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After been exposed to the visual input, in the first year of life, the brain experiences
subtle but massive changes apparently crucial for communicative/emotional and social
human development. Its lack could be the explanation of the very high prevalence of
autism in children with total congenital blindness. The present theory postulates that the
superior colliculus is the key structure for such changes for several reasons: it dominates
visual behavior during the first months of life; it is ready at birth for complex visual
tasks; it has a significant influence on several hemispheric regions; it is the main brain
hub that permanently integrates visual and non-visual, external and internal information
(bottom–up and top–down respectively); and it owns the enigmatic ability to take non-
conscious decisions about where to focus attention. It is also a sentinel that triggers the
subcortical mechanisms which drive social motivation to follow faces from birth and to
react automatically to emotional stimuli. Through indirect connections it also activates
simultaneously several cortical structures necessary to develop social cognition and to
accomplish the multiattentional task required for conscious social interaction in real life
settings. Genetic or non-genetic prenatal or early postnatal factors could disrupt the SC
functions resulting in autism. The timing of postnatal biological disruption matches the
timing of clinical autism manifestations. Astonishing coincidences between etiologies,
clinical manifestations, cognitive and pathogenic autism theories on one side and
SC functions on the other are disclosed in this review. Although the visual system
dependent of the SC is usually considered as accessory of the LGN canonical pathway,
its imprinting gives the brain a qualitatively specific functions not supplied by any other
brain structure.

Keywords: autism spectrum disorders (ASD), autism pathogenesis, human development, congenital blindness,
pulvinar, visual pathways, superior colliculus (SC)

INTRODUCTION

Autism spectrum disorder (ASD) is not a disease; it is a syndrome with hundreds of genetics and
non-genetics etiologies (see Figure 1) and with broad clinical manifestations. Its pathogenesis,
scarcely known, is also presumed to be heterogeneous (Waterhouse et al., 2016). The coherence of
the syndrome lies in the presence of the core symptoms in cluster (Hobson, 2014): ASD individuals

Abbreviations: Amy, amygdala; ASD, autism spectrum disorders or autism; CB, congenital blindness; EPF, enhanced
perceptual functioning model; FEF, frontal eye fields; fMRI, functional MRI; IFG, inferior frontal gyrus; LIP, lateral
intraparietal area; MD, mediodorsal thalamus; MEG, magnetoencephalography; MT, middle temporal cortex; MRI, magnetic
resonance imaging; OXT, oxytocin; PAG, pariacueductal gray matter; PVN, paraventricular nucleus; Pul, pulvinar; SC,
superior colliculus; SCs, superficial SC; SCid, intermediate/deep SC; SEF, supplementary eye fields; SN, susbtantia nigra; STS,
superior temporal sulcus; TMS, transcranial magnetic stimulation; V1, primary visual cortex; V2-V3-V4, secondary visual
cortex; WCC, weak central coherence theory.
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with extremely varied etiologies, cognitive levels, and
cultures share a broad range of specific symptoms in social,
communicative, cognitive, motor and sensitive domains. This
strongly suggests that diverse pathogenic mechanisms could
have a common final pathway which, in turn, compromises
several brain networks resulting in disparate symptoms. The
unsuccessful efforts to find it could be due to the limitations
of in vivo investigation on the developing human brain
(Courchesne et al., 2007) and to the fact that social cognition
and communication are mainly non-consciously acquired
during early life. Hence, little is known about the functional and
cognitive processes that govern its development.

An often overlooked fact that could be a clue for pathogenic
research is that a complete lack of vision during the first year of
life results very frequently in a full-blown ASD syndrome. During
early life, visual input is dominated by the SC and the Pul
(Bridge et al., 2015). The SC is an extremely ancient and complex
subcortical structure, not only essential for simultaneous visual
attention and eye movements as it is usually believed. It also has
a crucial role in the integration of external and internal senses
with emotional, autonomic and endocrine functions, as well as in
visual/motor transformation, target selection and goal-directed
motor responses (Merker, 2007; Krauzlis et al., 2013). It is also
the neurologic substrate of innate behaviors (Furigo et al., 2010)
like automatic attention to faces and biologic movement (Nguyen
et al., 2014; Rosa Salva et al., 2015; Mares et al., 2016), social
motivation, and innate fear (e.g., to snakes) (Liddell et al., 2005;
Wei et al., 2015). Due to its strategic location as a first line
visual and multisensory structure to receive environmental input
and its multiple direct connections from the cortex, the SC is
in the interphase of several complex processes: (1) the bottom–
up and top–down attentional interplay (Merker, 2013), (2) the
shift from covert to overt attention (Sato et al., 2016), and (3) the
interaction of medial and lateral cortical brain networks that
regulate and integrate endogenous with externally drive attention
respectively (Menon and Uddin, 2010; Katyal and Ress, 2014;
Mysore and Knudsen, 2014; Xuan et al., 2016). These dimensions
are essential not only to process ongoing information but also
to mental time travel, to mentalize abilities (Corbetta et al.,
2008) and to develop complex representations of the self (Fabbro
et al., 2015). But, perhaps, the most relevant aspect for ASD
pathogenesis is the evidence that the SC has a plastic role in the
postnatal microstructure of the brain in an exclusive way that
favors social/communicative abilities (Maior et al., 2012; Rosa
Salva et al., 2015; Soares et al., 2017).

The aim of this work is to show that different lines of research
on ASD etiologies and pathogenesis, including cognitive theories,
functional studies and anatomic evidence converge on the SC.

ASD AND CONGENITAL BLINDNESS

From the first report of autism in blind children made 60 years
ago (Keeler, 1956), a review of 12 different studies yields a ∼50%
of prevalence of ASD in early blindness (Jure et al., 2016). The
prevalence is even higher when only children with total CB are
considered. In a school for the blind, ASD was found in 18 of 25

(72%) students with CB and in only 1 of 13 (8%) with partial or
acquired blindness. Statistical analysis showed that CB was the
main responsible factor. No other variable, such as etiology of
blindness or socioeconomic family status, accounted for this very
high ASD prevalence (Jure et al., 2016).

Another similarity lies in the evolution of symptoms; besides
the most common chronic clinical course of ASD, two other
subgroups have been described in children with CB: one that
showed an early autism regression and a second one with a late
autism recovery. Both occur at the same age window as in the
sighted: regression takes place between 15 and 30 months (Cass
et al., 1994; Rosenbloom, 1994; Dale and Sonksen, 2002; Luyster
et al., 2005; Jure et al., 2016) and recovery occurs beyond 10 years
in sighted/ASD (Fein et al., 2013) and CB/ASD individuals
(Hobson and Lee, 2010; Jure et al., 2016). However, regression
is ∼3000 times more frequent in CB than in the sighted (Dale,
2005) and recovery in CB was not only limited to high functioning
ASD individuals (Hobson and Lee, 2010; Jure et al., 2016) as it was
described in sighted ASD subjects (Fein et al., 2013).

The high prevalence of autism in early blindness has been
overlooked until the present (Hobson and Bishop, 2003; Tager-
Flusberg, 2005). Several reasons might explain this lack of
attention (Jure et al., 2016). Perhaps, the strongest is the
automatic assumption that it is not a “true” autism because it
is secondary to blindness. However, autism is exclusively defined
clinically (DSM or ICD criteria). Comparatively, a similar clinical
syndrome (e.g., spastic hemiparesis) in different individuals
usually reflects similar brain compromise (pyramidal tract),
independent of the etiology (cerebral infarct, brain malformation,
etc.). To exclude CB as one etiologic factor of ASD would be
similar to exclude tuberous sclerosis, fragile X, fetal valproate
syndrome as well as hundreds of other ASD etiologies.

Diffuse postnatal brain changes occur during the first
year of life by visual influence and the microstructure and
functionality of the brain is different in CB, resulting in atypical
neurodevelopment (Coullon et al., 2015; Hasson et al., 2016;
Reislev et al., 2017). Humans studies point to the SC as the main
structure responsible of those changes (Coullon et al., 2015).

