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There have been few reconstructions of wildlife disease emergences, despite

their extensive impact on biodiversity and human health. This is in large part

attributable to the lack of structured and robust spatio-temporal datasets. We

overcame logistical problems of obtaining suitable information by using data

from a citizen science project and formulating spatio-temporal models of the

spread of a wildlife pathogen (genus Ranavirus, infecting amphibians). We

evaluated three main hypotheses for the rapid increase in disease reports

in the UK: that outbreaks were being reported more frequently, that climate

change had altered the interaction between hosts and a previously wide-

spread pathogen, and that disease was emerging due to spatial spread of

a novel pathogen. Our analysis characterized localized spread from nearby

ponds, consistent with amphibian dispersal, but also revealed a highly

significant trend for elevated rates of additional outbreaks in localities

with higher human population density—pointing to human activities in

also spreading the virus. Phylogenetic analyses of pathogen genomes

support the inference of at least two independent introductions into the

UK. Together these results point strongly to humans repeatedly translocat-

ing ranaviruses into the UK from other countries and between UK ponds,

and therefore suggest potential control measures.
1. Background
Emerging infectious diseases (EIDs) are defined as diseases undergoing an

increase in incidence, geographical range, or host range. EIDs of humans, live-

stock, and crops are increasingly recognized as major challenges, because they

can impose massive economic burdens and have major public health impli-

cations [1]. By contrast, much interest in wildlife diseases has been indirect, a

consequence of wildlife populations serving as reservoirs for human diseases

(zoonoses, see [2]) and diseases of livestock (e.g. bovine tuberculosis and rinder-

pest [3,4]). A second, more direct motivation for understanding wildlife EIDs

is their impact on biodiversity, since they can cause extirpation and/or

catastrophic multihost declines [5–9].

Preventing EIDs at source is highly desirable; but such intervention requires

a thorough understanding of the drivers of emergence. Reconstruction of

modes of transmission and patterns of spread can inform strategic management

approaches. For example, Jennelle et al. [10] demonstrated how deer harvesting

could be implemented to manage chronic wasting disease prevalence in deer
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populations. However, the analysis of the dynamics of

wildlife disease spread and the application of molecular epi-

demiological techniques to investigate them are increasing

only slowly [11].

One effective approach to reconstructing emergence is to

use phylodynamic techniques [12]. These methods are most

effective when genetic data are available for large samples

that have been serially sampled at known locations and for

pathogens with high mutation rates and large population

sizes (such as fast-evolving viruses with RNA genomes). Suit-

able datasets are more frequently available for human

diseases, those posing a zoonotic risk and those of economic

importance. Unfortunately, for other diseases of wildlife, the

required knowledge of pathogen diversity and host suscepti-

bility is usually lacking and the genetic patterns may lack

sufficient resolution [13]. Here, we develop an alternative

approach to reconstruct pathogen spread and test hypotheses

relating to drivers of emergence, which could be used as a

model for other wildlife diseases. We demonstrate how citi-

zen science can be employed to generate large datasets that

feed spatio-temporal models of emergence, and how this

approach can be integrated with the type of patchy genetic

sampling that may be common to studies of wildlife diseases.

To study emergence of an infectious disease of amphi-

bians (ranavirosis), we made use of an ongoing citizen

science project in the UK that has collated records of amphi-

bian mortality for two decades and has provided material for

genetic characterization of the viruses responsible (genus

Ranavirus). Ranaviruses are large, double-stranded DNA

viruses that infect and cause severe disease in amphibians,

reptiles, and fish on five continents [14]. In the UK, ranavirus

infections and mass mortality events have been recorded and

investigated since 1992 following alarm by members of the

public [15]. Infections and reports of mortality have focused

on Rana temporaria a species which has shown median

virus-driven declines of 81% sustained over a 12-year

period [15,16].

There is prima facie evidence linking ranavirus spread to

humans in a number of ways. Ranaviruses have been found

in traded amphibians [17], a number of outbreaks have

been associated with introduced or farmed species [18–21],

and an earlier study that used microscopy and molecular

methods to compare viruses suggested that ranaviruses

were introduced to the UK from North America [22].

