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High-dynamic-range (HDR) image has a wide range of applications, but its access is

limited. Multi-exposure image fusion techniques have been widely concerned because

they can obtain images similar to HDR images. In order to solve the detail loss of

multi-exposure image fusion (MEF) in image reconstruction process, exposure moderate

evaluation and relative brightness are used as joint weight functions. On the basis of the

existing Laplacian pyramid fusion algorithm, the improved weight function can capture

the more accurate image details, thereby making the fused image more detailed. In 20

sets of multi-exposure image sequences, six multi-exposure image fusion methods are

compared in both subjective and objective aspects. Both qualitative and quantitative

performance analysis of experimental results confirm that the proposed multi-scale

decomposition image fusion method can produce high-quality HDR images.

Keywords: high dynamic range image, multi-scale decomposition, multi-exposure images, image fusion,

Laplacian pyramid (LP)

1. INTRODUCTION

Due to the limited dynamic range of imaging equipment, it is impossible for existing imaging
equipment to capture all the details in one scene with a single exposure. Therefore, underexposure
or overexposure often occurs in daily shooting, which seriously affects the visualization of images
and the display of key information. High-dynamic-range (HDR) imaging techniques overcome this
limitation, but most of currently used standard monitors use low dynamic range (LDR) (Ma et al.,
2015a). So, a tone mapping process is required to compress the dynamic range of HDR images
for display after acquiring HDR images. Multi-exposure image fusion (MEF) methods use a cost-
effective way to solve the dynamic range mismatch between HDR imaging and LDR display. Source
image sequences with different exposure levels are taken as input and the brightness information
in accordance with the human visual system (Ma et al., 2017) is fused with them to generate HDR
images with rich information and sensitive perception.

In recent years, many MEF algorithms have been developed. Like multi-source image fusion
(Jin et al., 2021a), MEF algorithms are usually divided into four categories (Liu et al., 2020):
spatial domain methods, transform domain methods, the combination of spatial domain and
transform domain methods and deep learning methods (Jin et al., 2021b). This article mainly
studies the MEF method in spatial domain,these methods mainly focus on providing the weighted
sum of the input exposures image to obtain the fused image. Different MEF methods use different
techniques to obtain the suitable weight map. Li et al. (2013) obtained the corresponding base and
detail layers by decomposing the source image in two scales, and then processed them separately
to obtain the final fusion image. Liu and Wang (2015) applied dense scale invariant feature
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transform (SIFT) (Liu et al., 2016) to obtain both contrast
and spatial consistency weights based on local gradient
information. Mertens et al. (2010) applied multi-resolution
exposure sequences to Laplacian pyramid-based image fusion.
The weighted average value was first calculated from the
weighted values determined by contrast, saturation and good
exposure, and then applied to obtain the pyramid coefficients.
Finally, image fusion was achieved by reconstructing the
obtained pyramid coefficients. Shen et al. (2014) proposed an
exposure fusion method based on hybrid exposure weights and
an improved Laplacian pyramid. This method considers the
gradient vectors between different exposure source images, and
uses an improved Laplacian pyramid to decompose input signals
into both base and detail layers. Shen et al. (2011) proposed
a probability model of MEF. According to the two quality
indicators of both local contrast and color consistency of source
image sequences, the generalized random walk framework was
first used to calculate the optimal probability set. Then, the
obtained probability set was used as the corresponding weights
to realize image Fusion. Fei et al. (2017) applied an image
smoothing algorithm based on weighted least squares to MEF
for achieving detail extraction of HDR scenes. The extracted
detail information was used in the multi-scale exposure fusion
algorithm to achieve image fusion. So, fused images with rich
colors and detailed information can be obtained. Li and Kang
(2012) proposed a fusion method based on weighted sum. Firstly,
three image features composed of local contrast, brightness and
color differences are measured to estimate the weight, and then
the weight map is optimized by recursive filter. Zhang and
Cham (2012) proposed a simple and effective method, which
uses gradient information to complete multi exposure image
synthesis in static and dynamic scenes. Given multiple images
with different exposures, the proposed method can seamlessly
synthesize them under the guidance of gradient based quality
evaluation, so as to produce a pleasant tone mapped high
dynamic range image. Ma et al. (2017) proposed a method based
on image structure block decomposition, which represents the
image block with average intensity, signal intensity and signal
structure, and then uses the intensity and exposure factor of
the image block for weighted fusion, which can be used for
both static scene fusion and dynamic scene fusion. Moriyama
et al. (2019) proposed to use the light conversion method of
preserving hue and saturation to generate a new multi exposure
image for fusion, realize brightness conversion based on local
color correction, and obtain the fused image by weighted average
(weight is calculated by saturation). Wang and Zhao (2020)
proposed using the super-pixel segmentation method to divide
the input image into non overlapping image blocks composed
of pixels with similar visual attributes, decompose the image
block into three independent components: signal intensity, image
structure and intensity, and then fuse the three components
respectively according to the characteristics of human visual
system and the exposure level of the input image. Qi et al.
(2020) used the exposure quality a priori to select the reference
image, used the reference image to solve the ghosting problem
in the dynamic scene in the structural consistency test, and then
decomposed the image by using the guidance filter, and proposed

