
In the human genome, null mutations in protein-coding 
genes can lead to a wide range of phenotypic effects, ranging 
from invisible to severe phenotypes [1]. Null mutations are 
typically responsible for recessive diseases such as Duchenne 
muscular dystrophy [2] and erythropoietic protoporphyria [3] 
in which approximately 70% to 80% of the detected muta-
tions are null mutations. Analyzing null mutations specific 
to certain diseases among the millions of genomic variants 
captured by whole exome sequencing is crucial for the iden-
tification of novel disease genes.

We previously analyzed several known myopia genes and 
myopia-associated genes based on whole exome sequencing 
data obtained from samples of 298 probands with early-onset 
high myopia (eoHM) [4,5]. However, we identified one null 
mutation in one proband that was associated with high myopia 
as well as other variants in a small proportion of probands, 
which had undetermined pathogenicity [4,5]. The cause of the 
remaining majority of this cohort is unknown. These findings 
suggest that variants in novel genes might cause this disease. 

Therefore, in the current study, our aim was to identify null 
mutations in novel genes associated with eoHM using whole 
exome sequencing.

METHODS

Subjects: This study is part of a project established to inves-
tigate genetic defects associated with eoHM. Our aim was to 
identify novel genes responsible for eoHM using the same 
eoHM cohort that was used in our previous study [5]. Briefly, 
probands were recruited from the clinic at the Zhongshan 
Ophthalmic Center according to the following inclusion 
criteria: 1) spherical refraction in each meridian of ≤–6.00 D 
in both eyes, 2) development of high myopia before the age 
of 7 years, and 3) no other known ocular or related systemic 
diseases. The 507 controls were unrelated probands with 
genetic eye diseases other than myopia, including retinal 
degeneration and glaucoma. The 480 healthy controls had 
bilateral refraction of between −0.50 and +1.0 D spherical 
equivalents without a family history of high myopia and 
had a best unaided visual acuity of 1.0 or better without 
another known eye or systemic disease. Written informed 
consent was obtained from the participants or their guard-
ians following the tenets of the Declaration of Helsinki. This 
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study was approved by the Institutional Review Board of the 
Zhongshan Ophthalmic Center.

Sequencing analysis: Whole exome sequencing was 
performed with an Agilent SureSelect Human All Exon 
Enrichment Kit V4 array (51,189,318 bp; Agilent, Santa Clara, 
CA) that covered more than 20,000 genes (approximately 
334,000 exons). DNA fragments were sequenced using an 
Illumina HiSeq 2000 system (Illumina, San Diego, CA). The 
average sequencing depth was 125-fold. Reads were mapped 
against UCSC hg19 (GenomeUCSC) using Burrows-Wheeler 
Aligner (BWA). The parameters used for whole exome 
sequencing have been previously described [5].

Null mutations, including homozygous and compound 
heterozygous truncation variants, were selected from whole 
exome sequencing data on the 298 probands with eoHM. 
These data were compared with those of the 507 probands 
with other forms of eye disease. Null mutations specific to 
eoHM were considered potential candidates. The minor allele 
frequency of each variant was obtained from public databases, 
including dbSNP, 1000 Genomes, Exome Variation Server, 
and Exome Aggregation Consortium (EXAC). Null variants 
with a minor allele frequency of >0.01 were excluded, and 
the remaining variants were further confirmed using Sanger 
sequencing and subsequently validated in available family 
members and 480 healthy controls. Primers were designed 
using the Primer3 online tool and are listed in Appendix 1. 
The methods used to perform Sanger sequencing, including 
amplification, sequencing, and analysis of the target frag-
ments, have been previously described [4]. The variants are 
described according to the Human Genome Variation Society 
(HGVS).

RESULTS

Evaluation of the whole exome sequencing data on 298 
probands with eoHM revealed the presence of millions of 
variants targeting approximately 20,000 genes and null 
mutations in a few genes, LRPAP1 (Gene ID 4043; OMIM 
104225) and LOXL3 (Gene ID 84695; OMIM 607163), that 
appeared to associate with high myopia after a series of 
bioinformatic filters. Null mutations in LRPAP1 have been 
associated with high myopia in humans [6]. Previously, 
we identified an additional null mutation (c.199delC) in 
LRPAP1 in a consanguineous family that has been reported 
in our previous study of known myopia genes [4]. Here, the 
null mutations detected in LOXL3 included a homozygous 
frameshift mutation (c.39dup; p.L14Afs*21) and a compound 
heterozygous frameshift variant (c39dup; p.L14Afs*21 and 
c.594delG; p.Q199Kfs*35), which were identified in two of 
the 298 probands with eoHM (Table 1, Figure 1A). These 

mutations in LOXL3 were confirmed with Sanger sequencing 
and were absent in 1,974 alleles of ethnicity-matched controls 
from the same region (507 individuals with other condi-
tions and 480 healthy control individuals; Table 1). These 
null mutations were also not present in the 1000 Genomes, 
Exome Variant Server, and Exome Aggregation Consortium 
databases. The two probands were singleton cases, and their 
parents carried only heterozygous mutations (Figure 1A). 
These null mutations in LOXL3 were predicted to result in 
degradation of the transcript by nonsense-mediated mRNA 
decay [7,8]. The mutation frequencies and spectra in different 
types of variants of LOXL3 are shown in Appendix 2. Other 
less likely pathogenic heterozygous variants in LOXL3 are 
listed in Appendix 3.

The two probands with a LOXL3 mutation developed 
high myopia before reaching 7 years of age. One proband had 
a refractive error of −18.50 DS for the right eye and −18.00 
DS for the left eye, and the other had a refractive error of 
−23.00 DS for the left eye and retinal detachment in the right 
eye (Table 2). Examination with an ophthalmoscope revealed 
myopic fundus with crescent and tigroid forms in the two 
probands (Figure 1B-D).

