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INSIdE NANO: a systems biology 
framework to contextualize the 
mechanism-of-action of engineered 
nanomaterials
Angela Serra1,2,3, Ivica Letunic4, Vittorio Fortino   2,3,5,6, Richard D. Handy7, Bengt Fadeel8, 
Roberto Tagliaferri1 & Dario Greco   2,3,5

Engineered nanomaterials (ENMs) are widely present in our daily lives. Despite the efforts to 
characterize their mechanism of action in multiple species, their possible implications in human 
pathologies are still not fully understood. Here we performed an integrated analysis of the effects of 
ENMs on human health by contextualizing their transcriptional mechanism-of-action with respect to 
drugs, chemicals and diseases. We built a network of interactions of over 3,000 biological entities and 
developed a novel computational tool, INSIdE NANO, to infer new knowledge about ENM behavior. 
We highlight striking association of metal and metal-oxide nanoparticles and major neurodegenerative 
disorders. Our novel strategy opens possibilities to achieve fast and accurate read-across evaluation of 
ENMs and other chemicals based on their biosignatures.

ENMs already pervade our everyday lives, being present in numerous consumer products, and new nanoma-
terials are being produced at an ever-increasing pace. However, despite considerable advances in the past dec-
ade, we are still far from a comprehensive understanding of the biological effects of the myriads of existing and 
emerging ENMs1,2. Global omics technologies may aid in characterizing the mechanism-of-action (MOA) of 
ENMs, opening new possibilities for next generation safety assessment based on systems biology approaches3. 
An emerging strategy in risk assessment of chemicals is read-across analysis, under the assumption that struc-
turally similar compounds exert comparable biological effects. To date, only a few read-across analyses have 
been proposed for ENMs due to the limited possibility to computationally derive their physical-chemical prop-
erties, for their molecular size and complexity. Moreover, only marginal attempts have been made to integrate 
MOA signatures in read-across, even when evaluating structurally smaller and simpler compounds. However, 
the notion that any phenotypic perturbation produces a specific pattern of molecular alterations that can be used 
as its signature is well established, for instance, in studies of drug repositioning4–6. Based on the hypothesis that 
an effective drug should be able to counterbalance the perturbations caused by a disease, correlations between 
disease- and drug-associated gene expression signatures have been sought in attempts of repositioning drug mol-
ecules7. Interestingly, the biological effects of chemicals have not yet been exploited in a systematic relationship 
with the molecular signatures of human diseases, which in turn could add significant amount of information 
to the read-across evaluation. Here, we hypothesized that systematic analysis of transcriptional mechanism of 
action (tMOA) signatures could be used to contextualize or ‘position’ ENMs with respect to human diseases, drug 
treatments, and chemical exposures. This strategy could mitigate the current limitation of information available 
concerning ENMs effects. Moreover, knowledge on the molecular effects of ENMs could be also used to identify 
adverse outcome pathways that may lead to pathogenesis, or indeed tMOA of ENMs that facilitate their applica-
tion as potential treatments. To allow for systematic contextualization of the effects of ENMs, we developed the 
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computational tool INSIdE NANO (‘Integrated Network of Systems bIology Effects of NANOmaterials’, available 
at http://inano.biobyte.de, and briefly described in methods section). To this end, we derived, from the scientific 
literature or from the analysis of available transcriptomics data, specific tMOA signatures of a large set of human 
diseases (the full list is reported in Data S1), chemicals (Comparative Toxicogenomics Database - CTD8, the full 
list is reported in Data S2), FDA-approved drugs (Connectivity Map Database - Cmap9, the full list is reported in 
Data S3), and ENMs (NanoMiner10 - the full list is reported in Data S4). Gene expression data for ENMs exposure 
analyses were retrieved from NanoMiner, a public transcriptomics database encompassing in vitro transcriptom-
ics profiles obtained in human cells or cell lines for a panel of ENMs. See Supplementary Materials and Fig. S1 
for details on input data and preprocessing. We then computed the degree of similarity between all the pairs of 
biological entities present in this integrated data set based on the similarity of their tMOA signatures. In particu-
lar: (i) the Jaccard index was used to compute pairwise similarity between gene sets; (ii) the Kendall Tau distance 
was used to compute similarity between ranked lists of genes; (iii) the Gene Set Enrichment Analysis (GSEA) was 
used to compute similarities between ranked list of genes and gene sets. We then used this information to build 
a large network of 3,516 nodes (phenotypes) interconnected by 12,362,256 edges. The work-flow of the analysis, 
the database architecture and the data integration strategy are schematically shown in Figs 1 and 2 and described 
in details in the method section.