a fusion method combining spatial domain scale decomposition,
image block structure decomposition and moderate exposure
evaluation. Li et al. (2020) proposed a multi exposure image
fusion algorithm based on improved pyramid transform. The
algorithm improves the local contrast information of the image
by using the adaptive histogram equalization algorithm, and
calculates the image fusion weight coefficient with good contrast
information, image entropy and exposure. Hayat and Imran
(2019) proposed a ghosting free multi exposure image fusion
technology based on dense sift descriptor and guided filter.
Ulucan et al. (2020) proposed a new, simple and effective still
image exposure fusion method. This technique uses weight map
extraction based on linear embedding and watershed masking.
Xu et al. (2021). Proposed a new multi exposure image fusion
method based on tensor product and tensor singular value
decomposition. A new fusion strategy is designed by using tensor
product and t-svd. The luminance and chrominance channels
are fused respectively to maintain color consistency. Finally, the
chrominance and luminance channels are fused to obtain the
fused image.

Both multi-scale decomposition method and fusion strategy
of multi-scale coefficients determine the performance of the
image fusion framework based on multi-scale decomposition.
Pyramid transformation is a commonly used multi-scale
decomposition method. Due to different scales and resolutions,
the corresponding decomposition layer has different image
feature information. In addition, the weight function design of
feature extraction plays a decisive role in the final fusion result.
Therefore, this article, proposes a fast and effective image fusion
method based on improved weight function. The fusion weight
map is calculated through the evaluation of exposure moderation
and relative brightness. Combined with pyramid multi-scale
decomposition, images with different resolutions are fused to
generate the required high dynamic range image.

The rest of this article is organized as follows. The second
section describes the overall process of the fusion algorithm; The
third section is a detailed explanation of the weight function; The
fourth section describes the process of image Gaussian pyramid
decomposition and Laplace pyramid decomposition; The fifth
section is the experimental results and analysis; The sixth section
is the summary of this article.

2. WORKFLOW OF IMAGE FUSION
ALGORITHM

MEF aims to generate an image containing the best pixel
information from a series of images with different exposure
levels. The pixel-based MEF performs weighted image fusion
as follows.