Human activity has also been correlated with increased rana-

virus prevalence in North America [23] and urbanization is

correlated with ranavirus occurrence in the UK [24]. In

North America, the use of infected juvenile salamanders as

bait is known to have contributed to the spread of ranavirus

in ambystomatid salamanders [25,26], which appears to rep-

resent one incidence in a long history of human introductions

of pathogens to naive populations [27]. Here, we evaluate the

relative importance of human-mediated spread versus other

possible explanations for the apparent rapid recent spread

of ranavirus within the UK.

There is now a considerable body of research on climate

change as a driver of EIDs with documented effects on both

hosts and pathogens [28,29]. Climate change can alter amphi-

bian behaviour such as timing and duration of hibernation,

which may affect pathogen transmission opportunities

[30,31]. Ranaviruses exhibit temperature sensitivity both in

the wild and in the laboratory. Ranavirus replication is more

rapid at higher temperatures when grown under controlled
conditions in cell culture [32]. In an animal model, experimen-

tally infected common frog tadpoles experience higher

mortality rates at higher temperature [33]. In the wild in the

UK, ranavirus outbreaks show seasonality with a summer

peak [34]. Although it is problematic to extrapolate directly

from laboratory studies to ecology in the wild, such results

indicate how climate change could alter the spatial distribution

of ranavirosis.

Mapping of suspected ranavirosis events has consistently

yielded a picture of apparent spread across England but has

not previously accounted for reporting effort or considered

other potential biases in the data. We address these problems

and reconstruct spread using epidemiological models to

assess whether classical epidemic spread, spatio-temporal

patterns in an environmental variable predicted to affect

host–pathogen interactions, or human behaviour better pre-

dict the emergence of the disease. We then combined

this analysis with complementary information from an analy-

sis of pathogen genotypes to reconstruct the pattern of

ranavirus emergence.
2. Material and methods
(a) Citizen science surveillance: The Frog Mortality

Project
The Frog Mortality Project (FMP) collated reports of amphibian

mortality from the public between 1992 and 2013 before it was

subsumed into the Garden Wildlife Health project [35]. Methods

used to seek and administer reports changed somewhat over this

period (full details are provided in the electronic supplementary

material). Steps taken as part of this study to prepare the FMP

relational database for downstream analyses (particularly the

georeference and time data) are also detailed in the electronic

supplementary material.

The reports were filtered for consistency with ranavirus infec-

tion. ‘Ulceration’, ‘red spots on the body’, and ‘limb necrosis/loss

of digits’ were the signs of disease chosen to reliably represent

ranavirosis [15,34]. Cunningham [34] showed a strong association

between these signs of disease (as recorded in reports of citizen

scientists) and additional signs of disease at autopsy as well as

the presence of ranavirus in affected tissues [34]. From 1992 to

1996, 95 carcases were examined from 24 sites of wild amphibian

mortality at which lesions consistent with ranavirosis were

reported, and 19 carcases from three sites with no such reports.

Ranavirus was detected in at least one carcase (using virus culture)

from 23 of the 24 sites with lesions reported, but none of the others.

A similar approach to filtering the FMP database for rana-

virus-consistent mortality events has previously shown that

reporters’ observations of these signs can be used as a reliable

predictor of ranavirus occurrence [16]. As well as reports of

lesions, we required mortality events to include at least five ani-

mals, in order to be classified as consistent with ranavirus

infection. This rule makes use of the known virulence and infec-

tivity of the virus [15,16] and replaced summer incidence, which

had been used as a criterion by Teacher et al. [16]. This change

was made because recent studies identified incidents of rana-

virus aetiology (confirmed by molecular methods) outside

summer—between March and October [36]. All remaining

reports in the database were classed as negative.

(b) Covariate data
The values of covariates were obtained at the resolution of dis-

tricts, boroughs, and unitary authorities for England and Wales.

