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During development, neurons establish inappropriate connections as they seek out their
synaptic partners, resulting in supernumerary synapses that must be pruned away.
The removal of miswired synapses usually involves electrical activity, often through
a Hebbian spike-timing mechanism. A novel form of activity-dependent refinement is
used by Drosophila that may be non-Hebbian, and is critical for generating the precise
connectivity observed in that system. In Drosophila, motoneurons use both glutamate
and the biogenic amine octopamine for neurotransmission, and the muscle fibers receive
multiple synaptic inputs. Motoneuron growth cones respond in a time-regulated fashion
to multiple chemotropic signals arising from their postsynaptic partners. Central to this
mechanism is a very low frequency (<0.03 Hz) oscillation of presynaptic cytoplasmic
calcium, that regulates and coordinates the action of multiple downstream effectors
involved in the withdrawal from off-target contacts. Low frequency calcium oscillations
are widely observed in developing neural circuits in mammals, and have been shown
to be critical for normal connectivity in a variety of neural systems. In Drosophila
these mechanisms allow the growth cone to sample widely among possible synaptic
partners, evaluate opponent chemotropic signals, and withdraw from off-target contacts.
It is possible that the underlying molecular mechanisms are conserved widely among
invertebrates and vertebrates.
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It is estimated that the nearly 1011 neurons of the human nervous system establish over 1014

synaptic connections (Azevedo et al., 2009; Kasthuri et al., 2015). To wire up a system of such
astonishing complexity requires mechanisms that are highly efficient and flexible. Rather than
uniquely specifying each synaptic connection, the developing nervous system can initially establish
connections that are characterized by supernumerary synaptic contacts, as widely observed
in neural networks. Inappropriate off-target synapses are subsequently pruned away through
activity-dependent mechanisms to yield a more precise and functional connectome (reviewed in
Katz and Shatz, 1996; Yamamoto and López-Bendito, 2012; Doll and Broadie, 2014; Koropouli and
Kolodkin, 2014; Arroyo and Feller, 2016). Errors in synaptic pruning are associated with several
neurological disorders, including autism and schizophrenia (Berridge, 2012; Tang et al., 2014;
Sekar et al., 2016).

In this review article, we examine synaptic refinement with a focus on the embryonic and larval
neuromuscular system of Drosophila, where some of the underlying molecular mechanisms have
been resolved (Carrillo et al., 2010; Vonhoff and Keshishian, 2017). This simple array of synapses
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is established by two distinct classes of motoneurons that use as
neurotransmitters either glutamate (Johansen et al., 1989) or the
biogenic amine octopamine (Monastirioti, 1999).

ACTIVITY DEPENDENT REFINEMENT

The refinement of neural connections occurs in vertebrates and
invertebrates, and has been extensively studied in the developing
visual system (reviewed in D’Orazi et al., 2014; Pratt et al.,
2016). Although activity-independent synapse elimination has
been observed in mouse retinal cells (Morgan et al., 2011;
Wei et al., 2011; Yonehara et al., 2011), activity-dependent
mechanisms play a crucial role in establishing precise network
connectivity (reviewed in Huberman et al., 2008; Cang and
Feldheim, 2013). Pioneering work by Hubel and Wiesel showed
that visual experience was required for the formation of ocular
dominance columns between axons of the lateral geniculate
nucleus (LGN) of the thalamus, and layer 4 neurons in primary
visual cortex (Wiesel and Hubel, 1963). The requirement for
neural activity in the segregation of visual projections was
subsequently tested using TTX eye injections in both cold
blooded vertebrates (Meyer, 1982), and in mammals (Shatz and
Stryker, 1988; Sretavan et al., 1988). Patterned neural activity
was also found to be essential for refining retinotopic map
projections at other visual centers, such as the superior colliculus
(McLaughlin et al., 2003). Activity-dependent refinement is
also involved in controlling the balance between excitatory and
inhibitory synapses, as found for the Xenopus optic tectum
(Akerman and Cline, 2007). Elsewhere activity is involved in
the elimination of supernumerary contacts at the vertebrate
neuromuscular junction (reviewed by Sanes and Lichtman,
2001), and for synapse elimination of climbing fiber inputs to
cerebellar Purkinje cells (reviewed by Purves and Lichtman, 1980;
Kano and Hashimoto, 2009).