FI(x, y) =

N∑

n=1

Wn(x, y)In(x, y) (1)

where FI represents the fusion image, (x, y) represents pixel
coordinates, N represents the number of images, In represents
the pixel intensity of the nth image, and Wn represents the

Frontiers in Neurorobotics | www.frontiersin.org 2 March 2022 | Volume 16 | Article 846580

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xu et al. Multi-Exposure Image Fusion

FIGURE 1 | The workflow of the proposed image fusion based on improved weight function.

pixel weight of the nth image. The workflow of the proposed
image fusion based on improved weight function is shown
in Figure 1. Equation (7), Equation (8) and other symbols in
Figure 1 correspond to the formula below, indicating that the
operation corresponding to the equation has been performed.
The symbol before Equation (12) in Figure 1 represents the
multiplication sign.

3. WEIGHT FUNCTION

As the core part of the proposed image fusion method, a
reasonable weight function is designed based on the appropriate
evaluation of exposure levels (Shen-yu et al., 2015). Gray value,
as an important measure of image visible information, usually
determines the fusion weight based on the distance between
image gray and 0.5, but this single index will cause the loss of
information of the fused image and some areas of the image
are dark. Using the Evaluation of Moderate Exposure, the fusion
weight is determined by the gray mean value of the multi
exposure image at a certain point and the distance from 0.5
to retain more image information. Additionally, the relative
brightness is applied to measure the corresponding weight.

3.1. Evaluation of Moderate Exposure
In the evaluation process, the brightness and darkness changes
of different pixels obtained by the limited sampling of a scene
are analyzed, and each image pixel value in the scene under the
optimal moderate exposure is estimated. The differences between
the pixel values of each input image and the corresponding
optimal pixel values are compared to evaluate moderate
exposure. The evaluation value can be directly used as the
corresponding weight value for image fusion. For N images with
different exposures from the same scene, In(x, y) represents the

pixel value at the coordinate (x, y) of the nth image, and the
evaluation indicator of moderate exposure is the sum of weights
used to obtain the fused image.

W1,n(x, y) = exp{−
(In(x, y)− µ(x, y))2

2δ2
} (2)

µ(x, y) = (1− β) ∗ 0.5+ β ∗ I(x, y) (3)

I(x, y) =
1

N

N∑

n=1

In(x, y) (4)

In Equation (2), µ(x, y) represents the optimal pixel value of the
pixel at the coordinate (x, y) of the image, which is estimated
by Equation (3). On one hand, the value of µ(x, y) should be
around 0.5, which can ensure ideal human visual experience.
On the other hand, in order to reflect the real-world light-
dark contrast information, it is necessary to approximate the
brightness information from the limited sampling of the scene.
Therefore, the average value of each pixel in the images with
different exposures is calculated by Equation (4). µ(x, y) is the
weighted sum of 0.5 and this average value. The weight factor β

is a balance parameter between detail information and light-dark
contrast information.

3.2. Relative Brightness
The evaluation indicator of moderate exposure cannot well
capture the information from dark areas of long-exposure images
or bright areas of short-exposure images. Therefore, the relative
brightness proposed by Lee et al. (2018) is added as another
weight indicator. Specifically, when the overall image is bright
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(long exposure), the relatively dark areas are given greater
weights. Conversely, when the overall image is dark (short
exposure), the relatively bright areas are given greater weights.
The average pixel intensity of the nth image is denoted as mn.
When In(x, y) is close to 1 − mn, the corresponding weight
should be relatively large. Therefore, the relative brightness can
be expressed as follows.

W2,n(x, y) = exp{−
(In(x, y)− (1−mn))

2

2δn
2

} (5)

In addition, when the adjacent exposed images and the input
images have relatively large differences, the different objects in the
two images are often in a good exposure state. Therefore, when
the average brightness mn of the nth image considerably differs
from the average brightness mn−1,mn+1 of adjacent images, a
larger δn value is given.α is a constant with a value of 0.75. δn
controls the weight according to the different mn values of the
image, which can be expressed as follows.

δn =





2α ∗ (mn+1 −mn), n = 1
α ∗ (mn+1 −mn−1), 1 < n < N
2α ∗ (mn −mn−1), n = N

(6)

Therefore, the final weight function can be expressed as follows.