THE ROLE OF VISION IN DEVELOPMENT

Visual input has a pervasive influence on sensorimotor
coherence, cognition, behavior and social development and this
is an area of active research (Itier and Batty, 2009; Young et al.,
2009; Graham and LaBar, 2012; Landgraf and Osterheider, 2013;
Leigh and Zee, 2015; Zihl and Dutton, 2015). The brain is almost
continuously and automatically creating a visual representation
of the world in a self-centered perspective (Merker, 2013; Zihl
and Dutton, 2015). Non-conscious integration of vision with
somatosensory input allows the differentiation between the self
and the environment (Fraiberg, 1977). After birth, vision is the
main tool to understand the meaning of the surrounding world
including objects and people, the notion of object permanence,
and the cause-effect relationships that govern actions.

Social development is the result of an interaction between
innate forces -social motivation-, and late developed abilities
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FIGURE 1 | Levels of compromise in ASD.

environmentally influenced -social cognition. These behaviors are
supported by extensive but selective subcortico/cortical brain
networks named “the social brain network” (Senju and Johnson,
2009b; Graham and LaBar, 2012; Mares et al., 2016) which is
automatically activated when a face enters in our visual field
(Elgar and Campbell, 2001; Fletcher-Watson et al., 2008; Klin
et al., 2015). At 10 min of life the visual attention of the baby is
not random. Innate forces govern an attraction for tracking faces
or face-like patterns (Goren et al., 1975). This behavior declines
at the end of the first month to enable a more developed face
processing (Johnson et al., 1991), but a strong bias for ultra-rapid
automatic detection of faces remains lifelong (Fletcher-Watson
et al., 2008). The child also pays special attention to human
motion and visual communication (Klin et al., 2015). Non-verbal
pragmatics like eye contact, reciprocal smiling, and taking turns
in sound exchanges are one of the first behaviors to emerge,
and the earliest mouth movements to produce sounds are led
by vision (Skipper, 2014). Attention to the mouth predicts larger
vocabulary size in normal children (Young et al., 2009) and
infants frequently focus on the speaker’s mouth (Lewkowicz
and Hansen-Tift, 2012). Gaze direction is highly informative of
the other’s intention and is pivotal for Joint Attention, essential
to encode a new label for an object. The eyes are the most
attended feature of the face as they give several fundamental
clues for surviving and well-being: emotion, gender and identity
recognition (Itier and Batty, 2009). Some authors proposed that

this innate eye and face detector system (Baron-Cohen, 1997;
Itier and Batty, 2009) is more sensitive to emotional expressions
than identity or gender features (Lundqvist et al., 2014; Neath
and Itier, 2015; Palanica and Itier, 2015; Neath-Tavares and
Itier, 2016). Abnormalities in visual attention and gaze behavior
are universally present in the ASD population and have been
highlighted in its first description by Kanner (1943). Growing
evidence suggests that automatic, non-conscious attention to
faces, eyes and biologic movement is mediated by the SC-Pul-
Amy complex (Senju and Johnson, 2009a; Tamietto and de
Gelder, 2010; Campatelli et al., 2013).

Full communication in real life settings requires the
integration of several verbal and visual features that are processed
separately (Bolis and Schilbach, 2017). Mother/infant social-
motor body and emotional synchrony have an important
influence on the development of intersubjectivity, social and
language learning. “Interpersonal synchronization” in time and
content encompasses joined attention, imitation (Marsh et al.,
2013), turn-taking, non-verbal social communicative exchanges,
affect sharing and engagement (Brenner et al., 2007; Zhao et al.,
2017).

Regarding postnatal visual influence on brain development, it
was proposed that the subcortical SC-Pul-Amy complex “tutors”
slow developing cortical networks, allowing further specialization
on social abilities (Johnson et al., 2015). Indirect evidence and
animal studies suggest that early social visual experiences have
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an epigenetic influence on subcortical experience-expectant visual
circuits, turning on and off specific genes resulting in plastic
effects on experience-dependent subcortico-cortical networks
conforming the social brain (Johnson et al., 2005; Klin et al.,
2015; Rosa Salva et al., 2015). The microscopic changes that occur
during the first months of life are perhaps the epitome of the
complexity of the interactions between genetic and epigenetic
environmental factors necessary to shape the human brain. The
peak of synaptic growth is reached approximately at 12 months
old, followed by a widespread pruning in early childhood; long-
range brain connections increase from birth to early adulthood
(Vértes and Bullmore, 2015).

TWO VISUAL PATHWAYS

Although we perceive vision as a unitary function, there are two
visual pathways with different but highly complementary and
interconnected functions (Figure 2). The classic ventral pathway
receives parvocellular input from numerous small cones, which
are responsible for the central, foveal retinal vision. It represents
∼90% of the visual input, and it is unifocal and slower than
the dorsal pathway. It allows a conscious, fine resolution, and
a detailed and colorful analysis of the stimuli. After reaching
the primary visual striate occipital cortex (V1) directly through
the dorsal lateral geniculate nucleus (dLGN), it goes mainly
sequentially through the extrastriate cortex (V2-V4) up to the

infero-temporal area. Any object or event that is under conscious
scrutiny occupies the central vision and flows through this
pathway.

The dorsal pathway, extremely fast but of low resolution,
receives magnocellular and koniocellular input from the rods,
located in the peripheral visual field. It is multifocal, mainly non-
conscious or pre-attentive and very sensitive to any movement or
change in contrast luminescence. It allows recognition of where
things are located in space as a result of the permanent input
from both visual fields; its main first stations are the SC, the
Pul and the vLGN. It reaches simultaneously, the extrastriate
(V2-V3), the striate visual cortex (V1), and the middle-temporal
cortex (MT). This last structure provides ongoing information
about the visual environment to the posterior parietal (PP) and
the LIP, essential to register sequences of movements (Lamme
and Roelfsema, 2000).

Although both networks interact and contribute to non-
conscious and conscious vision (Breitmeyer, 2014), the dorsal
pathway is by far the most prevalent for pre-attentive and
non-conscious processing as it is faster and it is continuously
screening the peripheral visual field through the SC, a brain
sentinel specially trained to select any biological relevant
information such as motion, emotions and novelty (Tamietto
and de Gelder, 2010; Tamietto, 2011; Soares et al., 2017). Most
evidence indicates that the dorsal pathway is responsible for the
visual behavior in the first months of life (Hammarrenger et al.,
2003; Johnson, 2005; Bridge et al., 2015).

FIGURE 2 | Two visual pathways.
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BLINDSIGHT

Blindsight is the ability to accurately use visual information
without involvement of the primary visual cortex (V1), in absence
of conscious visual perception (PöPpel et al., 1973; Weiskrantz
et al., 1995). It is not a unitary phenomenon: “attentional
blindsight” refers to the ability to make a visual discrimination
in the blind hemifield, while “action blindsight” is the ability to
respond with saccades, smooth eye pursuits, pointing or grasping
to a new target or to a moving stimulus present in the blind
hemifield (Danckert and Rossetti, 2005), specially to looming
images (Hervais-Adelman et al., 2015). A surprising finding
was the demonstration of “emotional blindsight” (de Gelder
et al., 1999) that denotes the non-conscious capacity to correctly
respond to emotional salient visual stimuli as fear, happy or
angry faces, or whole-body emotional expressions in the blind
hemifield (Van den Stock et al., 2011; Celeghin et al., 2015; Diano
et al., 2017). These findings strongly suggest the existence of
automatic, non-conscious activation of several input-processing-
output subcortical circuits (SC-Pul-Amy) of the dorsal visual
pathway (Tamietto and de Gelder, 2010; Diano et al., 2017; Soares
et al., 2017). Based on animal and human studies, most authors
maintain that blindsight is exclusively mediated by the SC (Leh,
2006; Leh et al., 2006; Tamietto et al., 2010), while a few claim
that it is driven by the LGN (Breitmeyer, 2014; Ajina et al., 2015).
The most convincing evidence of the exclusivity of the SC on
blindsight is that a selective inactivation of the visual SCs in
monkeys severely compromised non-conscious guided behavior
(Kato et al., 2011).

Through the SC the dorsal pathway reaches several alternative
(non-canonical) visual structures simultaneously allowing a
panoramic processing of space with special sensitivity to faces,
eyes, biological movement and emotional clues. This fast
detection of relevant stimuli (Soares et al., 2017) is followed by
a selection, also provided by the SC, which results in a shift
from peripheral to central vision up to five times in a second if
necessary (orienting attention) (Fecteau and Munoz, 2006).

PREVIOUS ASD THEORIES

Visual abilities are superior to language in most ASD individuals;
hence, it seems paradoxical to look for a pathogenic theory based
on the high prevalence of ASD in CB. Nevertheless, as it will
be exposed in this section, most of the current ASD pathogenic
theories are based on visual processing and visual attention.

