 0.611, respectively (Figure 2E). Similarly, using
the median risk score for segmentation (9.773), we divided the
111 samples into a low-risk group of 55 and a high-risk group
of 56. In the KM analysis of GSE70768, the results of the low-
risk group were significantly different from those of the high-risk
group (log-rank test, P < 0.05, Figure 2H). In MSKCC, the

AUC values for 1-, 3-, and 5-year survival were 0.782, 0.676,
and 0.639, respectively. Using the median risk score (4.210) as
discriminator, we divided the 129 samples into two groups of
which 64 were deemed as low-risk, and 65 as high-risk. In the KM
analysis of MSKCC, the results of the low-risk group were also
significantly different from those of the high-risk group (log-rank
test, P < 0.05, Figures 2F,I).

To explore the single predictive value of the three-gene
signature, we visualized the differential expression of each gene
in samples with different clinical features. These included normal
tissue and tumor samples, samples with T- and N-category
characteristics, and samples differentiated according to their
Gleason score and risk (TCGA dataset). Among these groups,
those involving tumor samples, specifically category T3/T4
tumors, with N1 nodal status, high-risk, and Gleason score > 7
exhibited the highest gene expression levels (Figures 3A–E).

Establishment and Appraisal of a
Nomogram for DFS Prediction in PCa
We screened clinical variables with independent prognostic
value using univariate and multivariate Cox regression analyses
(Supplementary Table 3) and applied the screening results
based on the Gleason score, T-stage, and risk score to construct
a nomogram (Supplementary Figure 3D). We then assessed
the clinical significance of the nomogram using ROC analysis
and C-index calculations. The respective AUC values of the
nomogram for 1-, 3-, and 5-year survival were 0.780, 0.783, and
0.777, respectively. Compared to the individual clinical variables,
the nomogram exhibited superior predictive ability, suggesting
that the clinical nomogram offered better predictive value in
the prognosis of patients with PCa than the individual clinical
variables or risk score models (Supplementary Figures 5A–H).

Exploration of the Functions of eRNAs
and Target Genes
By comparing the gene expression levels in samples from the
high- and low-risk groups of the training cohort, 609 DEGs (| FC|
≥ 1, adjusted P < 0.05) were further analyzed. GO enrichment
analysis was used to explore the functions of DEGs in high- and
low-risk groups, and 130 GO terms were obtained (P < 0.05).
The results showed that the GO functions with significant DEG
enrichment were “humoral immune response,” “complement
activation, classical pathway,” “humoral immune response
mediated by circulating immunoglobulin,” “immunoglobulin
mediated immune response,” “immunoglobulin complex,” and “B
cell mediated immunity” (P < 0.01) (Supplementary Figure 6C
and Supplementary Table 4).

GSEA was used to explore the potential signaling pathways
that influence the risk score model in the high- and low-
risk groups (P < 0.05). In the high-risk group, the highest-
ranking signaling pathways were base excision repair, DNA
replication, Drug metabolism—other enzymes, homologous
recombination, and spliceosome. In the low-risk group, the
highest-ranking signaling pathways were adherens junction,
propanoate metabolism, sphingolipid metabolism, tryptophan
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TABLE 4 | Clinical recurrence rate in TCGA, GES54460, GES70768, and MKSCC database.

Dataset Clinical parameter

Recurrence No recurrence

1 year 3 years 5 years 1 year 3 years 5 years

TCGA(n = 489) 29(5.93%) 67(17.30%) 81(16.56%) 460(94.07%) 422(82.70%) 408(83.44%)

GES54460 (n = 106) 24(22.64%) 45(42.45%) 51(48.11%) 82(77.36) 61(57.55%) 55(51.89%)

GES70768 (n = 111) 8(7.20%) 16(14.41%) 19(17.11%) 103(92.79%) 95(85.59%) 92(82.89%)

MKSCC (n = 129) 15(11.63%) 28(21.71%) 31(24.03%) 114(88.37%) 101(78.29%) 98(75.97%)

FIGURE 3 | The differential analysis of three risk model genes between PRAD tissue and normal prostate tissue in TCGA (A). The differential analysis of three risk
model genes between different Primary Tumor T stage samples (B), different Lymph Nodes N stage samples (C), different Gleason score PRAD samples (D), and
different risk samples (E) in TCGA cohort. The P values are labeled above each boxplot with asterisks (ns: represents no significance, *P < 0.05, **P < 0.01,
***P < 0.001).
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metabolism, and valine, leucine, and isoleucine degradation
(Supplementary Table 5 and Supplementary Figures 6A,B).