Wn(x, y) = W1,n(x, y) ∗W2,n(x, y) (7)

4. MULTI-SCALE IMAGE DECOMPOSITION

Because the pixels of the image are closely related, it is more
reliable to use a wider range of pixels to calculate the fusion
weight. In addition, in the real world, objects have different
structures at different scales. This shows that if you observe
the same object from different scales, you will get different
results. Therefore, in the case of multi-scale decomposition, using
the image pyramid to calculate the result image will get better
fusion results.

Gaussian pyramid decomposition is first performed on
the weight map and the multi-exposure image sequences.
Then the Laplacian pyramid decomposition is applied to the
multi-exposure image sequences. After the Gaussian pyramid
and Laplacian pyramid of the image are fused between the
corresponding layers, the upper layer image of the fused pyramid
is up-sampled, and the up-sampled image is added to the lower
layer image to obtain an image with the equal size of the image to
be fused.

4.1. Gaussian Pyramid Decomposition
The Gaussian pyramid obtains a series of down-sampled images
through Gaussian smoothing and sub-sampling. Gaussian kernel
is first used to convolve the image of the l layer, and then all even

rows and columns are deleted to obtain the image of the l + 1
pyramid layer. The decomposition algorithm is shown as follows.

Gl(x, y) =
2∑

m=−2

2∑
n=−2

w(m, n)Gl−1(2x+m, 2y+ n)

(0 ≤ l ≤ Lev − 1, 0 ≤ x ≤ Cl − 1, 0 ≤ y ≤ Rl − 1)

(8)

where Gl is the image of the lth layer of the Gaussian Pyramid,
Cl, Rl is the total number of rows and columns of the lth layer
image, w(m, n) is the value of themth row and nth column of the
Gaussian filter template, Lev represents the number of Gaussian
pyramid layers, and the maximum decomposable number of
layers is log2[min(C0,R0)].

4.2. Laplace Pyramid Decomposition
The Gaussian pyramid obtained by Gaussian convolution and
downsampling often loses detailed image information. Therefore,
Mertens et al. (2010) introduced Laplacian pyramid to restore
detailed image information. The image of each layer of Gaussian
pyramid subtracts the predicted image obtained after the
upsampling and Gaussian convolution of the upper layer image
to obtain a series of difference images, which are the Laplacian
decomposition images. First, the upsampling process is expressed
as follows

expand(Ĝl(x, y)) = 4

2∑

m=−2

2∑

n=−2

Ĝl(
(x+m)

2
,
(y+ n)

2
)w(m, n)

(9)

Ĝl(
(x+m)

2
,
(y+ n)

2
) =

{
Gl(

(x+m)
2 ,

(y+n)
2 ), (x+m)

2 ,
(y+n)
2 ) ∈ z

0, else

(10)

where Z represents an integer, expand(Ĝl(x, y)) indicates that an
upsampling operation is performed on the lth layer of Gaussian
pyramid. As shown in Equation (11), the image Gl of the lth layer
of Gaussian pyramid subtracts expand(Ĝl(x, y)) to obtain the lth
layer image Ll containing detailed information.

Ll =

{
Gl − expand(Ĝl(x, y)), 0 ≤ l ≤ Lev − 1
GLev , l = Lev

(11)

The Laplace decomposition process of the image is shown in
Figure 2. In this article, the number of layers of image pyramid
is 7.

4.3. Image Fusion and Reconstruction
According to the above process, the Gaussian pyramid of the
weighted image and the Laplacian pyramid of multi-exposure
image sequences are first obtained, and then fused between the
corresponding layers.

FIl =

N∑

k=1

Wk,lLk,l, 0 ≤ l ≤Lev − 1 (12)
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FIGURE 2 | The Laplace decomposition process of the image.