Ordnance Survey Boundary Line data were obtained from the
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Edina Digimap service under OS OpenData license [37]. Monthly

averages of climatic variables for all UK 5 � 5 km grid squares

covering the study period (1991–2010) were downloaded from

the Met Office UKCP09 dataset. Regional human population den-

sities were obtained from the Population Estimates Unit of the

Office for National Statistics. Covariates were decomposed by

year and by region (additional details of these methods are pro-

vided in the electronic supplementary materials). Climatic

variables were strongly correlated (Pearson’s correlation coeffi-

cients range from 0.46 to 0.92, see the electronic supplementary

material, figure S1). We considered mean daily maximum temp-

erature the most suitable climatic covariate, given the apparent

peak incidence of ranavirosis in summertime, and correlations

between temperature and virus growth in cell culture. Temporal

and spatial patterns in population density and maximum temp-

erature were visualized and analysed using linear regression in R.

(c) Two-component spatio-temporal models
We used twinstim, a function in the R package Surveillance v. 1.7

[38–40], to analyse the UK spread of ranavirus-consistent mor-

tality events. Outbreaks were modelled as Poisson events. The

conditional intensity function (CIF) is the instantaneous rate or

hazard for events at time, t, and location, s, conditioned on the

history of all observations up to time, t [39]. The CIF is formu-

lated as the sum of two components—the ‘endemic’ and

‘epidemic’ components (h() and e*() in the following equation):

l�ðt, sÞ ¼ hðt, sÞ þ e�ðt, sÞ, ð2:1Þ

where l() is the function specifying a Poisson rate of infection.

The definitions of the terms ‘endemic’ and ‘epidemic’ differ

from classical epidemiological definitions.

The ‘epidemic’ component (function e*()) indicates the contri-

bution to the infection rate due to transmission from existing

outbreaks and can be thought of as spread from pond to pond

mediated via amphibian dispersal. This is sometimes termed

the ‘self-exciting’ component [38] and describes the infection

pressure at a given time and location due to all other events in

the history up to that point. ‘Interaction functions’ model the

decay of infectivity with distance (‘spatial interaction function’,

in the terminology of the R package) and time (‘temporal

interaction function’) from the infection source [40].

The ‘endemic’ component (function h()) is used to character-

ize infections arising from sources outside of a conventional

system of transmission; i.e. they do not originate from a historic

infection but emerge—are ‘imported’—from outside of the trans-

mission system. The function includes an offset, which we used

to allow for the number of amphibian ponds ‘at risk’, having con-

trolled for reporting effort (see ‘Controlling for reporting effort:

estimating the at risk population’)—such that the endemic rate

of infection is proportional to the relative number of ponds

under surveillance occupied by susceptible amphibians.

We explored the evidence for two alternative hypotheses for

the varying incidence of these ‘endemic’ cases of ranavirosis:

human translocation of virus, modelled by using human popu-

lation density as a covariate, and climate-change effects,

modelled using temperature as a covariate (daily maximum

temperature averaged across a calendar year).

(d) Model parametrization
Upper limits for the infectivity of events were set based on the

biology of frogs. We set the spatial limit for any pond to transmit

infection by the movement of infected individuals at 30 km

(based on [41]) and the temporal limit at 2 920 days (an estimate

of the maximum lifespan of a wild common frog). We used

human population density and daily maximum temperature

averaged across a year as the variables in formulating the ende-

mic components in the two competing models of spread.
To benchmark the performance of our final model, we generated

500 unique covariate datasets by repeatedly randomizing region

to the remaining data and ran the two-component population

density model with these datasets as input.

Goodness of fit was assessed using the method of Ogata and

implemented as part of the Surveillance R package [39,42]. We

also evaluated the model using simulated outbreaks based on

the fitted parameter values. We ran 100 simulations from the

fitted model without providing any data as ‘pre-history’ and

simulations with some pre-history. We compared the mean

total number of events and their spatial distribution to the real

data. The real counts were assessed against the 2.5% and

97.5% quantiles of 100 realizations of the simulated model for

each region [39].
(e) Controlling for reporting effort: estimating the at
risk population

Reporting effort (number of citizen scientists recruited and the

records they generated) varied across years and regions. In

addition, the density of populations at risk (ponds used by sus-

ceptible common frog populations) also varied between regions.