Comparison of TMEs Between High- and
Low-Risk Groups
Based on the GO enrichment analysis results, the genes included
in the risk model may affect the occurrence and development
of tumors, through their impact on certain immune-related
functions such as immunoglobulin complex. Therefore, we
compared the tumor microenvironments (TMEs) in the high-
and low-risk groups.

We calculated the single-sample GSEA (ssGSEA) scores of
EMT, TGF-β, and ECM to compare the differences between the
high- and low-risk groups, based on stromal cells and showed
that the ECM and TGF-β scores of the low-risk group were
higher than those of the high-risk group. No significant difference
was seen in the EMT score between the high- and low-risk
groups (Figure 4A).

We further explored immune cell infiltration to determine the
immune status of the high- and low-risk groups and showed
that CD4+ T cell and CD8+ T cell counts differed significantly
between the two groups (Figure 4B). In addition to the TIMER
algorithm, we used epic and xcell algorithms to compare the
degree of immune infiltration in the two groups. The results of the
EPIC algorithm showed that cancer associated fibroblast, T cell
CD4+, T cell CD8+, macrophage, and uncharacterized cells were
significantly different (Supplementary Figure 7A). The results of
the xcell algorithm show that T cell CD4+ central memory, T
cell CD4+ effector memory, T cell CD8+, T cell CD8+ effector
memory, eosinophil, cancer associated fibroblast, neutrophil, T
cell NK, plasmacytoid dendritic cell, immune score, and stroma
scores were significantly different between the high and low risk
groups (Supplementary Figure 7B).

We also compared the levels of expression of 14 immune
checkpoints between the high- and low-risk groups and showed
that the expression of nine of these immune checkpoints (LAG3,
CD80, CD276, PDCD1, IL6, CD4, TGFB1, CD86, CTLA4) were
significantly different between the high- and low-risk groups
(Figure 4C). All except IL6 showed higher expression in the
high-risk group than in low-risk group.

Comparison of the DNA Mutation
Burden, TMB, and MSI Between High-
and Low-Risk Groups
Based on the GSEA results, base excision repair was associated
with the heterogeneity between the high- and low-risk groups.
We then explored the differences in the DNA mutation burden,
tumor mutational burden (TMB), and microsatellite instability
(MSI), between the two groups.

By analyzing the 20 genes with the highest mutation
frequency, we found a marked difference in mutation burden
between the high- and low-risk groups. The genes with the
highest mutational frequency in the high- and low-risk groups,
were TP53 and SPOP, respectively (Figure 5A).

Comparing the differences in TMB between the high- and low-
risk groups showed that the TMB of the high-risk group was

significantly different to that of the low-risk group (P < 0.05),
and the sensitivity of the low-risk group to immunotherapy was
lower than that of the high-risk group (Figure 5B).

Differential analysis of the MSI of each PRAD sample obtained
from a previous study (Zhang et al., 2020) showed that the low-
risk group had a lower level of MSI than the high-risk group
(P < 0.05, Figure 5C). We considered this to be MSI high in
the high-risk group and MSI low in the low-risk group, due to
the tumor’s disrupted function during DNA damage repair which
increased gene instability. This is consistent with the results of
TMB in the high and low risk groups.

Drug Sensitivity Analysis
We assessed differences in drug sensitivity between the high- and
low-risk groups by analyzing the IC50 of two chemotherapeutic
agents and showed that, among the drugs for which significantly
different sensitivities were perceived between the high- and
low-risk groups, patients in the high-risk group were more
sensitive to docetaxel. Conversely, patients in the low-risk
group were comparatively more sensitive to bicalutamide
(Figures 6A,B). Through online CMap analysis, we identified
10 of the most significant small molecule candidate drugs
that could improve prognosis in PCa, of which megestrol and
tiletamine were the most likely to favorably alter gene expression
(Supplementary Table 6).