FIl represents the fused image data of the lth layer. Wk,l

represents the lth layer data of the kth weighted image. Lk,l
represents the lth layer data of the Laplacian pyramid of the
kth multi-exposure image. Lev represents the total number of
pyramid layers. N represents the number of images. The upper
layer image of the fused pyramid is first upsampled, and then
expanded and added to the lower layer image to obtain an image
with the equal size of the image to be fused as follows.

H =

0∑

l=Lev−2

FIl + up(FIl+1) (13)

where FIl represents the lth layer image of the fused pyramid,
up represents upsampling, Lev represents the number of pyramid
levels, and H represents the final fusion image. The overall
workflow of the proposed method is shown in Algorithm 1.

5. EXPERIMENTAL RESULTS AND
ANALYSIS

20 sets of multi-exposure image sequences, involving
Arno,Balloons,Cave,ChineseGarden, etc., are applied to
comparative experiments. The proposed method is subjectively
and objectively compared with six existing MEF methods,
including MESPD (Li et al., 2021), GD-MEF (Zhang and Cham,
2012), Fmmr (Li and Kang, 2012), DSIFT (Liu and Wang, 2015),
GFF (Li et al., 2013), SPD-MEF (Ma et al., 2017) and PMEF (Qi
et al., 2020). All experiments were performed in the matlab2019
environment on an Intel I7 9750H@2.60Ghz laptop with 8.00GB
RAM. The relevant parameters are set to δ = 0.2, β = 0.5 and
α = 0.75.

5.1. Subjective Comparison
Firstly, experiments are carried out on the “Arno” scene, and the
fusion results of different algorithms are shown in Figure 3. It
is not difficult to see that when dsift processes the clouds in the
right sky, it is generally dark and can not capture the details of the
clouds well. The GFF and SPD algorithms, when dealing with the
bridge, have the problems of low brightness, resulting in the loss
of detail information and poor visual effect. GD, PMEF and the
algorithm proposed in this article can maintain the uniformity of

Algorithm 1 | Multi-exposure image fusion algorithm based on
improved weight function.

Input LDR image sequences Ik k = 1, 2, . . .N, N is the total number of

images, l represents the number of decomposition layers, (x, y)is the pixel

position

Output the fused image

1 Calculation of image fusion weights:
2 for each k ∈ [1,N] do

3 W(1,k)(x, y) = exp(−(Ik(x, y)− µk(x, y))
2/2δ2)

4 W(2,k)(x, y) = exp(−(Ik(x, y)− (1−mk))
2/2δ2n)

5 Wk(x, y) = W(1,k)(x, y)W(2,k)(x, y)

6 end for

7 Gaussian pyramid decomposition of source image sequences and weight

map:

8 for each k ∈ [1,N] do

9 for each l ∈ [0, Lev − 1] do
10 Wk,l(x, y) =

∑2
m=−2

∑2
n=−2 w(m, n)Wk,l(2x+m, 2y+ n)

11 Gk,l(x, y) =
∑2

m=−2

∑2
n=−2 w(m, n)Ik,l−1(2x+m, 2y+ n)

12 end for
13 end for

14 Laplace Pyramid decomposition of source image sequences:

15 for each k ∈ [1,N] do
16 for each l ∈ [0, Lev − 1] do
17 Ĝl((x + m)/2, (y + n)/2) ={

Gl(
(x+m)

2 ,
(y+n)
2 ), (x+m)

2 ,
(y+n)
2 ∈ z

0, else

18 expand(Ĝl(x, y)) = 4
2∑

m=−2

2∑
n=−2

Ĝl((x+m)/2, (y+ n)/2)w(m, n)

19 Ll =

{
Gl − expand(Ĝl(x, y)), 0 ≤ l ≤ Lev − 1

GLev , l = Lev
20 end for
21 end for
22 Image fusion reconstruction:

23 for each k ∈ [1,N] do

24 FIl =
∑N

k=1Wk,lLk,l, 0 ≤ l ≤ Lev − 1

25 end for
26 The fused image: H =

∑0
l=Lev−2 FIl + up(FIl+1)

the overall brightness of the image while retaining more details,
and the visual effect is excellent.

