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Multimarker Panels in Diabetic Kidney
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Diabetic kidney disease (DKD) is a complex and multifactorial disorder associated with deregulations in a

large number of different biological pathways on the molecular level. Using the 2 established biomarkers,

estimated glomerular filtration rate (eGFR) and albuminuria will not allow allocating patients to tailored

therapy. Molecular multimarker panels as sensors for the deregulation of the various disease mechanisms

combined with a better understanding of how investigational as well as approved drugs interfere with

these disease processes forms the basis for platform trials in DKD. In these platform trials, patients with

DKD are assigned to the most suitable treatment arm based on their molecular marker profile. Close

monitoring of biomarkers after treatment initiation together with assessment of renal function and “off-

target” effects will allow identification of therapy responders, with nonresponders shifted to the next-best

treatment arm based on their molecular profile. In this viewpoint article, we summarize evidence on the

variation of DKD disease progression as well as the response to therapy and outline procedures to model

disease pathophysiology supporting biomarker panel construction. Finally, the use of biomarkers in

clinical trial setup is discussed.
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W
orldwide the number of patients with diabetes
mellitus (DM) increased from 108 million in

1980 to 422 million in 2014. In 2012, 1.5 million deaths
were directly caused by DM and another 2.2 million
were attributable to high blood glucose. DM (and
especially type 2 DM) will be the seventh leading
cause of mortality by 2030.1 This epidemic increases
the incidence and prevalence of DM-associated com-
plications including DKD. DKD is especially common
in specific populations, including the elderly and
obese, those with onset of DM at a younger age, and
certain ethnic and disadvantaged groups. Unfortu-
nately, the increase in the prevalence of DM is most
prominent in these high-risk individuals, and there-
fore, DKD will affect approximately 50% of patients
with type 2 DM.2
spondence: Gert Mayer, Department of Internal Medicine IV

rology and Hypertension), Medical University of Innsbruck,

strasse 35, 6020 Innsbruck, Austria. E-mail: gert.mayer@

.ac.at

ved 8 August 2018; revised 15 November 2018; accepted 4

ber 2018; published online 18 December 2018
The presence, progression, and severity of DKD
markedly influence the prognosis. In the Third National
Health and Nutrition Examination Survey, the 10-year
adjusted cardiovascular mortality in subjects with DKD
was 6.1% compared with 3.0% in subjects with DM and
normal renal function.3 Paradoxically, the recent im-
provements in cardiovascular survival will allow more
patients to develop renal impairment.4,5

The aim of this viewpoint article was to summarize
evidence on the variation of DKD disease progression
and the variation of therapy response. We furthermore
outline ways of modeling DKD disease pathophysiology
supporting biomarker identification and biomarker
panel construction. We finally discuss the use of bio-
markers in clinical trial setup.
DKD: Variation in Disease Progression

In 1996 Nelson et al.6 serially assessed glomerular
function over a period of 4 years in 194 Pima Indians,
a population with an exceptionally high incidence of
type 2 DM and DKD. The glomerular filtration rate
(GFR) was elevated as long as normo- or micro-
albuminuria was present, but declined once higher
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urinary albumin loss developed. This sequence of
events resembled the one described earlier in patients
with type 1 DM.7 “Diabetic nephropathy” was
therefore considered to be driven by a uniform
pathophysiology (mainly metabolic and hemody-
namic disturbances) following a predictable clinical
course that could be reliably captured by the 2 bio-
markers albuminuria and GFR.

This paradigm was maintained for several years,
although some studies supported a different view.
Renal biopsies obtained from 30 patients with type 2
DM, microalbuminuria, and preserved GFR were
analyzed by Fioretto et al.8 Despite this seemingly
“homogeneous” (laboratory) phenotype, only one-third
of the study population showed histological lesions
typical for “diabetic nephropathy,” whereas two-thirds
either had no or atypical findings under light micro-
scopy.8 Some years later it became evident that the
sequence of laboratory changes during the progression
of renal disease varies, again questioning the concept of
a uniform pathophysiology. During a 15-year follow-
up period, 38% of the participants of the UK
Prospective Diabetes Study developed micro- or mac-
roalbuminuria and 29% chronic kidney disease
(defined by a creatinine clearance below 60 ml/min).
However 51% of the latter never had increased albu-
minuria.9 Further support suggesting that the course of
DKD is variable comes from studies showing that the
slope of eGFR decline is extremely diverse. In the
placebo group of the Irbesartan Diabetic Nephropathy
Trial, the creatinine clearance decreased on average
by 6.5 ml/min per 1.73 m2 per year with an SD of
8.8 ml/min per 1.73 m2 and a coefficient of variation of
135%.10 This variability in the renal disease progres-
sion occurred despite strict baseline inclusion and
exclusion criteria (especially regarding the accepted
range of albuminuria and GFR), which aimed to form a
“homogeneous” study population.

