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Abstract 

Background:  Myocardial deformation measured by strain is used to detect electro-
mechanical abnormalities in cardiac tissue. Estimation of myocardial properties from 
regional strain patterns when multiple pathologies are present is therefore a promising 
application of computer modelling. However, if different tissue properties lead to indis-
tinguishable strain patterns (‘degeneracy’), the applicability of any such method will be 
limited. We investigated whether estimation of local activation time (AT) and contractil-
ity from myocardial strain patterns is theoretically possible.

Methods:  For four different global cardiac pathologies local myocardial strain pat-
terns for 1025 combinations of AT and contractility were simulated with a compu-
tational model (CircAdapt). For each strain pattern, a cohort of similar patterns was 
found within estimated measurement error using the sum of least-squared differences. 
Cohort members came from (1) the same pathology only, and (2) all four pathologies. 
Uncertainty was calculated as accuracy and precision of cohort members in parameter 
space. Connectedness within the cohorts was also studied.

Results:  We found that cohorts drawn from one pathology had parameters with 
adjacent values although their distribution was neither constant nor symmetrical. In 
comparison cohorts drawn from four pathologies had disconnected components with 
drastically different parameter values and accuracy and precision values up to three 
times higher.

Conclusions:  Global pathology must be known when extracting AT and contractility 
from strain patterns, otherwise degeneracy occurs causing unacceptable uncertainty 
in derived parameters.

Keywords:  Activation time, Cardiac strain, Computer simulation, Contractility, Reverse 
engineering, System degeneration
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Background
In the healthy heart, deformation of the ventricular myocardium is relatively uniform. 
In contrast, many heart failure patients exhibit non-uniform myocardial deformation 
that may arise from heterogeneities in tissue properties such as activation time (AT) 
and contractility [1–3]. Non-invasively recorded myocardial deformation patterns may 
therefore be considered a source of important diagnostic information [4]. Determination 
of regional myocardial AT and contractility is of particular clinical relevance for heart 
failure patients with an indication for cardiac resynchronization therapy (CRT). Clini-
cal studies have shown that a patients response to CRT depends on both the amount 
and type of electrical activation delay at baseline [5], and on the amount and location of 
scarred tissue present [6, 7]. Furthermore, positioning of the left ventricular (LV) lead in 
or near scarred myocardium is associated with reduced benefit from CRT [8].

Currently, peak strain, peak strain rate, and onset time of shortening are used in the 
clinic to measure regional contractility and activation time from strain recordings. 
These parameters have limitations as they can be influenced by both activation time and 
regional changes in contractility [3]. Computational models of the heart can directly 
relate regional myocardial tissue properties to local myocardial deformation. It may 
therefore be possible to estimate local AT and contractility from clinical strain pattern 
by fitting a computational model to reproduce the observed myocardial deformation.

The most common use for fitting to date is patient-specific computer modeling [9–12]. 
Currently, the models are used for fitting contractility or AT but not for both together. 
Elaborate fitting techniques are used to reduce the number of required simulations 
because each simulation is time consuming. For fitting contractility a global approach 
is used based on LV ejection fraction or invasively measured LV cavity pressures and 
volumes [13–15]. Data assimilation approaches that fit regional tissue contractility using 
unscented Kalman filters [16, 17] or gradient-based minimization procedures [18, 19] 
through comparing simulated regional myocardial deformation with cine MRI have also 
been shown to be tractable, raising the possibility of extracting regional tissue properties 
via a model.

AT is not generally taken into account when fitting a model to regional mechanical 
deformation, and is normally determined based on invasive electrical mapping. Fitting 
of regional AT is known to carry a degree of uncertainty arising from measurement 
noise. Konukoglu et  al. [20] and Wallman et  al. [21] have addressed this uncertainty 
using Bayesian approaches for estimation of electrophysiological conductivity parame-
ters from endocardial activation maps. Statistical learning has also been used to estimate 
myocardial diffusivities based on the 12-lead electrocardiogram in patients with dilated 
cardiomyopathy [22].