The remodeling that occurs during synaptic refinement
suggests that electrical activity influences neurite growth or
retraction. The link between activity and growth is a general
feature of neural systems. For example, in Drosophila altered
levels of neural activity in embryonic olfactory projection
neurons (Prieto-Godino et al., 2012) and in larval and adult
motoneurons (Duch et al., 2008; Hartwig et al., 2008) affects
dendrite size and complexity, and thus directly influences
synaptic connections. Similarly, in larval motoneurons
manipulation of neural activity alters presynaptic NMJ size and
arbor complexity, and affects presynaptic bouton morphology
(Budnik et al., 1990; Zhong et al., 1992; Lnenicka et al., 2003;
Mosca et al., 2005; Berke et al., 2013).

MOLECULAR MECHANISMS UNDERLYING
REFINEMENT

How is neural activity linked to the cell biology of neuronal
growth and retraction? Depolarization elevates intracellular free
calcium (Ca2+) levels through voltage-gated calcium channels
(VGCCs). As a result, the mechanisms regulating synaptic
connectivity generally involve Ca2+-dependent effectors.
Ca2+-dependent signaling can influence early growth events,

such as the motility and exploration of the growth cone (Kater
and Shibata, 1994; Zheng and Poo, 2007; Rosenberg and Spitzer,
2011). In some cases this is due to the modulation of the growth
cone’s response to various exogenous chemotropic factors, such
as netrin-1-induced attraction, myelin-associated glycoprotein
(MAG)-induced repulsion (Ming et al., 2001), or Ephrin-A
induced repulsion of mouse retinal ganglion cells (Nicol et al.,
2007).

Within the cytoplasm, Ca2+ regulates the activity of various
GTPases (Jin et al., 2005), that in turn affect cytoskeletal
dynamics within the growing contact. GTPases serve as a
key molecular link between changes in free Ca2+ levels in
the growth cone due to activity, and subsequent responses
to chemotropic factors (Lowery and Van Vactor, 2009). One
potential mechanism linking neural activity and cytoskeletal
dynamics would involve the regulation of actin by the activity of
Rho GTPases. Rho is known to regulate ROCK function, which
in turn activates LIM Kinase (LIMK; Amano et al., 2010). LIMK
inhibits cofilin, an actin severing protein that promotes actin
recycling. Consistent with this hypothesis, LIMK is known to
regulate synaptic function in mice (Meng et al., 2002) as well as
NMJ growth in Drosophila (Ang et al., 2006).

A second molecular mechanism regulating activity-
dependent refinement involves interactions between Ca2+

and cyclic nucleotides such as cAMP and cGMP. Intracellular
cyclic nucleotide levels regulate chemotropic growth cone
turning (Lohof et al., 1992; Song et al., 1997; Nishiyama et al.,
2003), synaptic plasticity (Zhong et al., 1992), and the refinement
of axon branches in both retinal cells (Nicol et al., 2006) and
Drosophila motoneurons (Vonhoff and Keshishian, 2017).
Whether cAMP levels are positioned upstream or downstream
of Ca2+ signaling remains incompletely resolved, as there
is evidence in the literature for both scenarios. cAMP levels
may act downstream of Ca2+ as connectivity defects arise
following misregulation of Ca2+-dependent adenylyl cyclases,
such as AC1 in mouse retinal neurons (Nicol et al., 2006),
ADCY8 in zebrafish retinal neurons (Xu et al., 2010), and
Rutabaga in Drosophila motoneurons (Vonhoff and Keshishian,
2017). By contrast, cAMP also regulates Ca2+-signaling as it
promotes Ca2+-induced Ca2+-release (CICR) from internal
stores (Gomez and Zheng, 2006; Zheng and Poo, 2007),
modulates the amplitude of growth cone Ca2+-transients (Nicol
et al., 2011), and cyclic nucleotide-gated (CNG) ion channels,
to allow for Ca2+-influx in growth cones (Togashi et al.,
2008).