Results
Definition of the INSIdE NANO phenotypic network.  We integrated tMOA signatures of four types 
of phenotypic entities (ENMs, drugs, human diseases and chemical substances), either derived from de novo 
transcriptomics data analysis or from scientific databases. We studied the patterns of similarity of these tMOA 
signatures, and used them to predict the biological effects of ENMs. We defined a list of associated genes for each 
phenotypic entity to be its tMOA signature. In our analysis, tMOA of ENMs and drugs are represented by ordered 
lists of genes ranked by their differential expression values. Furthermore, tMOA of chemicals and molecular 

Figure 1.  INSIdE NANO workflow. Transcriptomics data (ENMs (n = 28) and drugs (n = 615)) and 
precompiled lists of associated genes (Human Diseases (n = 585) and Chemicals (n = 2288)) were retrieved 
from multiple sources (A). tMOA signatures were derived for each phenotypic entity in form of gene ranks for 
ENMs and Drugs exposure and gene sets for human diseases and chemical exposures (B). tMOA based pariwise 
similarity were computed (C). Pairwise similarities were used to infer a weighted network of phenotypic entities 
(D). Cliques and their associated list of genes underlying the connections were identified (E). INSIdE NANO 
achieves contextualization of ENM tMOA and to perform tMOA-based read-across analysis (F).

http://inano.biobyte.de
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alterations of diseases are represented by sets of associated genes retrieved from the Comparative Toxicogenomics 
Database (CTD) (Figs 1A and 2a and method section for a description of the input data). We hypothesized 
that the relatedness of each pair of perturbations (ENMs, drugs, chemicals and diseases) can be quantified as 
the degree of similarity between their specific tMOA patterns. Following data homogenisation (Fig. 1B,C, and 
method section for a description of the similarity measures), the integrated pairwise similarity matrix was used 
as an adjacency matrix to construct a weighted undirected interaction network, which we called INSIdE NANO, 
where the nodes are the phenotypes (ENMs, drugs, diseases and chemicals) and the tMOA similarities between 
them represent the edge weights. We also retained the information on the direction of the similarities (positive or 
negative), so that the edges in the network have a sign attribute indicating if the tMOA signatures of two nodes are 
concordant (the genes are altered in the same direction by both the perturbations) or discordant (the genes are 
altered in the opposite direction by the two perturbations). See Figs 1D and 2a and method section for a descrip-
tion of the network inference process.

MOA signatures mirror chemically, biologically and clinically relevant patterns.  One of the 
factors preventing omics technologies from being fully integrated in regulatory assessment of chemicals is the 
“noisy” nature of the MOA signatures usually derived from these high-content assays. We thus tested the hypoth-
esis that our computational framework, inferring similarities between phenotypic entities from their tMOA sig-
natures, can also highlight robust information that corresponds to either structurally driven (as implemented in 
currently established read-across methods) or clinically relevant patterns of similarity. To this end, we system-
atically computed pairwise similarity matrices between the sets of phenotypic entities present in our analysis 
and independent data sets concerning other relevant aspects unrelated from their molecular effects (Figs 1C 
and 2a). Next, we assessed the correlation between these similarity patterns and those derived from our integra-
tive tMOA analysis (Table 1). See section method for more details. We indeed confirmed that our tMOA-based 
similarities significantly resembled those computed by considering independent characteristics, such as the 2D 
molecular structure of the drugs (Mantel’s test P < 0.01) and chemicals (Mantel’s test P < 1E − 05), respectively. 
In addition, our tMOA-derived relatedness of drugs could also successfully recapitulate their analogy based on 
known molecular targets (Mantel’s test P < 1E − 05). Interestingly, also structural similarities between drugs and 
chemicals were significantly similar to those computed from tMOA signatures, although derived from different 