DISCUSSION

Genomic and epigenomic changes in tumor cells are associated
with certain tumor factors, including cellular proliferation and
oncogenic transformation (Rhie et al., 2016). In recent years,
several studies have illustrated the importance of lncRNAs
(including eRNAs) in regulating gene transcription and protein
synthesis (Ouyang et al., 2014; Engreitz et al., 2016). Compared
with other types of lncRNA, eRNAs are ideal anticancer targets,
as they affect the occurrence of many cancers by regulating the
expression of multiple genes (van Velzen et al., 2020). However,
few reports have described the influence of eRNAs on the
development of PCa. Therefore, we identified eRNAs and eRNA-
driven genes related to the prognosis of patients with PCa, to
explore the possible mechanisms of these eRNAs’ influence on the
occurrence and development of PCa. Our model showed positive
values for the coefficients of the relevant three genes, indicating
that these genes are promoters of PCa. Thus, we inferred a direct
correlation between expression of the signature genes and risk of
poor prognosis in PCa.

Through functional analysis, we found that the eRNAs
and corresponding eRNA-driven genes may affect tumor
development through certain immune processes. Previous
studies have shown that immune cells are important in hindering
tumor progression, and that the TME plays a key role in the
occurrence and development of PCa and other cancers (Fortis
et al., 2017; Togashi et al., 2019). For example, natural killer
cells are regulated by the TME in the process of killing lung
cancer tumor cells (Ren et al., 2015). Previous studies have
also shown that ECM, TGF-β, and EMT are important factors
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FIGURE 4 | (A) The pairwise comparison of the ssGSEA score of EMT ECM, and TGF-b between high- and low-risk group. (B) The differential analysis of the
abundance of immune cells between high-low risk groups. (C) The differential analysis of checkpoints between high-low risk groups. The P values are labeled above
each boxplot with asterisks (ns: represents no significance,*P < 0.05, **P < 0.01, ***P < 0.001).

affecting the TME and, resultantly, tumor progression (Park
et al., 2019; Yang et al., 2020). In our study, EMT played no
significant role in PCa progression. Fibrogenesis of ECM can
promote tumor development (Barry et al., 2020). In the high-risk
group of our study, this process might have been exaggerated,
resulting in a poor prognosis. The TGF-β signaling pathway
can inhibit tumor development by inducing the expression of
multiple tumor-suppressor genes (Papoutsoglou and Moustakas,
2020). In this study, the function of the tumor-suppressor arm
of the TGF-β signaling pathway might have been disabled in the
high-risk group, thereby altering gene expression in a direction
that is favorable to tumor development. Our study also revealed
that the levels of CD8+ T cells were decreased in the high-
risk group, whereas levels of CD4+ T cells were increased in
the low-risk group. This suggests that patients in the high-
risk group were in a state of immunodepletion and that the
three genes of our model may promote tumor progression by
accelerating immunodepletion. The high expression of immune

checkpoint genes is an important mechanism of immune evasion
in tumorigenesis (Zhang and Zheng, 2020). In our study, the
levels of expression of most immune checkpoint genes were
lower in the low-risk group than in the high-risk group, which
may partially explain the poor prognosis of patients in the
high-risk group. Thus, we can surmise that the three signature
genes we have identified in this study may contribute to cancer
development by increasing immune checkpoint expression.

The results of the functional analysis indicated that the
eRNAs and corresponding eRNA-driven genes also influence the
progression of PCa by affecting the base excision repairp rocess.
We compared the tumor mutation spectrum, TMB, and MSI
between the high- and low-risk groups and showed that the
gene with the highest mutation frequency in the high-risk group
was TP53, whereas in the low-risk group it was SPOP. TP53
mutations, which can significantly promote tumor growth, are
consequentially associated with the development of PCa (Kaur
et al., 2019), while SPOP is an important tumor-suppressor gene
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FIGURE 5 | Association between high-low risk groups and DNA mutation. (A) The waterfall plot of the top 20 genes of DNA mutation in high-low risk groups. The
pairwise comparison of TMB (B) and MSI (C) between high-low risk groups. The P values are labeled above each boxplot with asterisks (ns: represents no
significance, *P < 0.05, ***P < 0.001).