We reasoned that all of these issues could be allowed for by using

the number of reports of mortality events that were negative (not

ranavirus consistent; mapped in figure 1). The number of these

records would increase in proportion to the reporting effort,

and would be proportional to the number of ponds in any one

locality. Their number, Nn, was therefore included as an offset

(log-transformed since the Poisson model of events has a log

link-function).

It is possible that some reporting biases are not compensated

for in this manner, for example, if the relative rates of positive

and negative reports were altered by the filtering of reporters

or by appeals in the media to solicit public participation. One

such large drive took place in London and the South-East in

the early 1990s, and there have been other local and national

media campaigns [34]. Of particular concern is the possibility

that any association of outbreak incidence with human popu-

lation density is actually a reflection of reporting bias, which

has not been captured by our offset, since areas of high human

population density are likely to have more reports. This issue

was investigated by noting that a reporting bias effect would

affect both ‘endemic’ and ‘epidemic’ components of the model,

whereas long-distance translocations by humans (with an inci-

dence proportional to human population density) would only

affect the endemic component. We therefore compared the

model with human population density included as a covariate

in the ‘endemic’ component with one in which it was included

in both components.
( f ) Phylogenetics
Nucleotide sequences downloaded from the National Center for

Biotechnology Information (NCBI) nucleotide database (listed in

the legend of figure 5) were aligned to sequence data from seven

UK ranaviruses [43], using BLAST to pull out homologous

regions. Sequence alignment and phylogenetic tree construction

followed Price et al. [8]. There are no DNA sequence-derived esti-

mates of substitution rates for ranaviruses, but rates across

dsDNA viruses are thought to range from 1025 to 1028 substi-

tutions per site per year (e.g. [44]). We used the upper limit to

calculate a maximum-likelihood estimate of the minimum time

to the most recent common ancestor of the UK viruses (R

script provided; see the electronic supplementary material,

Appendix S1). Support limits were calculated by taking values

corresponding to two log-likelihood units either side of the

maximum-likelihood estimate [45].
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Figure 1. Visualization of UK ranavirus-consistent mortality events in time (1992 – 2010) and space (a – d) and non-consistent frog mortality reports for the same
period (e – h). (Online version in colour.)
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3. Results
After purging the citizen science database of records with

essential data missing and obvious errors, a total of 4 460

reports remained. Filtering the database for reports consistent

with ranavirosis in England and Wales produced a ‘positive’

set of 1 446 (32% of the total). Report numbers—both positive

and total—were concentrated in particular years (see the elec-

tronic supplementary material, figure S2) and regions (e.g.

11% of total reports were received in 1995 from southeast Eng-

land). Report data are visualized in space in figure 1, which

shows a time series of the changing distribution of reports—

both those consistent with ranavirosis (positive) and those

that are not (negative). Both types of report accumulated over

time and their geographical distribution increased, although

the pattern was broadly similar for both types. It is not clear

from these figures whether ranavirosis has spread or whether

reporting effort has driven the change in distribution.
(a) Spatial and temporal variation in main covariates
When we examined regional patterns in the variables associ-

ated with our hypotheses (human population density and

temperature) we revealed some correlations, which can be

visualized on maps (figure 2). For example, London was

both warmer and much more densely populated than other

regions, whilst Wales and parts of northern England were

cooler and more sparsely populated. However, there were suf-

ficient differences to discriminate between the two datasets; in

particular, temperature decreased in a fairly consistent wave-
like fashion from southeast England to Wales and northern

England, whereas variation in population density was more

of a mosaic. In addition, there were differences in the trends

over time: mean daily maximum temperature across years

increased in nearly all study regions, with the majority increas-

ing by 0.5–0.88C (inter-quartile range was 0.58–0.738C;

electronic supplementary material, figure S3), and there was

a larger degree of change in the cooler north. Upward trends

in population density showed more variation between regions

(electronic supplementary material, figure S3) with a greater

degree of change in the south.

(b) Model outputs and performance
Human population density models consistently outper-

formed models with regional temperature as a covariate.