Figure 2.  INSIdE NANO data and architecture. The phenotypic entities in the discovery data sets were 
integrated to perform ENMs contextualization. The INSIdE NANO network contains 28 ENMs, 615 drugs, 585 
human diseases and 2288 chemicals connected by 12,362,256 edges. The weight on the edges are proportional 
to the strength of similarity between the entities. This similarity was computed by means of different metrics: 
the Kendall Tau distance was used to compute similarities between the ranked list of genes associate to the 
ENMs and drugs; the Jaccard Index was used to compute similarities between the sets of genes associated to 
Chemicals and Diseases; the Gene Sets Enrichment Analysis (GSEA) was used to compute similarities between 
the ranked list of genes associated to the ENMs and Drugs and the sets of genes associated to chemicals and 
diseases (a). Data sets used to validate the connections inferred in the INSIdE NANO network. The similarity 
between the entities based on the molecular alteration profiles were validated by comparing it with already 
computed similarity measures unrelated from the molecular alterations. Drugs similarities were compared with 
smiles and target based similarities. Diseases similarities based on symptom were computed, while chemicals 
similarities are computed using smiles. Drugs and diseases similarities were computed based on prescription 
information downloaded from the MEDI database. Drugs chemicals simililarities were based on smiles and 
disease chemicals similarities were download from the CTD database (b).
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data sources (Mantel’s test P < 1E − 04). Similarly, we observed substantial consistency of our disease-disease 
similarities based on patterns of molecular alteration with those calculated by taking into account the overlap-
ping clinical symptoms (Mantel’s test P < 1E − 05). Furthermore, our inference was substantially coherent to the 
known drug-to-disease relationships based on the use of specific drugs to treat certain diseases in clinical practice 
(Mantel’s test P < 1E − 04) as well as known chemical-to-disease connections based on epidemiological causal 
evidence of the pathogenic effects of exposures (Mantel’s test P < 1E − 05). Taken together, these results strongly 
support that our strategy of data integration and homogenization is robust and allows highlighting meaningful 
relationships between phenotypic entities of different types.

Extrapolation of phenotypic cliques reveals connections between ENMs and respiratory and 
dermal diseases.  Graphs (or networks) can efficiently represent complex phenomena and they can be rap-
idly analyzed with ad hoc algorithms that consider the patterns of relatedness of their constituents. We hypoth-
esized that degrees of tMOA-derived similarity between sets of phenotypes could be used as an indication of 
biological association. Specifically, we scanned INSIdE NANO in search of ‘clique’ subnetworks, i.e., quadruplet 
structures of heterogeneous nodes (a disease, a drug, a chemical and an ENM) completely interconnected by 
strong patterns of similarity or anti-similarity (Fig. 1E). More details on the search algorithm are reported in 
the method section and Fig. S2. We could validate our predictions related to the relative proximity and con-
nectivity of phenotypic entities in our network against a set of known associations between diseases and drugs 
(Kolmogorov-Smirnov test, P < 0.002), based on drug use in clinical practice11,12, and between diseases and 
chemicals (Kolmogorov-Smirnov test, P < 0.001), based on literature analysis. Chemical-disease interaction data 
were retrieved from the CTD. Further, the list of heterogeneous cliques of size three and four was ranked to 
identify the most robust ones. Firstly, since lower thresholds in the clique search algorithm denotes higher con-
nectivity strength between the nodes, only the cliques identified with a threshold lower or equal than 0.4 were 
selected. We then focused our analysis on the cliques including at least one known connection. A permutation 
test was executed (as described in the methods section) to asses the significance of the subset of cliques. Only 
the cliques with high connection strength, at least one known connection, and significant pvalue (pvalue < 0.05) 
where finally selected. We then focused on the possible involvement of ENMs in the most robust identified cliques 
and inferred connections between specific ENMs and several human diseases, including, for instance, conditions 
affecting the respiratory system and skin (Figs S3–S7). The latter observations are strongly corroborated by the 
well established notion in literature about the pulmonary and dermal effects of certain ENMs.

Association of metal and metal oxide nanoparticles with neurodegenerative disorders.  Our 
systematic search of cliques highlighted a subset of intriguing tMOA similarity patterns related to three impor-
tant neurodegenerative disorders, i.e., Parkinson’s disease (PD, Figs 3A, S8, Data S5), Alzheimer’s disease (AD, 
Figs 3B, S9, Data S5), and amyotrophic lateral sclerosis (ALS, Figs 3C, S10, Data S5). We focused on the most 
significant cliques where disease-drug and disease-chemical associations were already known and investigated 
the potential connections of ENMs in this context. Our analysis clearly pointed to an association between metal 
and metal oxide nanoparticles (NP), including tungsten carbide cobalt (WCCo), titanium dioxide (TiO2), zinc 
oxide (ZnO), and gold (Au), and neurodegenerative disorders (Fig. 4A). The neurotoxicity of metals, such as lead, 
mercury, aluminium, cadmium, and arsenic, is well known13–15. There is also some evidence for a relationship 
between inhaled particles, e.g., ultrafine particle exposures in ambient air or at the workplace (e.g., metal fumes) 
and neurotoxicity in humans16–18. We found WCCo NP to be strongly associated with PD (Figs 3A and S8), 
together with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), which is known to cause PD by destroy-
ing dopaminergic neurons in the brain and its prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 
Moreover, the anti-PD drugs levodopa, dopamine and bromocriptine completed the PD-related cliques (Figs 3A 
and S8). WCCo NP are known to be cytotoxic and genotoxic, and astrocytes cultured in vitro were found to be 
the most sensitive in a study involving a range of mammalian cell models19. To the best of our knowledge, there 
are no in vivo studies on WCCo effects on the CNS. However, further investigation should address the possibility 
that WCCo NP may be especially harmful for the brain. The potential neurotoxicity of TiO2 NP has already been 
investigated both in vitro and in vivo20,21. TiO2 NP are easily translocated into the brain of exposed mice, either via 
the blood-brain barrier or the nose-brain path, but their elimination rate is limited, thus resulting in their accu-
mulation and consequent damage of neurons and glial cells22. It is of interest to note that different TiO2 NP are 