Intracellular Ca2+ activates several pathways that converge
on transcription factors that control the expression of activity-
regulated genes that may be involved in guidance mechanisms.
This was first revealed for the immediate early gene c-fos,
downstream of Ca2+ influx (Greenberg et al., 1986). Fos
protein together with Jun family members comprises the AP-1
transcription factor (Curran and Franza, 1988). AP-1 has been
involved in synaptic plasticity in mouse hippocampal neurons
(Fleischmann et al., 2003) as well as in activity-dependent
dendritic growth of Drosophila motoneurons (Hartwig et al.,
2008; Vonhoff et al., 2013) and synaptic development at the
Drosophila NMJ (Sanyal et al., 2002).
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Finally, there is good evidence from both vertebrates and
invertebrates that synaptic refinement requires temporally
patterned changes or oscillations in the levels of second
messengers. This dynamism has been particularly evident
for Ca2+, where spontaneous retinal waves are critical for
the refinement of visual maps in the mouse brain (Wong,
1999; Arroyo and Feller, 2016), as well as for the refinement
of neuromuscular junctions in Drosophila embryos (Carrillo
et al., 2010; Vonhoff and Keshishian, 2017). It is intriguing
that cAMP levels are also required to oscillate for the
refinement of mouse retinal axons (Nicol et al., 2007), or to
be dynamically maintained within an optimal level for the
refinement of Drosophila motoneuron axon branches (Vonhoff
and Keshishian, 2017).

DROSOPHILA NMJ AS A GENETIC MODEL
TO STUDY SYNAPTIC REFINEMENT

TheDrosophila larval bodywall offers an anatomically stereotypic
genetic model system for studying many aspects of neuronal
connectivity (for reviews see Ruiz-Cañada and Budnik, 2006;
Menon et al., 2013). Among its features are singly identifiable
glutamatergic motoneurons with very narrow connectivity,
innervating only one or two muscle fibers each, and a subset
of efferent neuromodulatory neurons that express the biogenic
amine octopamine (Monastirioti et al., 1995, 1996; Monastirioti,
1999) that project widely and innervate multiple muscle
fibers.

The stereotypic connectivity of the embryonic and larval
Drosophila NMJ crucially relies on the expression of molecular
recognition cues (reviewed in Nose, 2012). Whereas some
molecules are expressed by all muscles, the expression pattern
of other cues is restricted to individual muscles (Winberg
et al., 1998). Examples of muscle-specific cues include Fasciclin
III (Halpern et al., 1991), Capricious (Shishido et al., 1998),
Connectin (Nose et al., 1992), and NetrinB (Harris et al., 1996).
By contrast, other molecules are expressed by numerous muscle
fibers, as for example Fasciclin II (Lin and Goodman, 1994),
Teneurin-m (Mosca et al., 2012), Dpr11 (Carrillo et al., 2015),
and Semaphorin2a (Matthes et al., 1995).

During embryonic development Drosophila motoneuron
growth cones sample widely among muscle fibers, and
inevitably make inappropriate contacts, as shown schematically
in Figure 1A (Halpern et al., 1991; Sink and Whitington,
1991; Chiba et al., 1993). The off-target contacts are removed
during an early critical period (late embryo to early 1st instar;
Figure 1B), otherwise they mature into functional ectopic
synapses (Jarecki and Keshishian, 1995; Carrillo et al., 2010).
Ultimately, neural activity refines the motoneuron contacts, so
that their connectivity is limited only to their appropriate muscle
fiber targets. Silencing electrical activity in the motoneurons
during the critical period increases the frequency of ectopic
motoneuron contacts throughout the bodywall (Figure 1C;
Jarecki and Keshishian, 1995; White et al., 2001; Carrillo et al.,
2010).