Cardiac wall mechanics are dependent on many tissue and geometry parameters with 
non-linear relationships. The result may be that radically different sets of parameters can 
lead to indistinguishably similar local myocardial deformation patterns, given a realistic 
level of measurement error. The uncertainty in any extracted tissue parameters therefore 
risks becoming impractically large when fitting to real data. This degeneracy in model 
behavior with respect to model parameters is well-known throughout systems biology 
[23, 24], and has also been demonstrated in a cardiac context in electrophysiological 
models [25, 26].
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Our aim is to establish whether or not the estimation of local AT and contractility 
based on myocardial strain patterns is theoretically possible by investigating whether 
degeneracy in regional mechanical deformation patterns can occur when AT and con-
tractility are varied. We map degeneracy in AT and contractility using parameter space 
exploration and simulations of regional mechanical deformation using Hill based com-
putational model of cardiac mechanics and cardiovascular dynamics [27]. The model has 
previously been shown to provide simulations of myocardial strain in the failing heart 
with regional differences in AT and contractility [28, 29], and is a fast alternative for sim-
ulation of cardiac mechanics and cardiovascular system hemodynamics as compared to 
finite element-based cardiac models [27, 30, 31].

In this study, we determine parameter values that generate strain patterns similar to 
those arising from simulations using any other parameter values within the parameter 
space. Similarity is determined based on direct comparison within a realistic amount of 
measurement noise. Using connected component analysis, we determine whether these 
parameters lie in similar regions of parameter space as well as the size and shape of these 
regions. Our analysis is performed for four common global cardiac pathologies: global 
heart failure (HF) alone and with a severely hypocontractile region (HF + HYPO), a 
left bundle branch block activation pattern (HF + LBBB), and the combination thereof 
(HF + HYPO + LBBB).

Methods
General description of the computational model

Details on the underlying assumptions and concepts of the computational model (Cir-
cAdapt, http://www.circa​dapt.org) have been previously published elsewhere [25, 28]. 
Briefly, the model consists of different modules, including myocardial walls, cardiac 
valves, large blood vessels, systemic and pulmonary peripheral vasculature, and the peri-
cardium. These modules are coupled to represent the closed-loop cardiovascular sys-
tem (Fig. 1a). Mechanical interaction between the ventricles is incorporated through the 
equilibrium of tensile forces at the junction of the three myocardial walls i.e., the LV free 
wall, the interventricular septum, and the right ventricular (RV) free wall [30]. Active 
and passive myocardial tissue behavior is described using the sarcomere model outlined 
below. Global pump mechanics (in terms of cavity pressure and volume) of all four car-
diac chambers are related to local myofiber mechanics (in terms of Cauchy myofiber 
stress and natural myofiber strain) in the myocardial walls by the principle of conserva-
tion of energy [27]. Tissue anisotropy can be neglected during the calculation of fiber 
stress and strain following the one fiber model of Arts et al. [32].

Sarcomere model

The sarcomere model relates changes in AT and contractility to changes in sarcomere 
length, and hence strain. A modified three-element Hill model of myofiber contrac-
tion is used to calculate local fiber Cauchy stress and stiffness from natural fiber strain 
[30, 31] (Fig. 1a: right panel). Total sarcomere length (Ls) is the sum of the intrinsic sar-
comere length (Lsi) and the length of the series elastic element (Lse). Lsi represents the 
length the sarcomere would have if it were not under external load, and Lse represents 
the stretch of the sarcomere (in the cross bridges, titin, etc.) caused by an external load 

http://www.circadapt.org
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being applied. The contractility and the AT alter the behavior of the contractile element. 
The total active stress σf,act,T generated is given by,

where σf,act represents the capacity of the tissue to generate active stress. In this study, 
variations in contractility are achieved by changing σf,act. Lsi,Ref and Lse,iso are reference 
lengths. The variable C is a non-dimensional, phenomenological representation of the 
density of cross-bridge formation and its time-derivative is modeled as a function of Lsi 
and time t, accounting for experimentally observed length dependence of activation and 
force–velocity relation of cardiac myofibers [33, 34].

Changing local AT alters the onset time of rise of C and, hence, determines local myo-
cardial pre- and afterload. A full description of the sarcomere model has previously been 
published by Walmsley et al. [31].