Magnocellular Pathway Dysfunction
Theories
Compromise on motion perception in ASD individuals (Gepner
et al., 1995) and abnormal face processing from early life to
adulthood has been proposed to be secondary to magnocellular
dysfunction (Milne et al., 2002; McCleery et al., 2007). A direct
relationship has been found in the degree of compromise on
peripheral vision secondary to dysfunctions on the magnocellular
pathway and the degree of autism severity (Sutherland and
Crewther, 2010; Crewther and Crewther, 2014; Crewther et al.,

2015; Vanmarcke and Wagemans, 2016). Greenaway et al.
(2013) remark that previous evidence against selective and
marked compromise of the magnocellular pathway in ASD
individuals is the result of methodological issues in assessment.
The only histological evidence of abnormal sensory input in
ASD is the description of complete lack of normal magnocellular
neurons on the LGN in Fragile X/ASD individuals (Kogan,
2003). Unfortunately, this excellent work did not include SC
magnocellular investigation.

Global vs. Local Visual Perception
Theories
The WCC was initially proposed as a diminished ability in
the global top–down processing, essential for the integration of
detailed features in a coherent whole, to explain social and non-
social deficits in ASD individuals (Frith and Happé, 1994). Years
later the same authors suggested that instead of a deficit in global
processing, a bias for local processing resulted in superiority in
visual perception of details (Happé and Frith, 2006). Similarly,
the authors of a related theory – the EPF – (Mottron et al.,
1999; Mottron et al., 2006) that initially postulated a stronger
local processing in ASD individuals, then suggested an automatic
attention bias for local visual information (Guy et al., 2016). This
is in consonance with an extensive meta-analysis review showing
that typical individuals perceived automatically the whole picture
before conscious attention to details, a pattern that seems to
be reversed in ASD (Van der Hallen et al., 2015). Additionally,
drawing tasks comparing typical children with those with ASD
did not show better local performance supporting the theory of
bias on visual attention (Smith et al., 2016).

Innate Motivation to Social Attention
There is a growing body of research focusing on innate
motivational aspects that bias social learning in an atypical way
(Dawson et al., 2004). The Social Motivation theory of ASD
focuses on a prenatal compromise in the experience expectant
circuits (Chevallier et al., 2012) prepared to attend to faces and
biologic stimuli as soon as the child is born (Klin et al., 2015;
Rosa Salva et al., 2015). Both, lack of social motivation as a result
of hypoarousal, or an excess of negative feelings provoked by
hyperarousal states have been proposed to explain ASD social
abnormalities (Senju and Johnson, 2009a; Chevallier et al., 2012).
Emerging evidence seems to support this approach, at least in
a subgroup of ASD individuals (Gamer et al., 2010; Assaf et al.,
2013; Skuse et al., 2014).

Face Processing
Face and gaze processing has been one of the most active
research topic in ASD for its prevalent role on socialization
and communication and due to the observance of its abnormal
developmental pattern in autistic children (Elgar and Campbell,
2001; Senju and Johnson, 2009a; Senju et al., 2011; Elsabbagh
et al., 2012; Weigelt et al., 2012; Jones and Klin, 2013). After
reviewing extensive behavioral and neurophysiologic studies on
ASD individuals, Senju and Johnson proposed a “fast track
modulator model” theory based on an early dysfunction in the
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subcortical face and eye contact detection route: the SC-Pul-
Amy complex (Senju and Johnson, 2009a; Senju et al., 2011).
Similarly, Campatelli et al. (2013) remark the existence of weakly
coordinated interacting networks for normal face processing
in ASD: the subcortical “face detection network” (SC-Pul-Amy)
activates the “gaze/action representation network” (STS, sensori-
motor cortex and IFG), the “emotional evaluation network”
(Amy, insula and limbic system) and the “face identification
network” (fusiform gyrus and inferior occipital gyrus). MEG
images corroborate that normal face processing is mediated
by an automatic visual pathway that triggers diverse extra-
striate cortical visual areas, a pattern of activation that is
different in ASD individuals (Bailey et al., 2005). Human
fMRI studies also suggest a dysfunction on the automatic face
detection subcortical system involving the SC-Pul-Amy in autistic
individuals (Kleinhans et al., 2011), or an exaggerated subcortical
activation that results in eye avoidance (Hadjikhani et al.,
2017).

While some authors described that ASD individuals actively
avoid looking at fearful faces (Corden et al., 2008), others
found a direct relationship between autism severity and lack of
attention to happy faces (Lassalle and Itier, 2015). Contradictory
results could be explained by basic attentional factors such as
the “arousal effect”: emotional potency or perceptual saliency
(Lundqvist et al., 2014). A compromise of the normal attentional
early orienting bias for emotional faces was significantly related
to autism severity and not with ADHD and anxiety symptoms in
children (Antezana et al., 2016).

A clinical study of high risk population infants revealed that
the earlier manifestations of ASD were abnormalities in eye
contact, visual tracking and visual attention (Zwaigenbaum et al.,
2005). Neurophysiological studies showed abnormal sensitivity
to dynamic eye gaze and atypical patterns of processing faces in
those that later developed ASD (Elsabbagh et al., 2012; Keehn
et al., 2015). An abnormal curve of development in eye contact
was found in a prospective follow up study on infants later
diagnosed as autistic (Jones and Klin, 2013). Klin et al. (2015)
found that toddlers with ASD fail to recognize and to orient to
biological motion perception, a skill present in newborns and even
in lower vertebrates like hatched chicks. They suggest focusing
future research on children between 4 and 12 weeks of life,
when the transition from subcortical to cortical control seems to
occur.

Attention in ASD
Described from the beginning (Kanner, 1943), attentional
abnormalities are usually presented as associated symptoms of
ASD. Instead, there is a renewed interest in the initial proposal
of the role of early attention and its disruption as a core
dysfunction with seminal influence on ASD symptomatology
(Gold and Gold, 1975). According to different authors, even a
slight compromise on basic attentional processing on early life could
have an exponential effect on joint attention, affecting language
and social development (Zwaigenbaum et al., 2005; Mundy and
Newell, 2007; Chawarska et al., 2013; Elsabbagh et al., 2013;
Sacrey et al., 2014) overfocusing, restrictive range of interest and
repetitive behaviors (Keehn et al., 2013; Stevenson et al., 2014).

It was found that attention to the speaker’s mouth and eyes
influenced the development of language in typical and ASD
children (Young et al., 2009), but not in children with language
disorders, suggesting that the language compromise on children
with autism may be driven in part by abnormal social attention
(Tenenbaum et al., 2014). Longitudinal studies of ASD children
showed beneficial effects of early stimulation of joint attention on
verbal language development (Gulsrud et al., 2014).

Social and Non-social Attentional Compromise
Impairments in shifting attention to novel visual and auditory
stimuli have been proposed as the basic compromise on ASD’
individuals by Courchesne et al. (1985); they point to the
cerebellum as responsible for these abnormalities (Courchesne
et al., 1994; Fatemi et al., 2012). A general decreased spontaneous
visual attention to both, faces and objects, has been found in
autistic individuals of different ages compared with non-autistic,
and the degree of attentional deficit was related to autism severity
(Guimard-Brunault et al., 2013). Similarly, a compromise of
visual attention and saccadic reaction to faces and objects was
found in a population of high risk 7 month-old infants who
later developed ASD. The authors conclude that an atypical
visual orienting may represent an early manifestation of ASD
(Elison et al., 2013). Oculomotor abnormalities as unusual visual
search or saccade production have been also proposed as the basis
of abnormal socio-communicative development (Johnson et al.,
2012).

Disengagement and ASD
In an extensive review on the impact of attention on core ASD
symptoms and cognitive visual strengths, Keehn et al. (2013)
highlight that previous reports of atypicalities on either the
alerting, orienting or executive attention interacting systems
could be secondary to a primary deficit in disengaging attention.
This is in consonance with abnormal disengagement observed
as the earliest symptom in ASD infants (Elsabbagh et al., 2013;
Sacrey et al., 2014) and with ERP studies in adults with ASD that
showed abnormalities in attention disengagement (Kawakubo
et al., 2007).