In vivo electrical activity in the embryo is highly patterned,
with brief (∼15 s) bursts of action potentials spaced every

FIGURE 1 | The events associated with synaptic targeting at the
Drosophila NMJ. (A) Initial motoneuron projections make filopodial contacts
(green) onto both the target muscle as well as to multiple off-target muscle
fibers (Halpern et al., 1991; Sink and Whitington, 1991). (B) During normal
development, off-target contacts are withdrawn, leading to the final specific
connectivity (green). The refinement must occur during an early critical period
and depends on presynaptic electrical activity (Jarecki and Keshishian, 1995;
White et al., 2001; Carrillo et al., 2010). (C) When neural activity is
suppressed, the off-target contacts are retained (red), leading to ectopic
synapses. The transition from a growth cone filopodium to a synapse is rapid
and the refinement of ectopic contacts occurs while growth cones are still
motile, consistent with the critical period for refinement at the Drosophila
NMJ. Ectopic contacts that fail to withdraw develop into functional synapses.
This is in contrast to scenarios observed in other systems where synaptic
contacts have to be stabilized and then refined by mechanisms that rely on
prolonged period of synaptic competition.

2–3 min (Pereanu et al., 2007; Crisp et al., 2008; Vonhoff
and Keshishian, 2017). Normal synaptic refinement depends on
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FIGURE 2 | The molecular and cellular mechanisms involved in synaptic refinement. (A) The interactions were identified by genetic tests and transgenic
manipulations. A low frequency voltage oscillation activates voltage gated Ca2+ channels (VGCCs). The resulting Ca2+ entry regulates Ca2+-dependent effectors
including Ca2+/calmodulin-dependent serine/threonine kinase II (CaMKII), Calcineurin (CaN), and Rutabaga. The latter increases cAMP levels, which in turn regulate
PKA and PP1. The chemorepellant Sema2a is secreted by the muscle and activates the presynaptic PlexinB receptor. The response to Sema2a is gated by the level
of presynaptic Ca2+ activity (see text for details). Arrows and T-shape lines indicate positive and negative regulation, respectively. The subcellular physical location
and region of action of the molecular components have not been determined yet. (B) A model for non-Hebbian refinement at the Drosophila NMJ. The left panel
shows an initial contact made by a motoneuron onto on-target and off-target muscle fibers. The molecular match is stronger with the on-target fiber. When Ca2+

levels are low, the response to the retrograde chemorepulsive signal from the muscle is muted, allowing the off-target contact to be retained. With neural activity and
elevated presynaptic Ca2+ (right panel), the repulsive response is elevated, leading to the withdrawal of the off-target contact. Note that the model does not depend
on correlated activity between the synaptic partners, as would be expected in a Hebbian mechanism.
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the presence of two voltage-gated Ca2+ channels, Cacophony
(Cac), the Ca(v)2.1 channel (Carrillo et al., 2010), and Dmca1G,
the Ca(v)3 channel (Vonhoff and Keshishian, in preparation).
The experimental rescue of the cac mutation to restore normal
synaptic connectivity requires oscillatory presynaptic Ca2+ entry,
timed to resemble the native electrical oscillations (Carrillo
et al., 2010). This indicates that Ca2+-oscillations at a specific
frequency and pattern (in the range of 0.01–0.03 Hz) are required
for proper synaptic refinement.

In addition to the activity-dependent entry of Ca2+ through
Ca2+ channels (Figure 2A), refinement also depends on the
activity of at least three downstream Ca2+-dependent signaling
systems in the presynaptic terminal: the Ca2+/calmodulin-
dependent serine/threonine kinase II (CaMKII; Carrillo et al.,
2010), the Ca2+/calmodulin-dependent serine/threonine protein
phosphatase Calcineurin (CaN; Vonhoff and Keshishian,
in preparation), and the Ca2+-dependent adenylyl cyclase
Rutabaga (Vonhoff and Keshishian, 2017). Rutabaga elevates
intracellular cAMP-levels, which are degraded by the activity
of the cAMP-phosphodiesterase Dunce. Similarly, molecules
whose activity is typically downstream of cAMP such as
PKA and PP1 are also required for synaptic refinement
(Vonhoff and Keshishian, 2017). Notably, PKA and CaN
are known to interact with PP1 (Blitzer et al., 1998; Oliver
and Shenolikar, 1998), which in turn can regulate CaMKII.
Collectively, these interactions suggest a complex signaling
network to govern synaptic refinement in this system
(Figure 2A).