Relating wall tension to fiber strain

In the CircAdapt model, cavity volume and pressure are related to tissue deformation 
through wall tension and curvature as published by Lumens et al. [30]. Each myocardial 
wall may be broken up into patches. Within each patch, tissue parameters and mechan-
ics are homogeneous, while parameters can differ between patches. The patches making 

(1)σf ,actT = σf ,actC
(

Lsi − Lsi,ref
) Lse

Lse,iso
,

(2)
dC

dt
= f (Lsi, t)

Fig. 1  a A schematic representation of the model (adapted from Lumens et al. with permission). The relation 
between the scales that are relevant to this study is also shown (LV wall, small tissue patch, myofiber). Altered 
mechanical deformation in the small patch taking up 0.3% of the volume of the left ventricular (LV) free 
wall is simulated by changing the activation time by 100 ms relative to the majority of the wall, and the 
contractility between 2 and 200% of the value for the majority of the LV free wall. b The wall tension traces 
from the LV free wall for the heart failure (HF), hypocontractility (HF + HYPO.), left bundle-branch block 
(HF + LBBB), and left bundle-branch block with hypocontractility (HF + LBBB + HYPO) simulations. c Myofiber 
strain in the small patch from each simulation, with parameters in the patch equal to those in the majority of 
the LV free wall
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up a wall are considered to act in series and so they share a common wall tension and 
curvature as described previously by Walmsley et al. [31]. Briefly, cavity volume allows 
calculation of wall area and curvature. The value of the intrinsic sarcomere length Lsi is 
used to estimate stiffness in each patch and the unloaded area of each segment. Sum-
ming segmental unloaded areas and stiffness gives the wall unloaded area and wall stiff-
ness. Wall area, wall stiffness, and wall unloaded area allow the calculation of the current 
wall tension that is common to all segments. The wall tension and curvature then allow 
calculation of transmural pressure through Laplaces law. Pressures determine flows and 
consequently the changes in cavity volumes. Furthermore, wall tension, segmental stiff-
ness, and unloaded segment area allow calculation of the current area of each segment, 
and therefore the current local strain and stress in each segment. These properties are 
used to update the intrinsic sarcomere length in each segment.

Baseline heart failure simulations

A simulation of normal cardiovascular mechanics and hemodynamics representing the 
healthy adult cardiovascular system under baseline resting conditions was obtained 
as described previously [29] and served as starting point for four different pathology 
simulations.

Firstly, a global heart failure (HF) simulation was obtained by decreasing myocardial 
contractility (f,act) of the three ventricular walls to 50% of its normal value, so that LV 
ejection fraction was 30%. All three ventricular walls were activated simultaneously, 
200  ms after the right atrium. The resulting HF simulation was then used as starting 
point for the remaining three patient simulations. Secondly, a failing heart with left bun-
dle-branch block (HF + LBBB) was simulated by delaying onset time of septal and LV 
free wall activation by 25 ms and 75 ms, respectively, relative to the RV free wall. Thirdly, 
a failing heart with regional LV hypocontractility (HF + HYPO) was simulated by sub-
dividing the LV free wall in two equally sized patches [31] and decreasing contractil-
ity of one patch to 20% of its normal value. Finally, a failing heart with both LBBB and 
hypocontractility (HF + HYPO + LBBB) was simulated by combining both pathologies 
as described above.

In all simulations, systemic peripheral resistance and total blood volume were adjusted 
to represent physiological homeostatic control, so that mean arterial pressure and car-
diac output were maintained at their resting values (92 mmHg and 4.2 L/min, respec-
tively). Heart rate was kept constant at 80 beats/min.

Local myofiber strain

To evaluate the effects of local AT and contractility on myocardial deformation, a 
small myocardial tissue segment, representing 0.3% of total LV wall mass, was created 
(Fig. 1a). The size of this segment was chosen so that changes of its tissue properties did 
not significantly affect global cardiac pump mechanics and hemodynamics. Therefore, 
the small segments mechanical boundary conditions, represented by the time course of 
wall tension, remained similar for all simulations within each of the four different base-
line HF simulations introduced in the previous section.

The myofiber strain Ef in the small patch was calculated directly from the sarcomere 
length Ls using
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where Ls,0 denotes the sarcomere length at the time of closure of the mitral valve. Sar-
comere length was calculated using a 2 ms temporal resolution. Since tissue mechanics 
within a patch are homogeneous, Ef represents the average myocardial strain from this 
region of tissue.

Parameter space exploration

For each baseline HF simulation, we performed 1025 different simulations, each with a 
different combination of AT and contractility in the small segment. AT was varied from 
− 100 to + 100 ms in 41 steps of 5 ms. The value of AT is given relatively to the time of 
activation of the large segment which means that when AT is negative the activation of 
small segment precedes the large segment and when AT is positive the activation of the 
small segment is delayed with respect to the large segment. In some patients with heart 
failure, for example those with LBBB, different regions of cardiac tissue may begin to 
contract considerably earlier or later than others. The contractility was scaled from 2 to 
200% of the large segments value, in 25 equidistant steps of 8.25%.