Multiple attention and ASD
At present, most prevailing autism theories are based on deficits
on simultaneous multiple attention and they state that in order to
disclose it, real life evaluation settings should be used (Murray
et al., 2005; Fletcher-Watson et al., 2009; Guillon et al., 2014;
Jaworski and Eigsti, 2015; Keehn and Joseph, 2016; Unruh et al.,
2016; Bolis and Schilbach, 2017). A subgroup of these theories
point to deficits in Simultaneous Attention to the Self and Others
to allow joint attention (Mundy and Newell, 2007; Just et al., 2014;
Skorich et al., 2017).

Summary of ASD theories and its implications with the SC
(see Table 1)
The previous theories reveal an attempt to disclose a single
endophenotype responsible for the clinical manifestations of
ASD. Although each proposal is different – magnocellular
dysfunction, local over a global processing bias, difficulty to pay
attention to multiple stimuli or to a novel stimulus, abnormalities
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TABLE 1 | Correspondence between seminal symptoms of each ASD proposed pathogenesis and SC functions∗ (see text for references).

ASD proposed theory Endophenotype/Seminal symptom Possible SC function compromised

Magnocellular visual pathway
dysfunction.

Compromise on visual attention and/or compromise on
motion perception and face processing.

Main (or exclusive) gate of the Magnocellular Visual
Pathway.

Local over global visual
non-conscious (WCC-EPF
Model).

Automatic bias to local instead of global visual
processing.

Exclusive structure described for automatic bias for
global visual processing.

Innate social motivation
compromise.

Emotional hypoarousal or hyperarousal to social stimuli. First line experience-expectant sentinel structure that
triggers the “social brain network.”

Abnormal emotional regulation. Compromise on the alarm system or emotion system to
social and non-social detection and reaction

Detector System and gate to trigger the emotional brain
networks (e.g., fight or flight reactions, fear to snakes,
etc.)

Face processing abnormalities
(emotional or non-emotional
processing).

Abnormalities in subcortical face detection network
(SC/Pul/Amy).

First line specific neurons with shorter latencies for face
recognition (25-ms).

Abnormal attention to social
and non-social stimuli.

Atypical visual orienting to faces and objects. First Sentinel/reactive system to novelty (biologic or
non-biologic).

Attention disengagement. Neurons exclusively prepared to disengagement
functions.

Compromise of simultaneous or multiple attention. Elected structure to explain human multiple attention in
real word scenes (e.g., MASC model).

Mirror neuron system
dysfunction. Abnormal motor
and social synchrony (imitation).
Compromise on the
representation of the Self.

Compromise on visual implicit attention that activates
the sensory-motor- emotional networks. Simultaneous
Attention to the Self and others to allow joint attention
(it also requires simultaneous synchrony between
sensory, motor, cognitive, emotional and autonomic
variables).

SC functions allow visual implicit attention,
non-conscious decisions, visuomotor transformation
and simultaneous triggering of
sensory-motor-emotional networks. It is the main
structure involved on the on each developmental stage
of the representation of the Self.

Abnormal eye movements and
saccade production.

Idem (abnormal saccades). Main hub for visual search and saccade movements.

Abnormal multisensory
integration.

Abnormal visual, auditory and somatosensory
integration.

Sentinel multisensory single neurons that integrate
visual, auditory and somatosensory input.

Intense world theory Diminished prepulse inhibition (PPI) Diminished PPI is exclusively associated with SC
compromise.

∗The authors of each theory proposed that the full clinical ASD picture is secondary to the compromise of the seminal symptom described. However the great diversity
of ASD symptoms and the high presence of associated disorders could only be explained by a compromise of a hub with sensory, motor, social, emotional, autonomic,
communicative integrate functions.

in disengaging attention, lack of social motivation to attend
to faces or biologic movement, or abnormalities in saccadic
movements- there is one common factor in all these theories: the
automatic or non-conscious visual attention is atypical in ASD
individuals.

The finding of a unified cognitive endophenotype leads to
the search of a dysfunction of a specific brain structure. The
complexity of the attentional process makes this task difficult;
several circuits could be involved. Even the brain’s default
network, which is selectively activated by internal mentation,
has been proposed as responsible for ASD symptoms (Andrews-
Hanna, 2012). Additionally, exclusive cognitive dimensions
explain neither the full clinical syndrome nor the comorbidities
(dyspraxia, anxiety, emotional abnormalities, sleep disorders,
autonomic symptoms, epilepsy, etc.).

The complexity of SC and its influence on the developing
brain seem to explain every previous theory and level of ASD
compromise. Figure 3 shows the central role of the SC in different
phases of these interactions and the impact of different etiologies
that can disrupt each step resulting in ASD. A summary of
its complex functions is necessary to understand the present
theory.

THE SC As A “HUB”

The SC is a very ancient structure correspondent to the
optic tectum (OT) in lower vertebrates (amphibians and fish).
In mammals, it has a significant influence on early synaptogenesis
and on plastic reorganization of higher structures after an injury
in adults (Rushmore, 2006; Takaura et al., 2011). It contains
seven layers that can be functionally and anatomically divided
into two parts: The SCs (layers I-III) exclusively visual and
SCid (layers IV-VII) with multisensory and motor functions. The
“cortex like” anatomic organization (May, 2006), the direct or
indirect connections with most other parts of the brain, and the
strategic localization as a first line structure to environmental
(visual/auditory) and body sensory input renders the SC in a
unique center implicated in qualitative functions not described
on any other brain region (Wurtz and Albano, 1980; May, 2006;
Field et al., 2008; Cerkevich et al., 2014). It is a central structure
of most subcortical Brainstem/Basal Ganglia loops which are
the foundation of higher Thalamic/Cortical Networks (Redgrave,
2010).

Visual information recorded at the SCs is sent through
rich connections to the SCid. This small center is perhaps the
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FIGURE 3 | The SC is in the interface of bottom–up/top–down attentional process. Relevant information is sent to higher structures. Motor responses could be
conscious or non conscious, limited to eye movement (redirection of the attention) or all body goal oriented response.

most integrative area of the brain. It transforms multisensory
information and emotions in complex motor commands: gaze
movements, head and body turning (Gandhi and Katnani, 2011),
arm goal directed movements (Philipp and Hoffmann, 2014)
and complex primitive reactions like “freezing,” “hunting,” or
“approach” (Furigo et al., 2010; Comoli et al., 2012).

The Sprague Effect
The SC was usually considered just a passive responder
of frontal/parietal orders to produce eye movements. This
misconception changed after the description of the “Sprague
effect,” a hemineglect syndrome produced by a SC unilateral
lesion in cats (Sprague and Meikle, 1965; Sprague, 1966) or
the resolution of the hemineglect in a patient with a frontal
lesion after the inactivation of the contralateral SC (Weddell,
2004) showing the significant influence of the SC on hemispheric
functions.

The confrontation of the blindsight phenomenon with the
Sprague effect highlights the silent but crucial functions of the
SC. In blindsight the primary visual cortex is compromised
but the SC and the magnocellular visual pathway are spared
and the individual is able to react to stimuli. Conversely, the
Sprague effect results in a severe neglect and makes the individual
unable to react, even when the LGN and the primary visual
cortex are not compromised. This is an evidence of the role of
SC in the continuous, non-conscious multi-attention, emotional
processing, including autonomic and motor reactions.

The Role of the SC on Gaze and
Attention
At every moment we draw our attention to different targets
and the most conspicuous behavior of our attentional interest is
gaze direction. Non-conscious or conscious, driven by extrinsic

motivations to promote survival or by intrinsic motivation
guided by the pleasure to learn new skills (Caligiore et al., 2015),
a simple gaze shift is always the result of a complex mechanism.
The SC actively participates in each level of these processes
(Corrigan et al., 2015). Every cortical and subcortical region
involved in eye movements connect directly or indirectly with the
SC (Merker, 2013).

The “MASC” -Model of Attention in the SC- proposed
to understand multiattentional human tasks is based on real
world scenes, combining computational and behavioral neural
responses (Adeli et al., 2017). It seems to be the best suited
physiologic model to explain the new theories of ASD based on
compromise on simultaneous multiple attention (see above).

SC Inner Functions
First Sentinel/Reactive System
Animal and human studies demonstrated that the SC has the
intrinsic ability to recognize figure configuration (Girman and
Lund, 2007; Georgy et al., 2016), to follow an object in movement
(Dash et al., 2015; Inayat et al., 2015), and to select a new
target (Phongphanphanee et al., 2014; Taouali et al., 2015). In
rats, the inactivation of the primary visual cortex only increased
the SC response to moving objects (Zhao et al., 2014). Pre-
attentive discrimination between two relevant visual stimuli is
accomplished exclusively at the SC (Krauzlis et al., 2013).