The experimental results of “Balloons” scene are shown in
Figure 4. The fusion results of GD, Fmmr and PMEF are dark.
The details of clouds at the sunset are well captured, which
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FIGURE 3 | Comparison of Arno scene experiment results of different methods.

FIGURE 4 | Comparison of Ballons scene experiment results of different methods.

means the details of the overexposed image areas can be well
captured. But the overall scene is dark, resulting in the detail
loss of underexposed image areas. The image fused by GFF has
a slight halo on the edge of the hot air balloon. Additionally, part
of the sky is dark and the image color is slightly distorted. The
sunset area of the image fused by SPD is abnormal. In addition,
the image color is seriously distorted, which seriously affects the
overall performance of the fused image. When comparing the
enlarged details, MESPD, GD, Fmmr, SPD, and PMEF have low
brightness, poor visibility and serious loss of details in this area.

In the experimental results of the “Kluki” scene, as shown
in Figure 5, the saturation of SPD and PMEF is too high,
resulting in some distortion of the color of the resulting image,
and poor retention of the details of the clouds in the sky;
Other algorithms retain the details of the clouds, and the visual
effect is good. In contrast, the fusion results obtained by the
proposed method and DSIFT consider the details of the bright
and dark areas of the scene. So, the corresponding colors are
real, the contrast is clear, and the visual performance of the
fused images is good. From the enlarged details of the trees
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FIGURE 5 | Comparison of kluki scene experiment results of different methods.

FIGURE 6 | Information entropy comparison of seven fusion methods.

on the left, dsift, SPD, and PMEF have the problems of low
brightness and high saturation, resulting in poor retention effect
of details.

5.2. Objective Evaluation Indicator Analysis
This article uses both structural similarity index (SSIM) and
image information entropy for objective evaluation. As shown
in Figure 6 and Tables 1, 2, the results confirm that the propose
method achieves good performance in both subjective and
objective evaluations. The abscissa in Figure 6 represents the

value of information entropy, and the abscissa in Figure 7
represents the value of structural similarity; In addition, the
ordinates of the two figures are the same: 1-20 represents
different multi exposure sequences, and 21 represents the
average value.

1) Image information entropy indicator comparison
Image information entropy is one of the important factors

that determine the final effect of image fusion. The larger the
information entropy, the more detailed information contained in
the experimental result graph; On the contrary, the smaller the
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TABLE 1 | Information entropy comparison of seven fusion methods.