Strain pattern cohort

A realistic level of strain measurement error was emulated by determining a cohort of 
similar strain patterns. The similarity (D) of each strain pattern (i) to the reference par-
ent strain pattern (p) was calculated as

where the sum of the squared strain differences (Ef,p− Ef,i)2 is calculated from mitral 
valve closure (t = 1) until mitral valve opening (t = N). The process was repeated using 
every simulated strain pattern as the parent strain pattern. A cohort was defined by a 
parent strain pattern p with all strain patterns i that satisfy Di,p≤ 0.02. The basis of this 
value is discussed in “Discussion” section. B. For the HF pathology simulations, uncer-
tainty analysis was performed using two additional similarity thresholds (D ≤ 0.01 and 
D ≤ 0.03) to assess the influence of threshold level on cohort size. A description of the 
generation of a cohort is provided in Fig. 2.

Two different types of cohorts were assembled. In the first case, only strain pat-
terns generated from the same baseline pathology situation (HF, LBBB, HYPO, or 
LBBB + HYPO) as the parent strain pattern were included in the cohort. In the second 
case, strain patterns generated from the other baseline pathologies were also included 
in the cohort. The first case reflects the situation when the global cardiac pathology is 
known and the second when the global cardiac pathology is unknown.

Evaluation of uncertainty and degeneracy

The uncertainty of strain patterns in the parameter space was evaluated from the 
distance between the cohort members and parent strain pattern. Greater distance 

(3)Ef (t) =
Ls(t)

Ls,0
− 1

(4)Dp,i =

√

∑N
t=1

(

Ef ,p,t − Ef ,i,t
)2

N
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represents a larger uncertainty in how well a given strain pattern uniquely represents 
one set of parameters. The uncertainty was evaluated using both accuracy and precision, 
which were calculated for each parent strain pattern for AT and contractility, separately. 
The accuracy was calculated as the absolute difference between the parameter value of 
the parent strain and the average parameter value of the corresponding cohort members 
The precision was calculated as the standard deviation of the parameter values within 
the cohort.

We used connected component analysis (Matlab, The MathWorks Inc., Natick, Massa-
chusetts, USA) to determine whether all parameters in the cohort were adjacent, mean-
ing that all cohort members differed by not more than one parameter step from at least 
one another member from the cohort, i.e. ± 5 ms AT and 8% contractility, respectively.

Results
Figure 3 demonstrates that simulations of local changes of contractility or onset time of 
activation could produce strain patterns similar to those clinically measured in patients 
with myocardial infarction (MI) and left bundle branch block (LBBB), respectively. The 
LBBB and MI data were originally published by Risum et al. [2] and Smiseth et al. [4], 
respectively. They measured longitudinal strains with speckle-tracking echocardiog-
raphy (4-chamber view). Measurements from the patient with MI are compared with 
simulations of various levels of contractility and zero activation delay, while the LBBB 
measurements are compared with simulations of various activation times and normal 
contractility. In MI patient, for all five and in LBBB patient for four out of six measured 
strain patterns a matching simulation was found.

Uncertainty within one global cardiac pathology

For the HF condition, all 1025 simulated strain patterns from the small segment are 
shown as shaded background signals in Fig.  4 (Strain pattern representation). The 

Fig. 2  A graphical explanation of the definition of a cohort (yellow) for a given parent strain pattern (orange). 
a The cohort’s location in parameter space. The red and blue points highlight an example cohort member 
and non-member, respectively. b The strain patterns arising from the parameters highlighted in a. The time 
axis goes from mitral valve closure to mitral valve opening. c The corresponding squared-difference between 
the parent strain pattern and all other strain patterns at each time point
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top panel of Fig. 4 shows five representative points in the parameter space with their 
cohort parameter component in yellow. The corresponding strain patterns are plotted 
in yellow in the bottom panel of Fig. 4.