in PCa cells (Geng et al., 2017). Our results also showed that
the high expression levels of eRNAs and corresponding eRNA-
driven genes were associated with PCa prognosis, and could
promote occurrence of TP53 mutations, which further aids the
progression of PCa. It has been shown that MSI is associated
with many genetic diseases and is a key indicator of genomic
instability (Niu et al., 2014). TMB, defined as the total number of
somatic gene coding errors, base substitutions, and gene insertion
or deletion errors detected per million bases, is closely related
to tumor heterogeneity (Merino et al., 2020; Salem et al., 2020).
The GSEA results showed that the scores of TMB and MSI
in the high-risk group were higher than those in the low-risk
group, suggesting that the eRNAs and corresponding eRNA-
driven genes could affect the process of base excision repair.
We considered this to be MSI high in the high-risk group and
MSI low in the low-risk group, due to the tumor’s disrupted

function during DNA damage repair leading to increased gene
instability, which is consistent with the results of TMB in the
high and low risk groups. Jiang et al. (2021) found that patients
with high TMB had worse survival outcomes than those with
low TMB. We believe that this finding may account for the
longer DFS in the low-risk group, compared to the high-risk
group. In addition, TMB and MSI are closely associated with
the efficacy of immunotherapy and can be used as biomarkers of
immunotherapy response in PCa (Merino et al., 2020; van Velzen
et al., 2020). Although PCa is an immunodesert tumor, immunity
has a significant influence (Bilusic et al., 2017). Moreover, our
GO enrichment results also showed that the DEGs in the high
and low risk groups were related to immunity, which could
explain the immune desertification of PCa. In our study, the
high-risk group exhibited high immune cell infiltration and
high immune checkpoint expression, suggesting that patients
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FIGURE 6 | Drug sensibility analysis with risk model. Differences in the IC50 of
five drugs [bicalutamide (A), docetaxel (B)] in the high- and low-risk groups
(**P < 0.01, ***P < 0.001).

in this group could significant benefit from immune-targeted
therapy. This finding was consistent with our results related
to TMB and MSI. Therefore, our calculated risk scores were
highly correlated with the prognosis of patients with PCa and
the efficacy of immunotherapy. At present, drug therapy is
used to a clinical setting for the treatment of PCa, mainly
docetaxel and bicalutamide. The results of drug sensitivity
analysis have shown that our model, based on the eRNA-driven
genes, can better predict the drug sensitivity of patients with PCa,
which could guide the selection of appropriate clinical drugs to
a certain extent.

Based on the outcomes of our study, our method of
constructing a risk score model is more reliable in producing
a robust model than existing methods, and that our study was
well-founded as the mechanisms by which eRNAs affect the
occurrence and development of PCa, as well as their involvement
in potential therapeutic options, were explored on many levels
and through various methods. However, our study has some
limitations. Firstly, the data were not from our own database but
rather retrieved from public databases. Secondly, the mechanisms
of action of the eRNAs and target genes in PCa, were not further
investigated through in vitro and in vivo experiments.

CONCLUSION

In summary, we used expression profiles from public databases to
screen genes closely associated with the prognosis of patients with
PCa and established a prognostic risk model, which was validated
in multiple datasets. Differential analyses showed significant
differences in TME, TMB, and MSI between the high- and low-
risk groups. The genes included in the three-gene signature
may affect tumor progression, by impacting the aforementioned
factors. Therefore, the risk score derived from our model is a good
predictor of the prognosis of patients with PCa and can be used
to explore how eRNAs affect the occurrence and development
of PCa. Drug sensitivity analysis showed that respondents in the
high- and low-risk groups differed in their sensitivity to several

chemotherapeutic agents used to treat PCa. Our model could
predict drug sensitivity, and several candidate drugs that may
inhibit the progression of PCa were identified. These findings can
help to design personalized medication regimes for patients and
exploring more effective drug options for PCa treatment.
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Vučićević, D., Corradin, O., Ntini, E., Scacheri, P. C., and Ørom,
U. A. (2015). Long ncRNA expression associates with tissue-specific
enhancers. Cell Cycle 14, 253–260. doi: 10.4161/15384101.2014.9
77641