Methods MESPD GD Fmmr DSIFT GFF SPD PMEF Proposed

1. Arno 7.679 7.258 7.175 7.581 7.343 7.490 7.498 7.424

2. Balloons 7.752 7.113 7.264 7.773 7.435 7.676 7.113 7.703

3. Cave 7.577 7.463 7.488 7.396 7.551 7.572 7.463 7.579

4. ChineseGarden 7.248 7.762 7.598 7.852 7.704 7.728 7.762 7.752

5. Church 7.601 7.565 7.693 7.838 7.744 7.774 7.565 7.737

6. Farmhouse 7.356 7.251 7.214 7.237 7.162 7.176 7.251 7.424

7. House 7.687 7.408 7.360 7.659 7.609 7.755 7.408 7.697

8. Kluki 7.312 7.603 7.620 7.696 7.618 7.801 7.603 7.809

9. Lamp 7.705 7.195 7.343 7.535 7.452 7.642 7.195 7.657

10. Landscape 7.720 7.655 7.303 7.322 6.938 7.460 7.655 7.305

11. Laurenziana 7.469 7.751 7.423 7.840 7.717 7.786 7.751 7.805

12. Lighthouse 7.458 7.384 7.413 7.292 7.167 7.645 7.384 7.283

13. MadisonCapitol 7.637 7.576 7.705 7.678 7.586 7.787 7.576 7.809

14. Mask 7.190 7.623 7.610 7.811 7.580 7.738 7.623 7.735

15. Office 7.728 7.473 7.236 7.236 7.473 7.507 7.473 7.387

16. Ostrow 7.694 7.382 7.105 7.122 7.356 7.460 7.382 7.342

17. Room 7.254 7.701 7.681 7.424 7.729 7.608 7.701 7.687

18. Set 7.639 7.394 7.092 7.347 7.255 7.438 7.394 7.150

19. Tower 7.672 7.576 7.579 7.675 7.657 7.646 7.576 7.676

20. Venice 7.584 7.701 7.430 7.513 7.571 7.861 7.701 7.387

21. Average 7.548 7.492 7.438 7.526 7.493 7.633 7.526 7.567

The bold value indicates the highest objective evaluation index value in this group of experiments.

TABLE 2 | Comparison of MEF-SSIM indexes of seven fusion methods.

Methods MESPD GD fmmr DSIFT GFF SPD PMEF Proposed

1. Arno 0.975 0.958 0.965 0.989 0.969 0.980 0.98 0.987

2. Balloons 0.959 0.893 0.945 0.968 0.948 0.965 0.965 0.970

3. Cave 0.984 0.964 0.961 0.972 0.978 0.948 0.969 0.980

4. ChineseGarden 0.987 0.982 0.982 0.993 0.984 0.985 0.986 0.989

5. Church 0.985 0.978 0.979 0.991 0.992 0.993 0.986 0.991

6. Farmhouse 0.970 0.971 0.977 0.976 0.985 0.984 0.977 0.978

7. House 0.972 0.865 0.926 0.964 0.957 0.898 0.941 0.953

8. Kluki 0.967 0.952 0.965 0.981 0.968 0.971 0.965 0.970

9. Lamp 0.968 0.972 0.972 0.973 0.942 0.993 0.983 0.965

10. Landscape 0.984 0.851 0.931 0.960 0.929 0.954 0.955 0.983

11. Laurenziana 0.98 0.982 0.976 0.989 0.987 0.990 0.982 0.986

12. Lighthouse 0.979 0.964 0.953 0.965 0.950 0.970 0.968 0.975

13. MadisonCapitol 0.980 0.932 0.918 0.973 0.968 0.977 0.973 0.980

14. Mask 0.987 0.975 0.982 0.992 0.979 0.988 0.981 0.990

15. Office 0.896 0.968 0.957 0.971 0.967 0.967 0.973 0.988

16. Ostrow 0.965 0.967 0.973 0.974 0.986 0.978 0.972 0.976

17. Room 0.976 0.975 0.973 0.990 0.960 0.988 0.984 0.980

18. Set 0.983 0.922 0.924 0.954 0.943 0.934 0.947 0.984

19. Tower 0.980 0.954 0.952 0.972 0.954 0.940 0.935 0.985

20. Venice 0.975 0.962 0.966 0.981 0.971 0.982 0.975 0.969

21. Average 0.973 0.949 0.959 0.976 0.966 0.969 0.970 0.979

The bold value indicates the highest objective evaluation index value in this group of experiments.

information entropy, the less detailed information contained in
the experimental result graph. The evaluation results are shown
in Figure 6 and Table 1. The multi exposure fusion algorithm

under multi-scale decomposition is slightly lower than the SPD
algorithm based on image block decomposition and better than
other algorithms. This is because the SPD algorithm based on
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image block decomposition avoids the partial loss of information
caused by up and down sampling in multi-scale decomposition,
and its entropy is better than the multi exposure fusion algorithm
under multi-scale decomposition. The calculation formula of
image entropy is as follows.

H =

255∑

i=0

Pi log pi (14)

Pi represents the proportion of pixels with gray value i in
the image.