Connected component analysis showed that the parameters in all cohorts form one 
connected component (island) in the parameter space (Fig. 4: top panel). The cohorts 
were not symmetrically distributed around the parent parameter set, and the shape 
of each cohort was different. The shape of cohorts 1 and 4 (low contractility) in the 
parameter space was elongated along the AT axis relative to the contractility axis, 
which indicates higher uncertainty in AT as compared to contractility. In contrast, 
the shape of cohorts 2 and 5 (high contractility) was elongated along the contractil-
ity axis relative to the AT axis, which indicates higher uncertainty in contractility. 
The cohort number 3, which is centered on the baseline simulation with standard 
AT and contractility has circular shape, thus uncertainty of AT and contractility is 
similar near the baseline parameters (AT = 0 ms, Contractility = 100%). Cohorts from 
different regions of the parameter space generally have distinctively different shapes. 
Consequently, the accuracy and precision were different for each location in the 
parameter space. Among baseline HF simulations (HF, HF + HYPO, HF + LBBB and 
HF + LBBB + HYPO) the shapes of cohort parameter components were similar. The 

Fig. 3  Comparison of simulated strain patterns (solid lines) with measured strain patterns (dotted lines) from 
patients with myocardial infarction (MI; upper panel) or left bundle branch block (LBBB; lower panel). Colored 
solid lines indicate the best match simulations. Note that the time and strain axes are scaled differently for 
measurements and simulations to facilitate qualitative comparison of strain patterns
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shapes of all cohort components in the parameter space and the corresponding strain 
patterns are shown for all four baseline simulations in Additional files 1, 2, 3, 4.

Mean size of the cohorts depends on the measurement error. By tripling the meas-
urement error from ≤ 0.01 to ≤ 0.03 the cohort size increased roughly 6 folds from 
13 to 83 members. For baseline simulations, mean cohort size at measurement 
error ≤ 0.02 was 44, mean uncertainty of AT was 8.3  ms ± 17  ms (accuracy ± preci-
sion) and mean uncertainty of contractility was 6% ± 14%. The mean values for each 
individual baseline simulation are shown in Table 1.

Fig. 4  Parameter space (top) and strain pattern (bottom) representations of cohorts (yellow) generated by 
five (1–5) selected parent strain patterns (orange) for the global HF pathology. The cohorts were generated 
using a threshold of 0.02. Cohorts 1 and 4 have a small overlap region in the parameter space. Each cohort 
has a different shape and size. In the strain pattern representation, all 1025 simulated strain patterns from the 
HF pathology are shown as a light coloured background. The shapes of all cohorts in the parameter space are 
shown for all global pathologies in Additional files 1, 2, 3, 4
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The distribution of the uncertainty and the cohort size across the parameter space is 
shown in Fig.  5 for the global HF simulation. These distributions were similar for the 
HF + LBBB, HF + HYPO, and HF + LBBB + HYPO cases. In general, the following basic 
characteristics were observed: the cohorts (Fig.  5a) tended to contain more members 
when the AT was >+ 50 ms, or when contractility was low; higher accuracy and preci-
sion of AT were associated with higher contractility values and lower AT, as indicated by 
the darker region in the upper-left hand corners in the accuracy and precision plots in 
Fig. 5c; higher accuracy and precision of contractility were associated with low contrac-
tility when AT was > − 50 ms or < + 50 ms, as illustrated by the dark regions in the mid-
dle of the lower halves of the accuracy and precision plots in Fig. 5d.

Uncertainty among all four global cardiac pathologies

When including all strain patterns from all four pathologies simulated, the cohorts were 
larger and uncertainty was up to three times greater (Table  2) as compared to when 
only one baseline HF simulation was considered (Table 1). By tripling the measurement 
error from ≤ 0.01 to ≤ 0.03 the cohort size increased ninefold from 16 to 152 members. 
For baseline simulations, mean cohort size at measurement error ≤ 0.02 was 83, mean 
uncertainty of AT was 18.6 ms ± 26.1 ms (accuracy ± precision) and mean uncertainty of 
contractility was 13.2% ± 20.2%.

Figure 6 shows four examples of combined cohorts each with a parent strain pattern 
from one of the four HF simulations (Fig. 5a–d: black points). The parent strain pattern 
of the cohort in Fig. 6a is the same as the one for cohort 3 in Fig. 4, both belonging to the 
global HF simulation. While the HF component is the same in both figures, the cohort 
in Fig. 6a contains additional components composed of strain patterns obtained from all 
additional three pathologies. The example shown in Fig.  6c demonstrated degeneracy 
in the AT and contractility values that generated similar strain patterns when multiple 
pathologies were considered, using an error threshold of ≤ 0.02. The degeneracy can be 
appreciated from the non-connected components in Fig. 6c where two groups of simu-
lations with drastically different parameter sets yield similar strain patterns. In Fig. 6c, 
a parent strain from the HF + LBBB simulation (orange) with AT = − 5  ms and con-
tractility = 35% is within measurement error ≤ 0.02 similar to a dislocated group of HF 
simulations (yellow) with drastically different parameters: mean AT = − 65 ms and mean 
contractility 88%.