Also relevant to ASD theories is the finding in mammals
of several groups of specialized SC cells, for example, neurons
in visual layers with the shortest latencies throughout the brain
to respond to faces (25-ms) (Nguyen et al., 2014); Visuomotor
neurons in intermediary layers (Krauzlis et al., 2013) that
allow the enigmatic transformation of visual images into motor
commands; Multisensory neurons, specially trained to respond
to space-temporal congruent stimuli (i.e., biologic events) (Stein
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et al., 2009); and Disengagement neurons, essential to change
focus (Ngan et al., 2015). These findings strongly suggest that the
SC is highly involved in pivotal operations of attention orienting:
recognition of a new relevant clue, disengagement, visuomotor
transformation for shifting, and new engagement (de Araujo
et al., 2015). Disruptions of each of these functions have been
linked to ASD pathogenesis (Keehn et al., 2013) (see above and
see Table 1).

SC/Cortex Interactions
The SC functions described above allow only primitive reactions
to exogenous stimuli. The existence of Bottom–Up indirect
multiple connections from SC to the cortex and Top–Down direct
from the cortex to the SC allow other multiple roles on attentional
and goal directed higher functions. Animal studies show that
postnatal environmental influence shapes the microstructure of
the brain through the SC (Rosa Salva et al., 2015) and top–
down connections from the cortex prepare special SC neurons
as sentinels for future relevant information (Stein et al., 2014).
This double input continues to be functional during all life and
indicates that the SC requires both, bottom–up environmental and
top-down cortical influence to function properly.

Bottom–Up Indirect SC/Cortical Connections
Somatosensory and motor maps are established inside the SC
according to visual input. In turn it organizes parietal and
premotor cortical regions through several multisensory and motor
SC/cortical connections (Figure 4). New evidence indicates that
several SC/brainstem/thalamic /cerebellar pathways are essential
to cover visual spatial attention (Krauzlis et al., 2013). The present
author suggests other more detailed sources for the interested
reader (Wurtz and Albano, 1980; Sommer, 2003; May, 2006).

Affective and motivational aspects of visual attention and
saccade control activates the SC’ “Emotion System” or “Alarm
System” (Figure 5) (see Vuilleumier, 2015 for a review).
It simultaneously triggers attentional, autonomic, endocrine and
cognitive functions through the reward dopaminergic system,
the alerting adrenergic system, the cholinergic system, and the
endocrine system (Liddell et al., 2005; May et al., 2009; Redgrave,
2010; Tamietto and de Gelder, 2010; Van den Stock et al., 2011;
Almeida et al., 2015). Some basic emotions like innate fear to
snakes are mediated by SC/brainstem connections without the
participation of the Amy (Merker, 2007; Soares et al., 2017). The
Pul and the Amy, also considered crucial Hubs for emotional
and social-communicative development, are activated by the SC
before reaching cortical structures (Bickart et al., 2014; Bridge
et al., 2015; Diano et al., 2017) (see Figures 4, 5).

Multisensory/motor networks that process imitation abilities
conform the “mirror neuron system,” which was also postulated
as responsible for ASD pathogenesis (Williams J.H.G. et al.,
2001). The mirror system is mainly influenced by emotional
and motivational aspects of social and goal directed learning
triggered by visual implicit attention (Vivanti and Rogers, 2014).
As it was remarked, the SC seems to be the only sentinel
structure prepared to trigger automatically and simultaneously
sensory/motor/emotional networks.

Top/Down Direct Cortical/SC Connections
The SC receives back direct input from several visual and
multimodal sensitive and motor cortical regions (Figure 6)
(May, 2006). These connections are the most complex known
model of top–down influence. During early life it has plastic
effects. For example, it has been proved in newborn cats that
SC neurons only become multisensory after few months of the
double training from the environment and the multisensory
cortex. These neurons are not only sentinels for very subtle space-
temporal congruent events, they also send motor information
(Alvarado et al., 2008; Stein et al., 2009; Stein et al., 2014).
This sensory/motor integration could explain the attention to
the mouth and the imitative movements that infants display in
early life, apparently crucial to phonologic discrimination and
its influence on language development (Lewkowicz and Hansen-
Tift, 2012; Skipper, 2014; Kuhl, 2015).

Endogenous attention also activates the SC by top–down
influence (Katyal and Ress, 2014) even in absence of the primary
visual cortex (Yoshida et al., 2017). Monkey studies suggest that
the interaction between vision, memory, self- motion and top–
down spatial attention to conscious and non-conscious tracking
of multiple visual cues during eye movements is coordinated by
the SC (Dash et al., 2016). These functions are essential for mental
time travel, for imaginative play and language development
(Corballis, 2010). A poor imaginative play and abnormalities in
understanding and using language referred to distant facts in time
or space are frequently present even in high functioning ASD
preschoolers (Rapin and Allen, 1983).

The input from the cortex to the SC is provided mainly by
the pyramidal motor cells of the V layer that concentrate all the
elaborate sensory-motor information of most cortical neurons.
Although anatomically distant, the direct SC-cortex connections
are functionally similar to connections between contiguous cortical
layers (Merker, 2013).

The SC: A Decision Making Structure
Inside the SC there is a struggle of different forces of incoming
stimuli before the selection of an attentional target (Mysore
and Knudsen, 2011; Furlan et al., 2015; Inayat et al., 2015;
Pretegiani et al., 2015; Wolf et al., 2015; Jagadisan and Gandhi,
2016). The exact mechanism of this competition is a subject
of active investigation in bio-cybernetic to understand how a
visual stimulus is transformed into a response (Brandt et al.,
2012; Mysore and Knudsen, 2014; Phongphanphanee et al., 2014;
Taouali et al., 2015; Adeli et al., 2017; Veale et al., 2017). This
internal activity is influenced by extracollicular input process
(Merker, 2007; Thurat et al., 2015; Khan et al., 2016).

The SC follows top–down orders from higher structures
(Bauer et al., 2015; Paneri and Gregoriou, 2017) but it is prepared
to take the control of any event which could be a source of interest
or a potential threat (Maior et al., 2011; Mysore and Knudsen,
2011; Krauzlis et al., 2013, 2014; Phongphanphanee et al., 2014;
Schröder and Carandini, 2014). The reaction is not always
limited to a gaze change (Lovejoy and Krauzlis, 2010); sometimes
a whole body, very fast non-conscious lifesaving reaction is
needed and the SC must take the control. In this perspective
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FIGURE 4 | Indirect bottom–up multisensory input from the SC to the cortex: Almost all sensory inputs (visual, auditory, somatosensory, proprioceptive and
nociceptive) converge at the Deep SC. The visual input from the superficial SC is the most massive and leads to the correspondence of the rest (somatosensory,
auditory, etc.) Several thalamic nuclei receive deep SC input to further reach the cortex.

SC decisions are superordinate even to cortex decision (Merker,
2007). Thus, we can suggest that the attentional decisions of the
infant influenced by emotional and cognitive dimensions operate
through the SC. Then, it is plausible to theorize that the most
proposed endophenotype of ASD –the automatic attentional
bias- is determined by the SC.

The SC and the Representation of the
Self
Different levels of complexity of brain activity have been
proposed to explain basic to sophisticated representations of
the self (Merker, 2007; Fabbro et al., 2015). Apparently, the
primary self is sustained purely by a subcortical system (Fabbro
et al., 2015) called the “optic brain” (Merker, 2007). This
conglomeration of nuclei, whose center is the SC, concentrates
complex innate behaviors: the hypothalamus drives exploratory,
ingestive, aggressive, defensive, social, sexual, and parenting basic
goal directed behaviors and the PAG is involved in pain and
powerful emotional reactions (Merker, 2007). These subcortical
nuclei seem to be essential for further development of reflective
knowledge based on self-consciousness, sustained by frontal,
parietal and temporal structures. With the contribution of these
cortical networks, babies start to recognize themselves in a mirror
at 18 months of age. Few months later (∼24 months) they
achieve the most complex representation of the self, exclusive of
humans -the narrative-self-, supported by three cognitive aspects:
(1) the ability to mental time travel to reconstruct past events

and imagine possible future scenarios, (2) mentalizing abilities
(theory of mind) and (3) language abilities that allow sharing it
with other congeners (Fabbro et al., 2015).