2) MEF-SSIM comparison
This article uses the MEF quality evaluation model

(Ma et al., 2015b) for evaluation. The proposed method is
objectively compared with six existing MEF method. Natural
images usually contain object information of different scales.
Multi-scale can ensure the correlation between the pixels
of different scales and optimize image fusion. Structural
similarity as an index is used to measure the similarity
of two images. As shown in Figure 7 and Table 2, the
MEF method under multi-scale decomposition achieves
the best SSIM.

From the perspective of image composition, structural
information is defined as an attribute that reflects the structure
of objects in the scene independent of brightness and contrast.
Additionally, model distortion is treated as a combination of
three different factors, brightness, contrast, and structure. The
mean is used as an estimate of brightness. The standard deviation
is used as an estimate of contrast. The covariance is used as a
measure of structural similarity. All the definitions are shown
as follows.

SSIM(x, y) = [L(x, y)]α · [C(x, y)]β · [S(x, y)]γ (15)

L(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(16)

C(x, y) =
2δxδy + c2

δ2x + δ2y + c2
(17)

S(x, y) =
δxy + c3

δxδy + c3
(18)

L(x, y), C(x, y), and S(x, y) are the comparison results of image
brightness, contrast, and structure, respectively. µx and µy are
the mean values of image pixels. δx and δy are the standard
deviations of image pixel values. δx,y is the covariance of x and
y. c1, c2, and c3 are constants to avoid system errors when the
denominator is 0. α, β , γ used to adjust the weight of each
component, usually α=β=γ=1. The structural similarity index
is used for different scales, and the final image quality score is
obtained through Formula (19).

MEF − SSIM =
∑L

l=1
[SSIMl]

βl (19)

where L is the total number of scales and βl is the weight assigned
to the lth scale.

TABLE 3 | Ablation experiment of weight function.

Weight function Evaluation of

moderate

Exposure relative

brightness

Proposed

Entroy 7.513 7.525 7.567

MEF-SSIM 0.966 0.970 0.979

The bold value indicates the highest objective evaluation index value in this group

of experiments.

FIGURE 7 | Comparison of MEF-SSIM indexes of seven fusion methods.
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TABLE 4 | Comparison of image fusion efficiency of seven fusion methods.

Methods MESPD GD fmmr DSIFT GFF SPD PMEF Proposed

Average time(s) 4.974 0.983 1.090 1.569 0.691 1.361 2.814 0.327

The bold value indicates the highest objective evaluation index value in this group of experiments.

5.3. Ablation Experiment of Weight
Function
In order to prove that the weight function of two different feature
indexes, moderate exposure evaluation and relative brightness,
can make the multi exposure image fusion get better results. The
following ablation experiments were carried out in this article.
As shown in Table 3, the objective evaluation index of the fused
image obtained by the improved weight function in this article
performs well.

5.4. Comparison and Analysis of
Computational Efficiency
As shown in Table 4, The computational efficiency of the
multi exposure fusion algorithm based on the improved
weight function is better than the comparison algorithm. In
the multi-exposure fusion algorithm based on the improved
weight function, although the Laplace image pyramid is
used, in the continuous down sampling, the amount of
calculation increases only a little due to the doubling of the
number of pixels. In addition, because the weight calculation
method of this algorithm is simple and easy to calculate, it
does not need additional time. Therefore, the computational
efficiency of this algorithm is obviously better than other
comparison algorithms.

6. CONCLUSION

In this article, the weight function is improved, and the
weight map is calculated by using the evaluation of moderate
exposure and relative brightness. Pyramid-based multi-scale
decomposition is used to fuse images with different resolutions
to generate the final HDR image. The proposed method can
effectively capture the rich image details and solve the issues
such as splicing traces and border discontinuities in the fused
image, avoiding the generation of artifacts. Both MEF-SSIM and
image information entropy are used to evaluate the performance
of image fusion. Experimental results confirm that the proposed
method achieves good image fusion performance.
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