Table 1  Mean uncertainty in  parameter space within  one global cardiac pathology (C: 
contractility, *absolute value)

Parent strain Meas. Cohort Accuracy Accuracy Precision Precision
Pathology Error Size AT* (ms) C* (%) AT (ms) C (%)

HF ± 0.01 13.1 4.6 2.3 10.6 7.7

± 0.02 43.4 8.2 5.2 16.9 13.8

± 0.03 83.1 11.6 8.3 22.0 18.9

HF + HYPO ± 0.02 46.3 9.2 5.3 18.2 13.3

HF + LBBB ± 0.02 41.0 7.2 5.9 16.1 14.0

HF + LBBB + HYPO ± 0.02 45.0 8.7 5.8 17.9 13.8
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The uncertainty distribution plots in Fig.  7 show that uncertainty as measured by 
accuracy and precision is distributed differently for each of the underlying pathol-
ogies. In all four pathologies, the uncertainty in AT was highest when contractility 
was low (< 100%). For the HF and HF + HYPO conditions, uncertainty in AT was 

Fig. 5  a The total size of the cohorts generated from each strain pattern in parameter space. Brighter 
colors indicate larger cohorts. The parameter scale determines the value of the colour bar in each plot (see 
title of each plot). b A diagrammatic representation of accuracy and precision. c, d Uncertainty in AT and 
contractility, respectively, as evaluated by accuracy and precision. Brighter colors indicate lower accuracy or 
precision. The parameter space shown in all plots was narrowed to fit the range from − 75 to 75 ms and 25% 
to 175% for AT and contractility, respectively, to prevent border effects from affecting the results
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highest when the tissue was early activated (AT < 0 ms), whereas for HF + LBBB and 
HF + LBBB + HYPO uncertainty was highest when the tissue is delayed in activation 
(AT > 0  ms). The uncertainty in contractility, in terms of accuracy, was different for 
each of the underlying pathologies. In contrast, precision of contractility was simi-
larly distributed over the parameter space for all four pathologies, and tended to be 
lower where AT was earlier and contractility was higher.

Table 2  Mean uncertainty in  parameter space within  combined four global cardiac 
pathologies (C: contractility, *absolute value)

Parent strain Meas. Cohort Accuracy Accuracy Precision Precision
Pathology Error Size AT* (ms) C* (%) AT (ms) C (%)

HF ± 0.01 16.2 8.7 7.8 14.9 14.0

± 0.02 76.6 16.4 14.9 21.7 21.1

± 0.03 152.2 19.2 20.0 26.0 27.3

HF + HYPO ± 0.02 87.7 17.2 10.3 27.7 21.0

HF + LBBB ± 0.02 81.6 22.5 13.8 25.3 19.7

HF + LBBB + HYPO ± 0.02 86.4 18.3 14.0 29.5 19.1

Fig. 6  a–d Four cohorts obtained when allowing strain patterns from all four global cardiac pathologies 
to be include in the cohort. The parent strain pattern (black) is surrounded by a component with same 
pathology as the parent strain pattern. a HF (yellow), b HF + HYPO (orange/red), c HF + LBBB (orange), d 
HF + LBBB + HYPO (red). The cohorts also contain strain patterns arising from other pathologies, shown 
in their corresponding color. Some of the resulting components are not connected to the component 
generated by the original pathology. All 4100 parent strain patterns and their corresponding cohorts are 
shown in Additional files 1, 2, 3, 4
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Discussion
In this computational study, we found that when the global cardiac pathology is known, 
local myocardial strain patterns uniquely represent realistic values of activation time and 
contractility. Thus no theoretical limitation was found for extracting local tissue proper-
ties from local strain measurements. When the global pathology is not known, however, 
the system becomes degenerated and strain patterns can be similar despite large differ-
ences in the tissues AT and contractility. Consequently the uncertainty of AT and con-
tractility becomes large which makes extraction of tissue parameters impractical.