INSIdE NANO (MOA) Similarity By Mantel’s Test P

Drugs - Drugs chemical structures 1E − 02

Chemicals - Chemical chemical structures 1E − 05

Drugs - Chemicals chemical structures 1E − 04

Drugs - Drugs molecular targets 1E − 05

Diseases - Diseases symptoms 1E − 05

Drugs - Disease use in clinical practice 1E − 05

Chemicals - Diseases pathogenic exposures 1E − 04

Table 1.  INSIdE NANO associations based on tMOA similarities. The correlations (similarities) between 
certain types of biological entities (in rows) computed based on the transcriptional mechanism-of-action 
(tMOA) similarity were systematically compared to those calculated considering independent biochemical 
aspects. Mantel’s test P is reported, under the null hypothesis that two compared matrices are different.
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identified in different cliques, suggesting that differences in material properties are associated with distinct dis-
orders (Figs 3 and S8–S10). For instance, the TiO2 nanobelts (NB)23 were found to be associated with ALS, while 
spherical TiO2 NP (of different primary particle sizes) were associated with AD and PD. Diethylene-glycol coated 
ZnO NP, but no other types of ZnO NP integrated in INSIdE NANO, were significantly associated with both PD 
(Figs 3A and S8) and AD (Figs 3B and S9). In a previous in vitro study, a panel of nine ZnO NP were tested for 
their cytotoxicity potential using the Jurkat leukemic cell line24. Diethylene-glycol-ZnO was found to be the most 
cytotoxic of all the ZnO nanoparticles tested and also elicited the strongest transcriptomic response among the 
screened nanoparticles21,24,25. Interestingly, Xie et al. reported that repeated administration of ZnO NP elicited 
behavioral and electrophysiological improvements in a rat model of depression26. We also observed a significant 
association of Au NP with PD (Figs 3A and S8) and ALS (Figs 3C and S10), a devastating neurological disease 
characterized by the death of motor neurons. Interestingly, Au NP have been shown to induce oxidative stress and 
to reduce the activity of antioxidant enzymes in rat brain27. Moreover, exposure to Au NP decreased the levels of 
the neurotransmitters dopamine and serotonin. It is pertinent to note that gold is widely used for the treatment 
of rheumatoid arthritis (RA) and that neurotoxicity has been documented in patients with RA receiving oral or 
injectable gold28,29. Whether or not Au NP also elicit similar effects is unknown. Other elements retrieved in the 
context of the Au NP-ALS connections using the INSIdE NANO tool included quinidine and pyrethrin (Figs 3C 
and S10). Quinidine, in combination with dextromethorphan, is used to treat affective disorders in patients with 
ALS30. Pyrethrin, on the other hand, has insecticidal activity by targeting the nervous system of insects31. Taken 
together, these results suggest that INSIdE NANO does not indiscriminately group ENMs based on their core 
chemistry, and provides evidence for the importance of other physicochemical properties, including, in the case 
of ZnO NP, the surface coating and attendant rate of particle dissolution, and, in the case of TiO2 NP, the shape or 
aspect-ratio of the particles, as discussed above.

Figure 3.  Significant association between ENM and neurodegenerative diseases. Relevant top-10 cliques 
including associations between ENM, chemicals and drugs MOA with Parkinson’s disease (A), Alzheimer’s 
disease (B), amyotrophic lateral sclerosis (C). Cliques including at least one known connection between disease-
drug and disease-chemical were selected.