How are off-target contacts withdrawn? There is strong
evidence that synaptic pruning depends on an active response
by the presynaptic growth cone to Sema2a, a chemorepulsive
molecule secreted by muscle fibers that acts via the PlexinB
receptor in motoneurons (Winberg et al., 1998; Ayoob et al.,
2006; Carrillo et al., 2010). We hypothesize that Ca2+

entry into the developing motoneuron terminal modulates
the cell’s chemorepulsive response to Sema2a. A similar
role for neural activity and Ca2+ waves in modulating
chemotropic and guidance responses of growth cones has been
proposed for vertebrate neurons (Spitzer et al., 2000; Ming
et al., 2001; Nicol et al., 2006, 2011; Rosenberg and Spitzer,
2011).

We therefore propose a model where the response of
the motoneuron growth cone to muscle-derived Sema2a is
episodically modulated in an oscillatory fashion (Figure 2B).
When Ca2+-levels in growth cones are low, exploratory
filopodia are favored to contact and extend on membrane
surfaces. By contrast, during activity bouts, Ca2+- and cAMP
levels transiently increase, raising the responsiveness of the
neuron to the Sema2a-chemorepellant and withdrawing
the less firmly-associated filopodial contacts from off-target
surfaces. Thus, presynaptic electrical activity regulates
complex molecular interactions in a time-dependent
fashion, to modulate the neuron’s responsiveness to
chemorepulsion exerted by the muscle fibers. These results
provide a coherent picture of the links between neural
activity, chemorepulsion, and the refinement of synaptic
connectivity.

MOLECULAR CANDIDATES THAT MAY BE
INVOLVED IN ACTIVITY-DEPENDENT
REFINEMENT

Although a crucial role for Ca2+-influx via VGCCs in the
withdrawal of off-target neuromuscular contacts has been
observed, a role for CICR in synaptic refinement in Drosophila
remains untested. CICR is influenced by cAMP (Gomez and
Zheng, 2006; Zheng and Poo, 2007) and is required for
netrin-1 induced growth cone turning (Hong et al., 2000).
Furthermore, filopodial Ca2+ transients have been shown to
activate the protease calpain to promote growth cone repulsive
turning (Robles et al., 2003). Several calpain genes with neural
expression have been identified in Drosophila (Friedrich et al.,
2004), and have been associated with Ca2+-dependent dendrite
pruning (Kanamori et al., 2013), offering a potential regulatory
mechanism for future examination.

Alternative links between neural activity and CaN for synaptic
refinement also remain untested, as for example molecular
pathways involving the activity-dependent transcription factor
AP1. In murine T-cells, CaN dephosphorylates NFAT, a
DNA-binding phosphoprotein that forms a complex with Fos
and Jun to activate gene transcription (Jain et al., 1993). In
cultured mouse primary neurons, the CaN-NFAT signaling is
required to promote the netrin-1 dependent axonal outgrowth
(Graef et al., 2003). In Drosophila motoneurons, AP1 promotes
activity-dependent dendritic growth (Hartwig et al., 2008;
Vonhoff et al., 2013) and synaptic plasticity (Sanyal et al.,
2002) together with NFAT at the larval NMJ (Freeman et al.,
2011). Furthermore, CaN and the GSK-3β kinase homolog
Shaggy have been recently described to regulate bouton
stabilization at the larval NMJ by activating or inhibiting the
microtubule associated protein-1b fly ortholog futsch/MAP-
1b, respectively (Wong et al., 2014). Shaggy activates the
CaN-regulator Sra in Drosophila eggs (Takeo et al., 2012), and
also negatively regulates neuronal AP1 function by inhibiting
the JNK pathway, as described in an in vivo genetic screen
in Drosophila (Franciscovich et al., 2008). Interestingly, the
genes sema2a and fkbp13 (a protein predicted to bind the
pharmacological agent FK506, a known inhibitor of CaN) were
identified in the same screen among the molecules that regulate
AP1 function (Franciscovich et al., 2008). Whether these genes
play a role in the activity-dependent withdrawal of ectopic
contacts or in the modulation of chemorepulsion remains to be
tested.