Our study confirms that any methodology used for extraction of mechanical and elec-
trical myocardial tissue properties from local deformation patterns requires a priori 
setting of model boundary conditions representing the patients global pathology, such 
as width and morphology of the QRS complex or LV ejection fraction. Even when the 
global pathology is known and taken into account, large heterogeneities in accuracy and 

Fig. 7  The distribution of uncertainty in AT and contractility when strain patterns from other global HF 
simulations are included in each cohort are shown for each of the four global HF simulations (HF, HF + HYPO, 
HF + LBBB, and HF + LBBB + HYPO). Brighter colors indicate lower accuracy or precision. The parameter scale 
determines the value of the color bar in each plot (see title of each plot). The parameter space shown in all 
plots was narrowed to − 75 ms to 75 ms and 25% to 175% for AT and contractility, respectively, to prevent 
border effects from affecting the results
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precision exist across the parameter space. For example, late-activated regions will be 
more difficult to detect when the tissue is also hypocontractile.

Scalability of proposed parameter space exploration technique

Our findings would be challenging to reproduce using a geometrically detailed finite-
element modelling approach due to the large number of simulations required (> 1000 
per global pathology). By using the CircAdapt model, with its simplified geometry and 
consequently faster simulation speed, we were able to perform the 1025 different sim-
ulations of cardiac mechanics and hemodynamics per global pathology in < 10  h on a 
regular PC (64 bit 2.7 GHz CPU and 8 GB RAM). In this study, only two tissue prop-
erties were varied that are known to be relevant for the cardiac pathology in patients 
receiving CRT for heart failure treatment. The number of simulations grows exponen-
tially with the number of studied parameters and could thus become impractical when 
including additional parameters. Meta-modelling numerical techniques for parameter 
space exploration can be applied to circumvent this issue. Multivariate regression [35, 
36], data-driven reduction [37] and Bayesian sensitivity analysis [38] can all reduce the 
number of required simulations while preserving parameter space exploration. Efficient 
sampling schemes such as Latin hypercube sampling and polynomial chaos expansions 
can also be used to reduce the number of simulations required when exploring model 
behavior across a high-dimensional parameter space [39, 40].

Another problem which emerges with increased number of studied parameters is 
difficult to visualize all of the different characteristics of the studied parameter space. 
While two parameters can be presented in a 2D graph, three present a challenge, any 
more than three parameters would need to be approached differently, for example using 
dimensional stacking [41]. Manifold learning could help reduce the dimensionality of the 
output space of the model, by building a reduced-dimensional basis for it [42]. Statistical 
learning could then allow the definition of a surrogate model, which would help to infer 
the properties of the input/output map. In this study, we provided videos as Additional 
files 1, 2, 3, 4 to visualize parameter uncertainty and the corresponding strain pattern 
cohorts for each simulated pathology.

Appropriateness of assumed measurement noise

The similarity of two simulated strain patterns was quantified as the squared differ-
ence between the two patterns, averaged over all time points within a predefined sys-
tolic range. All strain values in this range were therefore assumed equally important for 
determining similarity. In the future, a more selective analysis of specific strain charac-
teristics could be considered to improve accuracy and precision for strain-based param-
eter estimation.

The value of the similarity threshold used in this study (Di,p≤ 0.02) can be considered 
an absolute strain error of ± 2%. A recent study in subjects with normal cardiac function 
that compared global longitudinal strain measurements obtained using nine commercial 
echocardiographic deformation imaging devices [43] reported intra-observer and inter-
observer variabilities of global longitudinal strain ranging from 0.9 to 1.7% in absolute 
strain %points. Furthermore, another study using MRI-tagging to measure LV defor-
mation reported inter-study variability in peak systolic circumferential strain of ± 1.9% 
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in absolute strain %-points [44]. Our 2% similarity threshold thus represents a realistic 
level of strain measurement error.

An additional potential error that we did not take into account in this study is sig-
nal drifting. Typically, the R-top or onset of the QRS complex on the ECG is used as 
the reference point of zero strain, which approximately corresponds to mitral valve clo-
sure. From the reference point onwards the strain measurement can accumulate residual 
error due to signal drifting that can be up to a relative error of 10% by the time of peak 
systolic strain [45].

Model of cardiovascular system dynamics

The simulation results presented in this study should be interpreted as the behavior of a 
single Hill-type myofiber model (the small element) embedded in a larger model of the 
heart and circulation. In fact, the mechanical boundary conditions (tension) felt by the 
myofiber model can be provided by other models of the heart. Therefore, our results are 
likely to apply to other, more complex, models of the heart and circulation provided they 
use a similar Hilltype model of myofiber mechanics [13–15]. Various studies have shown 
that the product of simulations of local myocardial tissue mechanics and global cardiac 
pump function generated by the used model can be found in measurements of dyssyn-
chronous heart failure [3, 28, 29, 31, 46].