The functional link between widespread bilateral cortical
regions required to sustain this complex function is based on
synchronized gamma band (∼40 Hz) neuronal activity which
is highly coordinated with activity recorded at the SC (Fabbro
et al., 2015) and the Pul (Soares et al., 2017). Recent MEG studies
in humans support the existence of an impaired gamma band
synchrony during eye-gaze processing in ASD (Richard et al.,
2013). A direct relationship has been found in the severity of
ASD and the compromise of shared attention secondary to a poor
self-categorization (Skorich et al., 2017).

The SC and the Building of the Social
Brain
The newborn’s ability to follow biologic motion and faces
(Greenough et al., 1987) is sustained by experience-expectant
circuits. Apparently, similar to the early imprinting phenomenon
on birds, this event triggers simultaneously neurotransmitters
and genes inducing qualitative changes on several brain regions
responsible for the future social and cognitive style of the
individual (Klin et al., 2015; Rosa Salva et al., 2015). The SC
ascending connections are the candidate for an initial plastic
effect on more “experience-dependent” higher circuits of the social
brain. Prenatal and early postnatal animal studies have shown
that the first neurotransmitter responsible for synaptic prune and
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FIGURE 5 | Emotional circuits triggered by the SC: visual and non-visual stimuli carrying emotional content could be processed exclusively by subcortical circuits or
to reach the frontal cortex resulting or not in a motor non-conscious or conscious response respectively. The reward dopaminergic system is mediated by the
Susbtantia njgra (SN)and the nucleo accubens (NA); the alerting adrenergic system by the locus ceruleous (LC);the cholinergic system by the substantia
innomminata (SI). The hypothalamic-pituitary-adrenal axis (HPA) is reached through the paraventricular nucleus (PVN). Some basic emotions like defensive,
reproductive, maternal or pain related behaviors are mediated by connections with the periacueductal gray matter (PAG). Through these ways the SC activates
simultaneously several attentional, autonomic, endocrine and cognitive functions.

specialization is GABA (Hensch, 2016). Evidence shows that the
SC contains the largest amounts of GABA and the highest density of
GABAergic synaptic terminals in the brain (Grantyn et al., 2011).
Alterations in early GABA expression secondary to gene defects,
perinatal trauma or toxic effects during pregnancy could result
in neurodevelopmental disorders (ASDs, Rett Syndrome) and/or
epilepsy (Abrahams and Geschwind, 2008; Takesian and Hensch,
2013), and repetitive circling behavior in rats (Velíšek et al., 2005).
Not only does GABA play a role in early brain organization,
but also almost all neurotransmitters (including nitric oxide)
are involved in SC functions indicating its ubiquitous influence
on several brain structures necessary to accomplish complex
functions (Fuentes-Santamaria et al., 2008).

Effects of SC Lesions on Behavior in
Humans and Animals
Few descriptions of motor or saccadic eye movement secondary
to isolated unilateral SC lesion in adults were found in the
literature (Heywood and Ratcliff, 1975; Girotti et al., 1979;
Paidakakos et al., 2012).

More than a half century ago Denny-Brow described behavior
abnormalities in monkeys and in a 17 year old girl with SC lesion.
The author was impressed by how this small area inactivates the
elaborate hemispheric organization for reaction to the external
world. At that time he proposed that the SC was essential for
social development (Denny-Brown, 1962).

Animal Studies
Bilateral lesions of the SC in infant capuchin monkeys impaired
fear of snakes (Maior et al., 2011) and, on follow-up, they
showed a transitory compromise of social behaviors. The authors
proposed that the SC may play a key role in early stages of
social development, but after this period its neural substrate
involves larger networks (Maior et al., 2012). Despite the fact
that the SC has connection with all brain areas involved in gaze
direction, its ablation in rats does not result in absence of eye
movements. Instead, it severely affects the ability to select relevant
information to survival (ex.: to respond to a threat) and to
establish priorities from several clues in covert attention to decide
where the next gaze should be oriented (Merker, 2013) (which is
an endophenotype of ASD) (see Table 1).
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FIGURE 6 | Top–down direct multisensory, motor, and emotion related input from the cortex to the SC. The SC receives direct cortical input mainly from V layer that
concentrates all elaborated sensory-motor information from most cortical neurons. Temporal-Parietoccipital (TPO) associated area and frontal lobe regions -premotor
mirror networks, emotional networks (OFC) and eye movements areas (FEF-SEF)-should be integrated for mentalize abilities. With this direct input, the SC functions
as a contiguous cortical layer. Subcortical nuclei process non-conscious sensory-motor functions and are essential to SC functions.

BEYOND SOCIAL/COMMUNICATIVE
COMPROMISE: STEREOTYPIES AND
MOTOR ABNORMALITIES

Based on the ubiquitous presence of hyper-reactivity to
nociceptive responses, acoustic startle response, and diminished
prepulse inhibition (PPI) Markram and Markram (2010)
proposed the “Intense World Theory” to explain ASD. They point
to a prenatal compromise of the brainstem resulting in hyper-
functioning of local neural microcircuits. Diminished PPI has
been specifically associated with SC compromise (Soares et al.,
2017) and it is in consonance with its extremely excitatory
role that needs continuous gabaergic inhibition from several
surrounding nuclei, intrinsic interneurons (Merker, 2007) and
the cortex (Yu et al., 2013). Prenatal exposure to valproic acid
in humans results in Fetal Valproate syndrome, associated with
a high ASD prevalence (Williams G. et al., 2001; Schneider
and Przewłocki, 2005) and a rodent model of autism with
striking behavioral, anatomical and pathological, similarities
was created by exposure of rat fetuses to valproic acid (VPA)
(Schneider and Przewłocki, 2005). This is in concordance with
the specific compromise of gabaergic SC’ neurons in rats exposed
to the drug that not only showed difficulties in social and
exploratory behavior but also abnormal sensory patterns of hypo
or hyper-reactivity to nociceptive responses, to acoustic startle
response, and diminished PPI (Dendrinos et al., 2011; Nakamura
et al., 2015). Similarly, increased seizure activity secondary to
hyperconnected networks in the OT has been found in tadpole
prenatally exposed to valproic acid (James et al., 2015). Less

circumscribed (not limited to the SC) prenatal focal brainstem
lesions that result in Möebius syndrome or Thalidomide syndrome
were also associated with high ASD prevalence, abnormalities in
sensory processing, and epilepsy (Miller et al., 2005; Miller and
Strömland, 2011).

All previous listed findings seem to be in consonance
with brain abnormalities observed in ASD individuals such as
increased local subcortical hyperconnection and abnormalities of
early pre and post-natal synaptic organization (Abrahams and
Geschwind, 2008; Markram and Markram, 2010).

Motor abnormalities in synchrony and imitation are among
the most common earlier ASD’ manifestations (Marsh et al.,
2013) and have been attributed to abnormal brain connectivity
(Fishman et al., 2015) or magnocellular dysfunction (Ronconi
et al., 2012). Social synchrony development is influenced by
several variables like innate motivation and emotions, mimetic
desire, visuomotor integration, implicit and explicit attention
(Fitzpatrick et al., 2017). As it was previously exposed, the SC
has a central role in the integration of sensory, motor, and
emotional variables, necessary for mentalizing functions and the
representation of the self.

ASD ETIOLOGIES, TIMING OF CLINICAL
MANIFESTATION AND
NEURODEVELOPMENTAL COURSE

Non-defined genetic causes represent the most prevalent etiology
of ASD and several hundred of genetic markers have been

Frontiers in Neuroscience | www.frontiersin.org 12 January 2019 | Volume 12 | Article 1029

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01029 January 9, 2019 Time: 12:30 # 13

Jure Autism Pathogenesis: The Superior Colliculus

proposed (Willsey et al., 2013). This complexity is increased
by prenatal and postnatal genes-environment interactions (Fein
and Helt, 2017). For that reason, this line of research could
be useful to recognize subtypes of autisms but unfruitful to
explain the presence of the cluster of symptoms in the entire
spectrum including children with non-genetic etiologies. It is
more rational to propose that multiple etiologies confluence
on specific networks in a specific age window, provoking a
dysfunction responsible for the myriad of core symptoms (see
Figure 1). In this section, etiologic genetic and non-genetics
factors will be discussed under the perspective of prenatal and
early postnatal SC involvement.