Figure 4.  The cliques including at least one known connection between the disease-drug and disease-chemical 
were selected. The number of significant interactions between Parkinson disease (dark green), Alzheimer 
disease (red), and amyotrophic lateral sclerosis (light green) and each ENM (X-axis) are depicted as barplot (A). 
The drugs included in the significant cliques, categorized by the first level of their ATC code, are shown as bar 
plot (B).
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Toxic effects of metal and metal oxide nanoparticles on the central nervous system in 
vivo.  Clinical case studies that demonstrate an association between exposure to ENMs and neurodegener-
ative diseases in humans are currently missing. Inevitably, given the latency of these diseases it will be some 
decades before occupational health data becomes available from exposure monitoring in the workplace, or from 
traditional epidemiology in public health. However, the fundamental events in chemical toxicology that may 
lead to brain injury are known. Figure S11 shows the key events in the adverse outcome pathway (AOP) leading 
to human disease. The involvement of ENMs has been demonstrated in vivo for key events in the AOP at the 
molecular/biochemical, physiological and pathophysiological levels. The etiology of brain injury from ENMs 
includes oxidative stress, ionoregulatory disturbances, brain pathology, and changes in fish behavior, that can 
only be explained by neurological deficit. The in vivo studies (Table S1) mapped onto the AOP have been carefully 
selected to be brain-specific and not caused by secondary systemic hypoxia (e.g., from respiratory distress) than 
can indirectly lead to brain injury. Figure S11 shows ENM involvement in most of the steps of the AOP, suggesting 
that the INSIdE NANO predicted associations between metal nanoparticles and neurodegenerative disorders are 
recapitulated in an in vivo model. Our analysis also highlighted key genes, whose expression is altered by specific 
metal and metal oxide NP, potentially involved in mediating the pivotal steps in the pathogenesis of Parkinson’s 
disease (Table S2), Alzheimer’s disease (Table S3), and amyotrophic lateral sclerosis (Table S4). Taken together, 
our results not only are able to facilitate rapid prediction of possible implications of ENMs exposure in human 
pathogenesis, but provide also strong evidence for possible key molecular events mediating the ENMs effects.

Potential application of INSIDE NANO for drug (re)positioning.  Drug-drug and drug-disease 
tMOA-based similarity patterns inferred in INSIdE NANO significantly mirrored those derived from chemical 
and clinical evidence (Table 1), thus suggesting that INSIdE NANO could also serve as a discovery tool for drug 
positioning. Along this line, we observed that the drugs in the significant cliques involving neurodegenerative 
disorders are known to target the nervous system and sensory organs (Fig. 4B). In addition, anti-inflammatory 
molecules and drugs known to exert their therapeutic effect on the cardiovascular system were also retrieved in 
connection to neurodegenerative disorders (Fig. 4B). We recently described computational repositioning of many 
compounds acting on the cardiovascular system as neuroactive drugs, probably due to similar molecular struc-
ture and MOA, which often affects the stability of the membrane potential6. Based on these results, it is possible to 
argue that positioning of ENMs for biomedical applications is also conceivable, using INSIdE NANO.