Clinical implications

Our study reiterates that AT and contractility interact to determine regional myocardial 
strain. AT may be poorly determined in regions where contractility is low, and regions of 
relatively high contractility may also be hard to distinguish from one another. Our simu-
lations support the combination of electrical and mechanical measurements in order to 
reduce the uncertainty in the parameters to be estimated. Furthermore, global mechani-
cal interactions between ventricular walls and between regions within the ventricular 
walls should be considered when examining regional strain curves.

This study is also a step towards reliable extraction of mechanical and electrical myo-
cardial tissue properties from noninvasive myocardial deformation measurements using 
a model of cardiac mechanics. Electromechanical simulation-based mapping of local 
ventricular tissue properties, such as AT and contractility, would enable the clinician to 
characterise the patients complex heterogeneity of pathological electro-mechanical tis-
sue substrates and to optimise CRT delivery by personalising pacing therapy based upon 
the individual patients underlying myocardial pathology.

Conclusion
In this simulation study we demonstrated that similarity of local myocardial strain pat-
terns implies similarity of underlying local activation time and contractility, provided 
that the global pathological condition is known. These results suggest that we found no 
theoretical limitation for simulation-based mapping of local myocardial activation time 
and contractility from myocardial deformation measurements however, heterogeneous 
distribution of parameter uncertainty throughout the evaluated parameter space should 
be considered. In contrast, when the global cardiac pathology is not known, similarity of 
local myocardial strain patterns does not guarantee similarity of underlying local tissue 
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parameters. The relation can become degenerate, with different regions of parameter 
space producing similar strain patterns. The result is a theoretical constraint on param-
eter extraction from myocardial deformation due to large uncertainty in the derived 
parameters.

Additional files

Additional file 1. Video of cohorts obtained when strain patterns are sourced from all four global cardiac patholo-
gies, while parent strain is sourced from HF + HYPO simulation (black dot in parameter space) and runs throughout 
all 1025 values in the parameter space. The colours of cohort components in the parameter space (left) and strain 
pattern representation (right) correspond to different global cardiac pathologies: HF (yellow), HF + HYPO (orange/
red), HF + LBBB (orange) and HF + LBBB + HYPO (red). Note that cohort members cannot be distinguished in 
strain pattern representation and that fragmentation of a cohort composition in parameter space signifies system 
degeneracy.

Additional file 2. Video of cohorts obtained when strain patterns are sourced from all four global cardiac patholo-
gies, while parent strain is sourced from HF + LBBB + HYPO simulation (black dot in parameter space) and runs 
throughout all 1025 values in the parameter space. The colours of cohort components in the parameter space (left) 
and strain pattern representation (right) correspond to different global cardiac pathologies: HF (yellow), HF + HYPO 
(orange/red), HF + LBBB (orange) and HF + LBBB + HYPO (red). Note that cohort members cannot be distinguished 
in strain pattern representation and that fragmentation of a cohort composition in parameter space signifies system 
degeneracy.

Additional file 3. Video of cohorts obtained when strain patterns are sourced from all four global cardiac patholo-
gies, while parent strain is sourced from HF + LBBB simulation (black dot in parameter space) and runs throughout 
all 1025 values in the parameter space. The colours of cohort components in the parameter space (left) and strain 
pattern representation (right) correspond to different global cardiac pathologies: HF (yellow), HF + HYPO (orange/
red), HF + LBBB (orange) and HF + LBBB + HYPO (red). Note that cohort members cannot be distinguished in 
strain pattern representation and that fragmentation of a cohort composition in parameter space signifies system 
degeneracy.

Additional file 4. Video of cohorts obtained when strain patterns are sourced from all four global cardiac patholo-
gies, while parent strain is sourced from HF simulation (black dot in parameter space) and runs throughout all 1025 
values in the parameter space. The colours of cohort components in the parameter space (left) and strain pattern 
representation (right) correspond to different global cardiac pathologies: HF (yellow), HF + HYPO (orange/red), HF 
+ LBBB (orange) and HF + LBBB + HYPO (red). Note that cohort members cannot be distinguished in strain pattern 
representation and that fragmentation of a cohort composition in parameter space signifies system degeneracy.
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