Prenatal Etiologies
It is clear that experience-expectant subcortical SC circuits that
drive social motivation are almost exclusively influenced by
genetic aspects. It is probable that a single compromise of any
gen responsible for diverse interacting substances like oxytocin
(OXT), dopamine, GABA, glutamine, acetylcholine, endogenous
opioid, serotonin, etc., could jeopardize the prenatal emergence
of social motivation.

Two conspicuous examples are, on one side, at the very
beginning of the pathway, the finding of autism-relevant social
abnormalities in Engrailed-2 knockout mice, a gene responsible
for retino-tectal (SC) axon guidance and for proper development
of monoaminergic hindbrain circuits (Brielmaier et al., 2012) and
on the final top–down influence, the results of a multidisciplinary
study revealing that several ASD associated genes converge over
midfetal layer 5/6 cortical projection neurons (Willsey et al.,
2013) which, from every cortical lobe, directly connect with the
SC (Merker, 2013).

There are other possible mechanisms, to name a few due
to the complexity of structures and functions involved. For
example, a single gene defect compromising a peptide like
OXT or its receptors have been linked to a reduced ability to
face recognition, face emotion, or direction of gaze detection
in members of families with an autistic child (Skuse et al.,
2014). OXT was specifically linked with the SC in monkeys
(Freeman et al., 2014) and, fMRI images in humans showed
Amy and SC activation with enhanced attention to faces by
OXT administration (Gamer et al., 2010). Serotonin has been
highly implicated in abnormal emotional regulation, stereotypies,
and obsessive symptoms of ASD individuals (Tuchman, 2006;
Johnston, 2011). Serotonin transporter gen markers were linked
to anatomic and functional abnormalities in a specific emotion
related SC-Pul-Amy pathway activated by eye contact and,
apparently essential to the development of social cognition
(Skuse, 2006). In rodents, the influence of the SC on cortical
serotonin regulation in response to visual and non-visual stimuli
has been shown (Dringenberg et al., 2003; Bezdudnaya and
Castro-Alamancos, 2014). An fMRI study showed bilateral
dysfunction of dopaminergic networks during reward related
social games (Assaf et al., 2013). Genetic studies pointed
to abnormalities in dopaminergic receptors involved in the
rewarding value of joint attention in ASD’ individuals (Gangi
et al., 2016); several dopamine networks are activated by the SC
(see above for references). Most of these genetic mechanisms

are still unknown, which could explain the frequent non-defined
genetic etiologies that result in ASD.

Prenatal neuroinflammation is also a frequently proposed
etiology of ASD (Bilbo et al., 2018; Ohja et al., 2018).
A selective compromise of social behavior mediated by the OT
was observed in tadpoles exposed to elevated levels of pro-
inflammatory cytokines (PIC) during early development (Lee
et al., 2010). Additionally, it has been previously described
that non-genetic prenatal conditions like fetal valproic acid
or thalidomide syndrome directly compromise the SC (see
above).

SC/Cortex Postnatal Mutual Influence
The postnatal appearance of the symptoms after 2 months of
normal eye gaze in some children (Jones and Klin, 2013) or
the occurrence of an autistic regression between 1 and 3 years
old in almost a third of ASD’ children is suggestive of an
active postnatal pathogenic compromise. If early interactions
between environment and the genes shape several brain circuits
and the “bottleneck” or the “interphase” between both is the
SC, any significant genetic or non-genetic etiologic event will
impact directly or indirectly on it. The postnatal complexity
of environmental-gene interactions increases the vulnerability
for pathogenic factors, mainly on genes that participate in
neurotransmitter physiology, and brain microstructure. Most of
the genetic markers of ASD are related to synaptic formation
(Abrahams and Geschwind, 2008; Adviento et al., 2014; Sala
et al., 2015; Sanders et al., 2015), cell adhesion molecules (Klin
et al., 2015), axon guidance (Suda et al., 2011) or the metabolism
of several neurotransmitters including GABA (Grantyn et al.,
2011) or oxide nitric (Campbell et al., 2013; Sweeten et al.,
2004).

It is worth noting that the synapses are diffuse but their
compromise in ASD affects selectively some circuits, sparing or
even enhancing others. This observation strengthens the theory
of a lack of visual imprinting provided by the magnocellular
pathway through the SC. Neuroanatomical and neurofunctional
imaging studies disclose a selective compromise of networks that
supports faces and motion perception, and emotional processing
(Patriquin et al., 2016). White matter tract studies reveal hypo-
connectivity of the large-scale tracts (Courchesne et al., 2007),
more specifically the bilateral uncinate and superior longitudinal
fasciculi (Jou et al., 2011). All these networks support social and
communicative development and are activated by the SC after
birth.

The compromise of brain connectivity is not limited to the
cortex. A large scale multidisciplinary evaluation of diverse
images studies not only confirmed the selective long range
cortico-cortical hypoconnectivity in areas related to the social
brain, but also highlighted a new finding: hyperconnectivity in
subcortical thalamic structures (Di Martino et al., 2014) This
is in consonance with the animal models of ASD prenatally
exposed to valproic acid that also showed abnormal response
to sensory stimuli and stereotypies (see above for references).
Cortical top-down direct connections exert mostly inhibitory
effects on SC neurons (Yu et al., 2013). Hence, it is possible
that genetic and non-genetic factors which compromise distant
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but connected regions with the SC including the cortex could
be a potential source of ASD pathogenesis; for example:
Tuberous sclerosis, West Syndrome or electrical status epilepticus
during slow sleep (McVicar et al., 2005; Tuchman et al.,
2009).

Non-genetic Postnatal Environmental
Factors
A high prevalence of autistic behavior, including repetitive and
restricted range of interest, was found in orphan children with
severe early deprivation and in adopted children after early care
breakdown. The main determinant factor was the occurrence
of the deprivation during the first 6 months of life or longer
(Rutter et al., 1999; Kreppner et al., 2010; Nelson et al., 2011;
Green et al., 2016). Diverse functional and anatomic brain
studies on severely deprived orphans showed abnormalities in the
Amy, the hippocampus, the ventral striatum, the orbitofrontal
cortex and reduced white matter organization of the bilateral
uncinate and superior longitudinal fasciculi (Nelson et al., 2011).
These findings also support the existence of a critical period
that needs the contribution of the environment to produce
the synaptic and neural changes necessary for the development
of the social networks. This could explain the very high
prevalence of autism regression between 15 and 30 months of
age, even in children with CB that showed a visual improvement
after the first year of life (Dale, 2005) and the significant
difference of ASD in children with CB compared with partial
or acquired blindness (Hobson and Bishop, 2003; Jure et al.,
2016).

DEVELOPMENTAL TRAJECTORIES

Based on the interplay of “social motivation” and “social cogni-
tion,” subserved by “experience-expectant” and “experience-
dependent” brain circuits respectively, this model could also
explain the different developmental trajectories described in
ASD children (Fountain et al., 2012). During the first months
of life, “experience-dependent” higher circuits are modeled by
“experience-expectant” networks. A change of this dominant role
in the opposite way (i.e., cortical over subcortical structures) from
the first months through adulthood seems to occur gradually. The
adult phenotype seems to be the result of both: the intensity of
ASD’s initial symptoms and the late appearing cognitive resources
fed by cultural influence. Autism recovery or optimal outcome has
been described in a minority of sighted individuals (∼20%) after
8 years of age, with mild ASD before 5 years old and above average
level of cognition. The authors argued that this compensation
could be secondary to the use of explicit, higher order, resources
to substitute weak implicit social processing (Fein et al., 2013).
The most dramatic autism recovery observed in an important
minority of children with CB (Hobson and Lee, 2010) could be
explained by a presumed normal genetic background for social
abilities and a great need of verbal communication regarding its
unique role as a vehicle for learning in blind individuals. On
the other hand, the very high prevalence of Autism regression in
CB before 3 years of age (Jure et al., 2016) could be the result

of a secondary degeneration (diaschisis) of selective circuits as a
result of a total lack of visual input during the first months of
life.