Discussion
In the post-genomic era, omics studies have been routinely used to address a plethora of biomedical questions 
and, consequently, enormous amount of omics data and omics-derived information are accumulating. Although 
the value of omics screenings has been recognized also in the field of chemical safety, to date the use of these tech-
nologies is mainly limited to the measurements of the primary molecular responses to drugs or chemicals. This 
information, in turn, is used to characterize the MOA during exposures and defining pathways of toxicity (PoT) 
that could serve as biological signatures. Given the increasing amount of data regarding the tMOA of drugs and 
chemicals, the next challenge appears to be the systematic integration of these exposure-specific biological signa-
tures with the patterns of molecular alteration of human diseases. This could greatly help the positioning of chem-
icals and drugs as toxicants or therapeutics to a specific disease, and hence provide a valuable indication in terms 
of hazard assessment as well as drug development. However, lack of standardization in the computational strate-
gies and algorithms used for deriving and comparing tMOA signatures has, until now, prevented omics data from 
being fully exploited in safety assessment. In this study, we assumed that comparisons of tMOA signatures could 
be used to find robust and meaningful relationships between different types of exposures and human diseases. 
Overall, our results demonstrate that this is indeed possible by integrating different types of data, including omics. 
Moreover, the rigorous validations of our novel data analysis and integration methods suggest that our computa-
tional framework could pave the way to a complete integration of omics technologies into regulatory read-across 
analysis. Read-across is rapidly becoming a strategic instrument to meet the increasing need to perform rapid 
assessment and labelling of many compounds, including ENMs32,33. This knowledge gap-filling strategy tradi-
tionally consists of defining groups of molecules with high structural similarity, under the assumption that they 
will also exert similar biological effects. Currently, read-across systems present several limitations. First, although 
otherwise envisaged, they are usually restricted to partial chemical spaces consisting of sets of compounds with 
relatively homogeneous applications/effects, limiting their applicability domains. In this context, the analysis 
of ENMs is hampered by the difficulties to computationally derive structural descriptors to be implemented in 
read-across systems, and hence only few studies limited to specific classes of ENMs have been proposed thus 
far34–36. Second, except for a few valuable attempts37, read-across mostly relies on grouping ENMs or chemicals 
based only on the similarity of their molecular structure, neglecting their MOA. Third, read-across systems so 
far work on specific endpoints of strict toxicological interest; and do not strive for the possibility to directly infer 
exposure-disease relationships which could also be used to position an exposure as drug38. The work presented 
here significantly addresses each of these limitations. In fact, we could successfully analyze, in the same property 
space, different types of drugs and chemicals, and ENMs. INSIdE NANO broadens the classical evaluation of 
chemical exposures, based on the structural properties of the compounds, to their primary tMOA. Doing so, we 
retrieved relevant information about ENMs and their effects by contextualizing their molecular behavior with 
respect to multiple phenotypic entities (ENMs vs chemicals, drugs and diseases). To the best of our knowledge, 
this is the first attempt to analyze the molecular effects of ENMs in the context of a larger space including other 
chemicals, drugs, and human diseases. Moreover, we demonstrated that, when accurately derived and interpreted, 
similarity patterns of omics-derived tMOA are able to recapitulate structural analogies of the compounds as well 
as clinically relevant relationships between diseases, drugs and diseases, and chemicals and diseases. Finally, our 
methods provide a systematic way to infer robust implications of exposures to human diseases, going beyond 
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specific toxicology endpoints, which can be difficult to link to human pathogenesis. An important regulatory 
and ethical issue is the possibility to derive organism-level information from in vitro assays. Matching tMOA 
signatures of drugs tested in vitro with patterns of molecular alterations of patients has already proved valid in 
suggesting drug repositioning7. Moreover, we have recently demonstrated that a gene network-based analysis of 
omics data allows to highlight molecular pathways consistently altered by ENMs exposure in vitro and in vivo39. 
Along the same lines, here we integrated tMOA signatures derived in vitro (ENMs, drugs, and some chemicals) 
and in vivo (diseases and some chemicals). Importantly, the associations between ENMs and neurodegenerative 
disorders computationally predicted by INSIdE NANO are recapitulated in a whole body in vivo exposure model 
in fish, and also rodents. It should be noted that omics screening in vitro can be used to identify the tMOA asso-
ciated with an exposure, which is the ensemble of the primary molecular alterations caused by that exposure. 
In this sense, in vitro experiments can be of great value in inferring pathways of toxicity. We acknowledge that 
the current lack of data concerning ENM MOA poses a challenge in respect of the potential of INSIdE NANO 
and future iterations of the tool will take into account new data as these become available. However, despite this 
potential limitation, we were already able to derive meaningful and statistically robust similarities between ENMs, 
drugs, chemicals, and human diseases. In conclusion, we have developed INSIdE NANO, a novel computational 
platform for the systematic contextualization of ENMs tMOA in relation to human diseases, drug treatments, and 
chemical exposures. Our analysis of the large integrated data set underlying INSIdE NANO has pointed towards 
novel associations of specific metal and metal oxide nanoparticles with neurodegenerative disorders, and under-
scores the utility of transcriptomics analysis in vitro for the prediction of possible in vivo effects of ENMs. These 
results suggest that epidemiological studies of the possible relationships between exposure to metal based nan-
oparticles and neurodegeneration are warranted to establish whether ENMs are a risk factor for such disorders.

Methods
Data integration.  For each phenotypic entity, a list of associated genes is given. In particular, a set of genes 
is associated to each disease and chemical, while an ordered list of genes resulting from differential expression 
analysis is built for each drug and ENM in the data set. In order to construct a similarity network between the 
phenotypic entities all the pair-wise similarities between them were evaluated (Figs 1C and 2a).

Gene set versus gene set similarity.  The Jaccard Index was used to compute the pair-wise similarity between gene 
sets (two diseases, two chemicals or a disease and a chemical). Given two sets A and B the Jaccard index is defined 
as: = ∩

∪
| |
| |

J A B( , ) A B
A B

. This measure is 0 if the intersection between A and B is empty, while it is 1 if it contains 
exactly the same elements. For each chemical, two sets of genes were considered: those whose expression is 
up-regulated and those whose expression is down-regulated by the chemical exposure. For the down-regulated 
genes, the Jaccard Index was multiplied by −1 in order to take into account the effects on the genes.