The human population density models had higher likelihood

and lower Akaike information criterion (AIC) scores than the

temperature models (table 1). When fitting simple endemic

models (excluding pond-to-pond infection), both these cov-

ariates were significant terms. For more biologically realistic

‘self-exciting’ models (including pond-to-pond infections

via amphibian dispersal), temperature was no longer a sig-

nificant term in models that also contained population

density ( p ¼ 0.26). The model including only human popu-

lation density (AIC ¼ 33 072, logLik ¼ 216 529), with

dispersal between ponds modelled with a power-law func-

tion, performed better than the equivalent temperature only

model (AIC ¼ 33 279, logLik ¼ 216 633). Human popula-

tion density was a highly significant term ( p , 2 � 10216).
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Figure 2. Regional variation in main covariates averaged across study period, 1991 – 2010 (a) human population density ( people per square kilometre) and
(b) mean maximum daily temperature (8C).

Table 1. Spatio-temporal model summaries (two-component models with power-law spatial interaction function or endemic component only) for each of the
endemic covariates. All models include the number of ‘negative’ records (see text) as an offset to control for reporting effort and represent the ‘population at
risk’.

model class
log-
likelihood AIC endemic covariate p-value coefficient

two-component

population density 216 529 33 072 pop. density ,2 � 10216 4.89 � 1024

temperature 216 633 33 279 av. max. temp 0.97 4.17 � 1023

population density þ temperature 216 526 33 068 pop. density

av. max. temp

,2 � 10216

0.26

4.47 � 1024

9.95 � 1022

population density in both

components

216 529 33 074 endemic pop. density

epidemic pop. density

,2 � 10216

0.87

4.95 � 1024

24.58 � 1026

population density � free school

meals

216 452 32 922 pop. density

free school meals

pop. density � free school

meals

,2 � 10216

,0.0005

6 � 10214

1.74 � 1023

1.33 � 1021

29.23 � 1025

endemic only

population density 218 952 37 910 pop. density ,2 � 10216 4.58 � 1024

temperature 219 138 38 283 av. max. temp ,2 � 10216 9.92 � 1021

population density þ temperature 218 766 37 540 pop. density

av. max. temp

,2 � 10216

,2 � 10216

3.70 � 1024

6.47 � 1021

population density � free school

meals

218 689 37 388 pop. density

free school meals

pop. density � free school

meals

,2 � 10216

7.81 � 1029

,2 � 10216

1.31 � 1023

6.69 � 1022

25.85 � 1025
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By contrast, in the comparable temperature model, tempera-

ture was a non-significant term ( p ¼ 0.97). When human

population density was included in both ‘endemic’ and

‘epidemic’ components—as a test of whether the correlation

with human density was a reporting effort effect—

model performance was not improved (AIC ¼ 33 074,

logLik ¼ 216 529) and population density on the epidemic

side was a non-significant term ( p ¼ 0.87).

In both population density and temperature models, the

‘endemic’ component – which models the occurrence of

‘imported’ events—explained most events at the outset of

the time series. Once such initial infections were established,
the estimates of transmission from pre-existing infections pre-

dominated: in the two-component models the ‘endemic’

proportion fell below 20% within 5 years and remained

fairly stable from then on. The estimates of ‘infectivity’

declined rapidly with distance, with low rates over distances

in excess of 2 km. The power-law dispersal functions were

almost identical between temperature and population density

models. Both models had a residual distribution consistent

with the fitted Poisson CIF (see Material and methods and

electronic supplementary material, figure S4).

The population density model with the real data as input

performed very well (lower AIC and higher log-likelihood
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Figure 4. Comparison of spatial point pattern for real versus simulated data
for 100 simulations from the fitted population density model with no data
provided as pre-history. Intensity of shading represents the number of obser-
vations of ranavirus outbreaks in the region. Triangles indicate regions where
simulations overestimated (red triangle points up) or underestimated (blue
triangle points down) the real data. Regions where the real data fall
inside 95% range of 100 realizations of the simulated model have no triangle.
(Online version in colour.)
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scores) when benchmarked against 500 iterations using

unique input datasets where region was repeatedly random-

ized to the remaining data (figure 3). By contrast,

the temperature model performance was similar to the ran-

domized datasets. We also ran simulations from the

two-component population density model as another

measure of its performance. The total number of events in

the real data was 1 446 and simulations did well in matching

this with a mean of 1 538 without any data being provided as

‘pre-history’ of outbreak locations. The model also performed

well in predicting where new events occurred, with the

number of simulated events matching the real data well for

most regions (figure 4). Exceptions were the southeast and

the northwest where, in the absence of ‘pre-history’ data,

simulations underestimated numbers given the high numbers

of reports originating from these areas in the early years of

data collection.