BIOGENIC AMINES AND REFINEMENT

Synaptic connectivity in Drosophila can range from precise
targeting, as seen for the glutamatergic motoneurons that limit
their connections to just one or two bodywall muscle fibers, to
efferents that establish broad projections across the musculature,
such as those expressing the biogenic amine octopamine. To
what extent are the molecular mechanisms governing guidance
and synaptic refinement conserved between these two distinct
patterns of synaptic connectivity?
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The octopaminergic motoneurons are highly plastic and
respond to elevated electrical activity by expanding their
peripheral arbors on the musculature (Zhong et al., 1992;
Budnik, 1996; Koon et al., 2011). Although the octopaminergic
projections are made over a broad expanse of the musculature,
the wiring is nevertheless subject to activity-dependent
refinement. Over half of the activity-dependent ectopic contacts
found on muscle fibers are made by the octopaminergic
motoneurons and those ectopic contacts are largely eliminated
when neuromuscular activity is normal (Jarecki and Keshishian,
1995; Carrillo et al., 2010; Vonhoff and Keshishian, 2017). Thus
similar mechanisms are likely at play to refine the connections
made by the glutamatergic motoneurons that project to only
one or two muscle fibers and the octopaminergic neurons that
project to large regions of the musculature.

Octopamine regulates the activity-dependent plasticity of
glutamatergic motoneurons in a paracrine fashion, acting
through Octβ2R receptors that regulate cAMP levels at the NMJs
(Koon et al., 2011; Koon and Budnik, 2012). It is therefore
possible that the octopaminergic efferents are themselves
involved in regulating synaptic refinement. Drosophila expresses
four distinct octopamine receptors (El-Kholy et al., 2015),
including multiple forms that are found in neurons and
muscles. As the Drosophila octopamine GPCRs modulate cAMP
levels as well as Ca2+ signaling (Balfanz et al., 2005; Evans
and Maqueira, 2005; Maqueira et al., 2005; Maiellaro et al.,
2016), this raises the possibility that octopamine influences the
refinement process by modulating the levels of these second
messengers.

CONCLUDING THOUGHTS

The refinement of synaptic connections often involves Hebbian,
spike-timing correlation between synaptic partners, with
asynchronous inputs removed (an idea first elaborated by Stent,
1973). This ubiquitous mechanism is involved in topographic
map development and synaptic refinement throughout the
vertebrate CNS. By contrast, the Drosophila NMJ apparently
does not require postsynaptic depolarization for the removal of
off-target contacts (Jarecki and Keshishian, 1995; White et al.,

2001; Carrillo et al., 2010), suggesting a fundamentally different
mechanism for synaptic refinement. Moreover, there is no
evidence for competition based on correlated synaptic activity
at the Drosophila NMJ, as is the case for refinement in other
systems.

At the Drosophila NMJ connectivity is governed by a
combinatorial system of recognition molecules expressed by
motoneurons and muscles. A correct molecular ‘‘match’’ is
needed to stabilize the motoneuronal contact leading to a
functional synapse (Furrer and Chiba, 2004; Menon et al.,
2013; Carrillo et al., 2015). As noted above, the motoneurons
sample among possible synaptic partners, with off-target contacts
withdrawn in an activity-dependent fashion. The challenge is
to make guidance decisions based on opponent signals that
are presented simultaneously: a global chemorepellant signal
from all muscles, and a local chemoattractive signal from the
target cell. Assuming that the response to the chemorepellant
is governed by Ca2+ levels, then the growth cone sampling and
withdrawal phases would be coordinated by the Ca2+ oscillations
(Figure 2B). We view this mode of error correction as a form
of time-dependent signal multiplexing, where the neuron can
respond to distinct chemotropic signals depending on the phase
of the Ca2+ oscillation. Vital imaging experiments currently
underway (Vonhoff and Keshishian, in preparation), are testing
whether there is a direct correlation between growth cone
motility and the underlying low frequency Ca2+ oscillation.
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