Gene rank versus gene rank similarity.  After importing the pre-processed NanoMiner and CMAP datasets in R, 
a contrast matrix for each dataset was constructed by using the limma package; only the subset of shared genes in 
both datasets was considered. For the NanoMiner dataset, the contrasts were defined to compare each sample 
exposed to an ENM against the controls. Likewise, for the CMAP data, contrast is defined considering each drug 
versus the untreated controls. Subsequently, the genes were ranked by using the following score 
± ⋅ −logFC log Pval( ), resulting in ordered gene lists having the most up regulated genes on the top and the most 
down regulated genes in the bottom. The Kendall Tau Distance40 was then used to evaluate the similarity between 
ENMs, drugs and ENMs-drugs based on the ranked lists of genes. The Kendall Tau distance between two lists T1 
and T2 is defined as follow:
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where T1 and T2 are two ranked lists of genes. Their values range between 0 and n(n − 1), where n is the list length. 
A value of 0 means that elements in the list are in the same order; A value of n(n − 1) means that elements in 
the list are in the opposite order. Values were finally normalized to the range [−1; 1] where −1 corresponds to 
n(n − 1) and 1 corresponds to 0.

Gene rank versus gene set similarity.  The Gene Set Enrichment Analysis (GSEA)41, based on the 
Kolmogorov-Smirnov test, was used to compute the pairwise similarity between an ENM and a disease, and an 
ENM and a chemical, a drug and a disease, and a drug and a chemical. The Kolmogorov-Smirnov test42 can be 
used to compare a sample with a reference probability distribution. The empirical distribution function Fn for n 
iid observations Xi is defined as = ∑ −∞=F x I x x( ) [ , ]( )n n i

n
i

1
1  where −∞I x X[ , ]( )i  is the indicator function 

defined on a set X that indicates the membership of an element to a subset A of X, having the value 1 for all ele-
ments of A and the value 0 for all elements of X not in A. The Kolmogorov-Smirnov statistic for a given cumula-
tive distribution function F(x) is Dn = supx|Fn(x) − F(x)|. As in43, the Kolmogorov-Smirnov statistic was used 
without the absolute value in order to preserve the sign. This helps understanding if the genes in the sets are up or 
down-regulated.

Phenotypic Network Inference.  The pairwise similarity matrix was used as an adjacency matrix to con-
struct a weighted undirected network where the nodes are the entities and the similarities between them 
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represent the edge weights. Each similarity measure has a different range of values. To make them comparable, 
these values were scaled in the uniform range 0–1 by means of the cumulative function. Unlike the similarity 
value, the signs have not been altered, and then edges in the network have a sign that indicate if the correlation 
between a couple of nodes is positive or negative. The resulting network is completely connected. To reduce the 
number of nodes and analyze only strong connections, we used a ranking system to cut edges. For each vertex we 
ranked its neighbors basing on the similarity score; then we can query the network by setting a percentage of the 
top edges to select (e.g. first 10%, 20%, 30% of the rank). Since rankings are not symmetric, when we cut the 
r a n k e d  l i s t  w e  c o m p u t e  t h e  m u t u a l  n e i g h b o r h o o d  o f  a  n o d e  i  d e f i n e d  a s 
 = ≤ ∧ ≤i j rank j th rank i th( ) { : ( ( ) ) ( ( ) )}i j , where ranki(j) is the position of node j in the ranked list of nodes 
connected to i and th is the user defined threshold.

Cliques Search.  A graph or network is a mathematical abstraction that represents a set of objects (nodes) and 
their relationships (edges). Formally, a graph G is defined as the pair G = (V, E), where = …V v vn1, ,  is the set 
of the nodes of the graph, and = …E e em1, ,  is the set of the edges. Each edge in E is a connection between a pair 
of nodes (x, y) in V. If a relevant sorting order in the pair (x, y) is present, then the graph G will be said to be ori-
ented (or directed), where x will be the source of the edge and y the destination. On the other side, if there is no 
relevant order, the graph G will be said to be unoriented (or undirected). In an undirected graph G, a clique is 
defined as a subgraph G′ = (V′, E′) of G with V′ in V and E′ in E, where all the pairs of nodes in G′ are connected 
by an edge. INSIdE nano is an indirect graph, where the vertices are labeled by the class of the phenotypic entities 
(ENM, drug, chemical and disease). The heterogeneous cliques with four (or three) different vertex classes were 
systematically retrieved within the network by an exhaustive search algorithm implemented in phyton 
(Supplementary Fig. S2).