In London, the simulations predicted more events than

were actually observed, which may be a consequence of the

much higher proportion of people living in apartment

blocks (with less access to ponds) compared with other

regions of the UK (UK Census Data, Office for National

Statistics). To explore this hypothesis, we extended the

two-component population density model to include an

interaction term between population density and the regional

proportion of school students receiving free school meals

(a widely used proxy measure of socio-economic status in

the UK). We hypothesized that this variable would be

highly correlated with the proportion of people without

access to a garden and negatively correlated with the overall

amount of green space in a region. We found that the

inclusion of this interaction did indeed improve the model

fit (AIC ¼ 32 922, logLik ¼ 216 452; figure 3 and table 1) as

well as the match between the number of real and simula-

ted events (1 446 and 1 505, respectively) and the number of
regions where simulations matched the real data (electronic sup-

plementary material, figure S5).

(c) UK Ranavirus diversity revealed by virus
phylogenetics

Our final multiple sequence alignment contained 2 267 base

pairs from 23 virus isolates (seven from the UK and 16

viruses from elsewhere), which we used to reconstruct a rana-

virus phylogeny. The overall topology inferred by both

Bayesian and maximum-likelihood methods was identical.

UK viruses formed two groups with RUK13 and BUK3 form-

ing an outgroup clade (figure 5). Monophyly of all UK

ranaviruses was not supported. Time to the most recent

common ancestor of UK viruses (the node marked with a

red star in figure 5) was estimated at 332 years ago (95%

CI ¼ 189–533 years ago) assuming a substitution rate of

1025 subs site21 yr21.
4. Discussion
We used data generated by a citizen science surveillance pro-

ject in combination with occasional genetic sampling to

reconstruct emergence of an important wildlife pathogen.

By controlling for reporting effort and applying spatio-

temporal modelling techniques, we have overcome the

limitations of common epidemiological techniques, such as

cluster analyses. These approaches have dealt with our con-

cern that the apparent geographical spread of UK ranavirus

events might be an artefact of reporting effort.

The use of an ‘epidemic’ component in models and our

finding that a high proportion of events were attributed to

it showed that the majority of reported incidences of rana-

virosis are likely to have arisen via transmission from

nearby ponds and we recovered estimates of dispersal con-

sistent with the known ecology of frogs. This type of viral

transmission would have created a classical wave-like

spread, with a timescale and spatial pattern that explains

much of the observed data. In addition, there was a small
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but significant proportion of events that were explained by

‘endemic’ processes which model other sources of infection

including infection from non-local sources. We explicitly con-

trolled for reporting effort by including the number of reports

of frog mortality not consistent with ranavirosis as an offset

in our models. In this way, the analysis answered the ques-

tion ‘where are the ponds with human observers?’ and

forced the infection rate to be proportionate to this variable.

Over and above this observer bias, the pattern of new out-

breaks was strongly predicted by human population

density; we have interpreted this pattern as evidence for

the translocation of infectious materials by people, enhancing

the spread of a novel pathogen over greater geographical dis-

tances at shorter timescales than could be accomplished

through typical frog movements.

The modelling process was correlational so requires the

usual caveats of such studies—it is not possible to completely

rule out some other influence of human population density

on the outcome—for example, environmental pollutants
could have amplified the effects of pre-existing ranavirus

infections that had previously gone undetected. However,

such hypotheses would require the virus to have been wide-

spread already. Since we have shown that the majority of

recorded events can be explained via transmission between

nearby ponds over the previous two decades, human translo-

cations of infectious materials over a similar time period

seems a more parsimonious explanation for the ‘endemic’

contribution to the spread. The further improvement of the

population density model following inclusion of the inter-

action with a measure of socio-economic status also adds

support to this interpretation: there is a predictable effect of

this additional covariate on access to ponds but it is more

difficult to envisage how this interaction would modify a

correlation between human population density and the

detection of disease.