Wang, S., Somisetty, V. S., Bai, B., Chernukhin, I., Niskanen, H., Kaikkonen,
M. U., et al. (2020). The proapoptotic gene interferon regulatory
factor-1 mediates the antiproliferative outcome of paired box 2 gene
and tamoxifen. Oncogene 39, 6300–6312. doi: 10.1038/s41388-020-
01435-4

Yang, J., Antin, P., Berx, G., Blanpain, C., Brabletz, T., Bronner, M., et al.
(2020). Guidelines and definitions for research on epithelial-mesenchymal
transition. Nat. Rev. Mol. Cell Biol. 21, 341–352. doi: 10.1038/s41580-020-
0237-9

Zhang, Y., Zhang, R., Liang, F., Zhang, L., and Liang, X. (2020). Identification
of Metabolism-Associated Prostate Cancer Subtypes and Construction of a
Prognostic Risk Model. Front. Oncol. 10:598801. doi: 10.3389/fonc.2020.598801

Zhang, Y., and Zheng, J. (2020). Functions of Immune Checkpoint Molecules
Beyond Immune Evasion. Adv. Exp. Med. Biol. 1248, 201–226. doi: 10.1007/
978-981-15-3266-5_9

Zhang, Z., Lee, J. H., Ruan, H., Ye, Y., Krakowiak, J., Hu, Q., et al. (2019).
Transcriptional landscape and clinical utility of enhancer RNAs for eRNA-
targeted therapy in cancer. Nat. Commun. 10:4562. doi: 10.1038/s41467-019-
12543-5

Zhou, R., Zeng, D., Zhang, J., Sun, H., Wu, J., Li, N., et al. (2019). A robust
panel based on tumour microenvironment genes for prognostic prediction
and tailoring therapies in stage I-III colon cancer. EBioMedicine 42, 420–430.
doi: 10.1016/j.ebiom.2019.03.043

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Fan, Wang, Zhao, Zhao, Yuan and Wang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 13 June 2021 | Volume 12 | Article 676845

https://doi.org/10.4161/15384101.2014.977641
https://doi.org/10.4161/15384101.2014.977641
https://doi.org/10.1038/s41388-020-01435-4
https://doi.org/10.1038/s41388-020-01435-4
https://doi.org/10.1038/s41580-020-0237-9
https://doi.org/10.1038/s41580-020-0237-9
https://doi.org/10.3389/fonc.2020.598801
https://doi.org/10.1007/978-981-15-3266-5_9
https://doi.org/10.1007/978-981-15-3266-5_9
https://doi.org/10.1038/s41467-019-12543-5
https://doi.org/10.1038/s41467-019-12543-5
https://doi.org/10.1016/j.ebiom.2019.03.043
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	A Robust Prognostic Gene Signature Based on eRNAs-Driven Genes in Prostate Cancer
	Introduction
	Materials and Methods
	Data Collection and Pre-processing
	Screening of eRNAs and Target Genes Associated With the Prognosis of Patients With PCa
	Building the Predictive Signature for Patients With PCa
	Assessment and Validation of the Risk Score Model
	Enrichment Analysis of Prognostic Genes in PCa
	Screening of Prognostic Clinical Factors in PCa
	Establishment and Evaluation of the Nomogram
	Drug Sensitivity Analysis
	Statistical Analysis

	Results
	Identification of Prognosis-Associated eRNAs and Target Genes in PCa
	Acquisition of Candidate Genes and Labeling of Gene Function
	Building the Predictive Signature for PCa
	Evaluation of the Prognostic Risk Score Model for PCa
	Validation of the Prognostic Risk Score Model for PCa
	Establishment and Appraisal of a Nomogram for DFS Prediction in PCa
	Exploration of the Functions of eRNAs and Target Genes
	Comparison of TMEs Between High- and Low-Risk Groups
	Comparison of the DNA Mutation Burden, TMB, and MSI Between Highand Low-Risk Groups
	Drug Sensitivity Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