Validation of the Similarity Measures
The pairwise phenotypic similarities based on the tMoA were systematically compared with other independently 
computed similarities based on different characteristics, such as the molecular structure of the drugs and chem-
icals, the symptoms of the diseases, the use in clinical practice of drugs, and the pathogenic roles of chemi-
cal exposures. (See Fig. 2b). The 2D drug structures, in the form of smiles vectors, were downloaded from the 
DrugBank Database (https://www.drugbank.ca)44. Similarly, the smiles for chemical compounds were retrieved 
from the Chemspider Database (http://www.chemspider.com/). The pairwise drug-drug, chemical-chemical, and 
drug-chemical similarities were computed with the Optimal string alignment algorithm implemented in the R 
package “stringdist”45. The associations between drugs and diseases, based on clinical indications of drugs, were 
downloaded from the MEDI Prescription Database (https://medschool.vanderbilt.edu)11,12. In this case, the sim-
ilarity was defined as a binary score, where 1 denotes that a given drug is used to treat a certain disease, while the 
0 means no prescription indication. The associations between chemicals and diseases were downloaded from the 
Comparative Toxicogenomics Database (http://ctdbase.org/). The similarities between diseases were retrieved 
from the Supplementary materials of a previous study by Zhou et al.46, where a symptom-based human disease 
network was built from various databases. The comparisons between the similarity matrices derived from tMOA 
and the others were performed by the Mantel Test, which is used to evaluate the correlation between pairs of 
similarity matrices, by adopting a permutation test procedure47.

Statistical evaluation of phenotypic cliques.  In order to statistically validate the sets of cliques related 
to each disease, a permutation test was performed. The original adjacency matrix was randomly shuffled 1,000 
times. For each clique, a pvalue was computed by counting how many times the strength of connection in the 
original clique (the sum of the weights of its edges) is higher than the strength of connection of the same clique 
connected by permutated edges. The obtained pvalues are then corrected with the Fdr method. Only the cliques 
with pvalue (<0.05) were considered.

INSIdE nano tool.  INSIdEnano is a web-based tool (publicly available at http://inano.biobyte.de) that high-
lights connections between phenotypic entities based on their effects on the genes. The data collection, prepos-
sessing and integration strategies were implemented in R, as described above. The graphical tool and the routine 
to scan the network were implemented in Python and Javascript using the d3 library for the Graphical User 
Interface (GUI). INSIdE nano was developed in a client-server structure: the client is responsible for managing 
the user interface, collecting the user input and displaying the outputs. The server, instead, processes the data 
from the database according to the user inputs, and outputs the results to the client. The tool provides two differ-
ent types of queries. The simple query allows the user to investigate connections of a specific element in the net-
work. Given a node and a threshold, the tool shows all its neighbors divided into four categories: ENMs, diseases, 
drugs and chemicals. The conditional query allows the user to query the network by applying different filters to 
search for the cliques. Since the purpose of the analysis is to compare the behavior of a given element with respect 
to the others, the user must specify at least two different types of items. Moreover, the level of similarity necessary 
to report a connection between selected items, the number of items that must be in the same resulting cliques, 
and the number of query items being connected to the other nodes in the sub-network are requested as input. 
First, the tool retrieves the sub-network of all the elements, connected to the query items that satisfy the user 
input. Then it scans the network in search of cliques. The cliques can contain three heterogeneous elements, that 
will be any one of the possible combinations of three elements between ENMs, drugs, chemicals and diseases in 
the sub-network (e.g., an ENM, a drug, a chemical; a nano, a drug, a disease; etc.,), or they will contain exactly 4 
elements (an ENM, a chemical, a drug and a disease). Those cliques are then grouped with respect to the nature 
of the connections between each couple of items that they contain. As a result of the analysis, the tool gives the 
opportunity to visualize the sub-network of all the nodes connected to the queried entities that satisfy the user 

https://www.drugbank.ca
http://www.chemspider.com/
https://medschool.vanderbilt.edu
http://ctdbase.org/
http://inano.biobyte.de


www.nature.com/scientificreports/

9SCIENTIFIC REPOrTS |           (2019) 9:179  | DOI:10.1038/s41598-018-37411-y

requirements. It displays the list of all the cliques with the opportunity to analyze each one of them and inspect the 
genes underlying the connections. Moreover, direct links to relevant external sources of information are available 
for each phenotype. A complete tutorial is available at http://inano.biobyte.de/help.cgi and in the Supplementary 
materials file.
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