ASSOCIATED LANGUAGE DISORDERS
AND INTELLECTUAL DEFICIT (ID)

Regarding that most of the numerous genes involved in the
pathogenesis of ASD are related with early axon, synapsis
formation and neurotransmitters, the most probable scenario
is that different groups of those genes participate in different
developmental stages of brain organization and function. If
the genetic compromise affects the connections diffusely, the
most likely clinical result will be the association of ASD with
ID (which is present in ∼50% of ASD individuals) and more
severe language disorders. If genes with a more selective function
are affected, i.e., some of those that are activated by the SC
in the postnatal period, the clinical manifestations will be
more selective, and perhaps limited to ASD symptoms without
intellectual compromise.

Additionally, the SC houses several types of neurons,
dependent of several unknown genetic markers (Byun et al.,
2015) that could be selectively affected resulting in different
ASD phenotypes. For example, hypothetically, a compromise of
multisensory SC neurons will result in less extended multisensory
cortex and more cortical neurons recruited to both, isolated
auditory and visual sensory processing respectively. This could
explain not only most of ASD symptoms (including language
disorders) according to some authors (Stein et al., 2014;
Stevenson et al., 2014) but also the higher ability to visual local
processing and the higher frequency of absolute pitch in ASD
population (Heaton et al., 2008). A dysfunction of neurons
that process facial configuration could explain the attentional
tendencies to objects instead of congeners in early life. On
the other hand, the rigidity, narrow interest and selectivity for
some particular topics could be secondary to a compromise on
disengagement neurons.

To understand the influence of attention on language
development it is essential to clarify the variability in the
attentional compromise: attentional neglect as in “Sprague
effect” means that the individual is unable to visualize or to
process the presented information despite all the efforts made
by the interlocutor (e.g., to share attention over a proposed
activity); this severe neglect from infancy could result in a
complete lack of language development. Children with a selective
attentional interest, e.g., on numbers, letters, songs, or TV
programs can be able to repeat the alphabet, several songs with
excellent phonology, or numbers in two different languages, but
will display a serious compromise in communication. A mild
compromise, limited to multiattentional tasks, can explain the
ability of some high functioning ASD individuals to sustain
a formal dialog with one or two persons but the inability
(or avoidance) to do it informally, in a group of several
individuals. As it was previously mentioned, new evidence points
to abnormal social attention to explain the language compromise
on children with ASD (Tenenbaum et al., 2014).
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TABLE 2 | Etiologies and brain mechanism proposed for ASD and its coincidence with SC compromise (see text for references).

Etiologies or brain mechanism of ASD SC functions

Genetic markers of ASD are related to synaptic
formation, cell adhesion molecules, axon
guidance, etc.

The SC is the main brain organizer (by early visual input) during the first months of life. Several specific
genes related with retino-tectal axon guidance and cortical-SC connections are related with ASD
etiology.

GABA is the main synaptogenic neurotransmitter
during early life.

The SC is the main GABAergic brain center with a generalized influence on sensitive, motor and
emotional circuits.

Fetal valproate syndrome Specific compromise of gabaergic SC’ neurons in rats exposed to the valproic acid: they showed
difficulties in social and exploratory behavior, abnormal sensory patterns and diminished prepulse
inhibition (PPI).

Others neurotransmitters and hormones (OXT,
testosterone, dopamine, glutamate, nitric oxide,
choline, etc.) have been implicated in the
pathogenesis of ASD.

Most reward related dopaminergic circuits are activated by the SC. The interaction between OXT and
testosterone has an influence on the gaze behavior toward faces (aversion or indifference)∗ which are
closely related with the SC. Most neurotransmitters and neurotrophic factors have input and/or output
influence on the SC.

Impaired gamma band synchrony in ASD. Widespread cortical synchronized gamma band activity is triggered by SC activation.

New images studies found selective long range
cortico-cortical hypoconnectivity in areas related
to the social brain, and hyperconnectivity in
subcortical thalamic structures.

The SC could be responsible of the hypoconnectivity of the social brain network regarding its specific
role on these brain areas during early human development. The recent finding of subcortical
hyperconnectivity reinforces the theory of subcortical network compromise (whose center is the SC)
and explains several symptoms such as the stereotypies, the abnormal PPI, obsessions, etc.

Prenatal neuroinflammation is a proposed
etiology of ASD.

Impaired social behavior by compromise of the optic tectum was observed in tadpoles exposed to
elevated levels of pro-inflammatory cytokines (PIC) during early development.

∗Baron-Cohen (2017).

SUMMARY AND CONCLUSION

This review on two parallel lines of research, ASD pathogenesis
and SC functions, discloses several common points worth
investigating (see Table 1). The three levels of ASD’ compromise
(clinical, etiological and pathogenic) could be explained by
the role of the SC as a hub for developing brain networks
that support social, emotional and communicative behaviors
(see Figures 1, 3). Genetic and epigenetic and non-genetic
prenatal or postnatal etiologies can affect the role of SC to
transform early visual experiences into microstructural cerebral
changes. Different pathogenic lines compromising the SC and
affecting neuronal differentiation, synaptic formation, pruning,
neurotransmitters, neurotrophic factors, or neurohormones (see
text above and see Table 2) could explain the diversity of
clinical subgroups. The timing of postnatal biological disruption
parallels the timing of clinical manifestation. Most ASD cognitive
theories, instead of being rejected, seem to adequately fit in
this framework to explain all ASD symptoms in one individual
and qualitative differences between subgroups. Every seminal
symptom or endophenotype of each previous proposed theory
is explained by a disruption of one of the several SC functions
(see Table 1). Only the integration in this very small structure
of all orienting senses with attentional, autonomic, endocrine,
emotional, motivational variables and its transformation on
motor commands, could explain the repetition of such variety
of symptoms -social, communicative, autonomic, sensory-motor,
emotional, etc.- in almost each individual with the disorder. Most
evidence shows that this simultaneous integration led by vision
and its influence on several cortical and subcortical structures (by
gamma band activity?) is necessary to accomplish the synchrony
needed to multiple attention of several variables required on real
life social environments (see above for references). The interplay
of a continuum set of abilities, or deficits, of the two broad

cognitive styles: those provided by the SC on one side -non-
conscious, peripheral, automatic, simultaneous, global-, and the
more focal, conscious, analytic and detailed system -independent
of the SC- on the other side, could explain the broad spectrum of
the clinical compromise and the uneven skills usually observed
in ASD individuals. The lack of the inhibitory action of cortical
structures over the SC seems to be the best explanation to the
abnormal response of sensory stimuli, the frequently associated
anxiety disorders, obsessive thinking and the stereotypies.

The interaction of experience-expectant circuits that drive
innate social motivation and late maturing experience-dependent
networks that support social cognitive development is the best
framework to explain the different neurodevelopmental courses
(regression or optimal outcome) and the social subtypes. For
example, an innate lack of social motivation would result
in an aloof or passive social style. The very frequent social
inappropriate subtype could be secondary to a high innate desire
of interaction but without the resources (attentional, cognitive,
etc.) provided by higher order cognitive processes that require
frequent and long-lasting bottom–up and top–down SC-cortical
interaction to allow a fully developed social cognition. It could be
concluded that it seems unlikely to find another brain structure
with the complexity of SC suitable to explain the complexity of
all ASD variables.

FUTURE RESEARCH

Regarding the SC anatomic location, its complexity, the plastic
changes it suffers during the first months and the limitations
for in vivo studies in infants, images and functional studies
represent a significant challenge. Animal studies are limited due
to their lack of higher order social and communicative abilities
compared to humans. New technologies are indispensable for
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revealing the intricate mechanisms that govern the qualitative
brain changes after the exposure of visual experiences. However,
it is also necessary to change the focus of research from cortical to
subcortical structures regarding its prominent role on hemispheric
organization during early life. A search for anatomic and
physiologic differences in the SC of non-autistic vs. autistic
individuals could provide an initial clue for further research.

While the previous description was centered on the SC,
it should be stressed that it is closely joined to the Pul. The
inferior and the lateral Pul have a key role in emotional and
social functions and are more developed in humans than in other
primates. The main questions are: is the SC essential for social
and communicative development during the first months of life?
Could it be replaced by another structure like the Pul? Which
one of the two structures is more relevant in ASD pathogenesis?
Is it possible that selective compromises of SC functions could
explain different pathogenic ASD pathways? What are the
genetic-epigenetic interactions mediated by the SC necessary to
support the development of social/communicative behaviors?
(For example: “what are the effects of visual experiences and
social interactions on the SC during the first 6 months of life to
turn on and off different genes that activate brain mechanisms to
allow social and communicative development?”). To respond to

these questions clinical and biological researchers must work in
collaboration.
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