We used phylogenetic analysis based on some limited

sampling of infected tissues as a complementary approach

to the spatio-temporal models and found support for
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dispersal through human translocations when interpreted in

combination with the modelling. Using our conservative esti-

mate of the minimum time to the most recent common

ancestor, it is clear that the genotypic diversity in UK viruses

cannot have arisen during the course of its spread over the

last 25–30 years.

Hyatt et al. [22] previously obtained phylogenetic data

suggesting an introduction of ranavirus to the UK from

North America, possibly via the pet trade. In this context,

our new phylogeny suggests that there have been at least two

introductions, each with a distinct history. It is likely that

further analysis of samples taken across the geographical distri-

bution in figure 1 would identify other translocations including

long-distance transfers within the UK that facilitated emer-

gence. Previous work has identified several possible sources

of such ranavirus introductions, by polymerase chain reaction

(PCR) screening of animals that are traded, cultured, and inva-

sive (e.g. North American bullfrogs, which have escaped from

farms and the pet trade) [17–21,46,47]. Human translocations

of infected animals have driven ranavirus emergence on a

broad scale, for example, through the use of infected

salamanders as angling bait in North America [25,26]. Preva-

lence of ranavirus infection is associated with human activity

in Canada and previous work has shown occurrence of rana-

virosis in the UK to be associated with urban environments

[23,24]. Some of the international spread of ranavirus may be

associated with the global trade in animals [17,48]. This trade

is huge in magnitude: for example, nearly 38 million animals

from 163 countries were imported to the USA in a 5-year

period at the turn of the century and 51 species of non-native

amphibians and reptiles have been recorded in Greater

London since the 1980s [49–51].
5. Conclusion
Our results suggest further lines of research to help control

the spread of ranavirus infections in the UK. Daszak et al.
[9] identified two broad categories of human intervention

affecting the emergence of infectious diseases of wildlife

which should be investigated: spread (i) by spillover of infec-

tion from domestic animals and (ii) by human translocations

of pathogen or host. The first could be corroborated by the

identification of a vector; fish or non-native amphibians

(e.g. North American bullfrog) being candidates for reservoir

hosts [19,52]. The second category could involve the trans-

location of fomites, such as aquatic plants, or infected

animals, e.g. spawn, tadpoles, or frogs. Targeted sampling

of such potential vectors, plus further genetic sampling of

ranaviruses to gain a more complete picture of pathogen

diversity would further address the mode and scale of trans-

locations. In the meantime, existing recommendations

discouraging the movement of vectors and fomites could be

much better publicized as an interim step.
This study also represents an important general contri-

bution to the field of emerging wildlife disease through

the demonstration of the potential and applicability of

its methodological approach. Our methods have enabled

reconstruction of ongoing disease emergence in a timescale

enabling the information to flow into management decisions.

This approach can be more widely useful when working with

a pathogen where the mutation rate, biology, and practical-

ities of sampling reduce the utility of fashionable

phylodynamic techniques, which are more appropriate for

fast evolving and intensively sampled RNA viruses. Emer-

gent disease risks are posed by all types of pathogen, many

of which, like ranaviruses (DNA viruses), likely have lower

mutation rates.

Although awareness of the ongoing biodiversity crisis has

increased and is a clear and strong motivation for assembling

comprehensive datasets, wildlife disease remains poorly rep-

resented compared with disease affecting humans and

domestic animals. The approach used here, which builds on

a citizen science surveillance project in combination with

mainly opportunistic genetic sampling, therefore, represents

a promising approach for the reconstruction of emerging

wildlife diseases and exploration of hypotheses that can

inform conservation strategies. To this end, we hope this

study will encourage others to both generate additional data-

sets of this type (following initiatives like the Garden Wildlife

Health project, http://www.gardenwildlifehealth.org) and to

apply the same approach to existing data.
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