DISCUSSION

In the current study, we revealed homozygous frameshift 
(c.39dup, p.L14Afs*21) and compound heterozygous frame-
shift (c.39dup, p.L14Afs*21; c.594delG, p.Q199Kfs*35) 
mutations in LOXL3 in two of the 298 probands with eoHM. 
These null mutations cosegregated with high myopia and 
were absent in the 1,974 alleles of the controls.

High myopia is a leading cause of visual impairment 
worldwide. Several lines of evidence indicated that excess 
elongation of eye size and axial length is due to abnormal 
extracellular matrix (ECM) remodeling in the sclera medi-
ated by the transforming growth factor (TGF)-beta pathway 
[9-14]. LOXL3, a member of the lysyl oxidase gene family, 
encodes an extracellular copper-dependent amine oxidase. 
Loxl3 expression is enriched in the retina and the central 
nervous system [15,16]. The encoded protein is induced 
through the TGF-beta pathway [17,18] and plays a critical 
role in the covalent cross-linking of collagen and elastin in 
the ECM, which is essential for ECM integrity in connective 
tissues [15,16,19-21].

Abnormal LOXL3 function has been reported to be the 
cause of multiple types of defects in humans as well as in 
animals. A recent study identified a homozygous missense 
mutation (c.2027G>A, p.C676Y) in exon 12 of the LOXL3 
gene as the cause of autosomal recessive Stickler syndrome 
in a consanguineous family [22], with high myopia a 
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constant feature in this family [22]. This missense mutation 
was located in an evolutionarily conserved region and was 
predicted to be pathogenic [22]. In animal studies, knock-
down of lox3b in zebrafish led to craniofacial abnormalities 
[21], and Loxl3−/− mice demonstrated craniofacial and spinal 
defects and smaller lungs at the embryonic stage (E18.5) 
[23]. The structure and axial length of the eyes in Loxl3- 
knockout mice were hard to determine, as all the knockout 
mice showed perinatal lethality [23]. We have generated a 
heterozygous Loxl3-knockout mouse model but we were 

unable to get any homozygous Loxl3-knockout mouse 
(unpublished data), also suggesting embryonic lethal in mice 
on complete absence of Loxl3. In the current study, the two 
unrelated patients with null mutations in LOXL3 exhibited 
high myopia without other known ocular or related systemic 
diseases, representing milder phenotypes than observed in 
previous studies in zebrafish or mouse [21,23]. Although 
the mechanism by which different LOXL3 mutations cause 
variable phenotypes is unclear, high myopia is a common 
symptom present in syndromic diseases such as congenital 

Figure 1. Null mutations in LOXL3 identified in two probands with early-onset high myopia. A: Sequence chromatography and pedigrees 
of HM293 and HM407. Sequence changes detected in the patients with early-onset high myopia are presented in the left column, whereas 
healthy sequences appear in the right column. The sample from the mother in family HM407 was not available. M1, c.39dup; M2, c.594delG; 
+, wild-type. B, C, D: Fundus photos for both eyes of HM293II1 (B, C) and the left eye of HM427II1 (D) revealed myopic fundus with 
crescent and tigroid forms. The fundus photo for the right eye of HM427II1 is not available.
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night blindness, caused by mutations in NYX [24], and Born-
holm eye disease, caused by OPN1LW [25]. Mutations in NYX 
and OPN1LW have also been reported to cause high myopia 
alone due to mutations in different locations [26-28]. The null 
mutations in LOXL3 were determined to be located in exons 
2 and 4, which is distinct from the location of the previously 
reported mutation in Stickler syndrome. Because of the lack 
of follow-up visits to further confirm the phenotypic informa-
tion, we can only assume that mutations located in different 
locations in LOXL3 might have independent effects on patient 
phenotypes.

In conclusion, our results reveal the presence of null 
mutations in LOXL3 in families with eoHM. Due to limited 
phenotypic information and a lack of functional studies, these 
findings only indicate that null mutations in LOXL3 are likely 
to be associated with autosomal recessive eoHM. Meanwhile, 
our current approach may miss other types of variants if they 
are associated with high myopia. Our upcoming study will 
be designed to solve this issue by examining all other vari-
ants across the whole exome between cases and controls. The 
molecular mechanism underlying the role of LOXL3 in high 
myopia, as well as in Stickler syndrome, will be the subject 
of further study.

APPENDIX 1. PRIMERS USED FOR POLYMERASE 
CHAIN REACTION

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. THE VARIANT FREQUENCIES AND 
THE PROPORTION OF VARIANTS TYPES OF LOXL3 
IN THE 298 PATIENTS WITH EARLY-ONSET HIGH 
MYOPIA.

To access the data, click or select the words “Appendix 2.” 
In this study, 1.68% (5/298) of patients with eoHM harbored 
variants in LOXL3, in which 0.67% (2/298) of patients carried 
two null variants, 0.67% (2/298) of patients carried two 
heterozygous missense variants, and 0.34% (1/298) of patients 
carried one splicing change.

APPENDIX 3. RARE VARIANTS IDENTIFIED IN 298 
PATIENTS WITH EOHM AND 507 CONTROLS

To access the data, click or select the words “Appendix 3.” 
Note: NA, not available; Hetero, heterozygous; §, Samples 
from patients with other eye diseases, including glaucoma and 
retinal degeneration; #, Databases including 1000Genomes, 
Exome Variant Server, dbSNP, and Exome Aggregation 
Consortium. ⱡ, Allele frequency found in Exome Aggregation 
Consortium database but not found in any other databases.
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