In summary, during the past 2 decades, our view on
renal disease in patients with DM has changed. As
renal biopsies are still rarely performed, it is mostly
clinical observations supporting the concept that the
pathophysiology driving the incidence and progression
of DKD is not uniform in all patients and at all stages.

DKD: Variation in Drug Response

Another line of evidence for heterogeneity of DKD
comes from interventional trials. In general intensified
metabolic and/or blood pressure control, the latter,
especially if achieved by the use of agents that block
the activity of the renin angiotensin aldosterone system
(RAAS), have been proven effective in interventional
studies decreasing the incidence and slowing the pro-
gression of DKD.10–14 Novel therapeutic strategies like
Kidney International Reports (2019) 4, 212–221
sodium-glucose cotransporter 2 inhibition or glucagon-
like peptide 1 receptor agonist therapy may even have
beneficial effects beyond blood glucose control and/or
blood pressure lowering.15–18 All of these large inter-
ventional outcome trials nevertheless focus on mean
differences between the studied patient groups. A
considerable interindividual variability in the response
to all investigated interventions is, however, observ-
able. In the Irbesartan Diabetic Nephropathy Trial, for
example, 1715 hypertensive patients with type 2 DM
with proteinuria levels >900 mg per day and serum
creatinine concentrations between 1 and 3 mg/dl were
randomly assigned to treatment with either 300 mg
irbesartan, 10 mg amlodipine, or placebo.10 During a
mean follow-up of 2.6 years, the primary endpoint, a
composite of doubling of serum creatinine, end-stage
renal disease, or death from any cause, occurred in
32.6% and 41.1% of irbesartan- and amlodipine-
treated patients, respectively, as compared with 39%
in the placebo group. Obviously angiotensin receptor
blocker (ARB) therapy was superior to calcium antag-
onist or placebo treatment, but it was by far not
effective in all participants, as reflected by the high
residual risk despite irbesartan treatment. Subsequent
analyses from the Irbesartan Diabetic Nephropathy
Trial study demonstrated that individuals with the
largest reduction in albuminuria during the first month
of therapy showed the greatest renal risk reduction
during subsequent follow-up.19 Conversely, renal risk
did not decrease among 26% of patients who did not
experience a reduction in albuminuria during irbe-
sartan treatment.

Next to interindividual variability in treatment
response at a specific point, the same has been reported
intraindividually over time. Kröpelin et al.20 analyzed
the albuminuria-lowering effect of ARBs in the
Reduction of Endpoints in NIDDM [non–insulin-
dependent DM] with the Angiotensin II Antagonist
Losartan trial and the Irbesartan Diabetic Nephropathy
Trial. Following therapy initiation, 36.3% of the pa-
tients showed a reduction in albuminuria >30% dur-
ing the first 3 months. Among these, albuminuria
further decreased in 44.8%, remained stable in 31.7%,
but increased in 23.5%. Similar albuminuria fluctua-
tions were observed in subjects with an initial albu-
minuria reduction of <30%. These studies suggest
indirectly that the pathophysiology underlying a DKD
phenotype is different between patients and changes
within an individual over time.

In addition to the variation in response in the
intended or on-target risk marker, it has been shown
that many drugs affect multiple other renal or cardio-
vascular risk markers than the one intended (i.e., an
ARB may affect hemoglobin, serum potassium, or uric
213
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acid) and individual patients again show a large vari-
ation in responses in these off-target/unintended risk
markers.21 The interindividual variability in drug re-
sponses in off-target risk markers may also have played
a role in recent clinical trials that were stopped early
due to unexpected severe side effects. The BEACON
(Bardoxolone Methyl Evaluation in Patients with
Chronic Kidney Disease and Type 2 Diabetes) trial
aimed to characterize the long-term renal efficacy and
safety of the anti-inflammatory antioxidant agent bar-
doxolone methyl. The trial was stopped early due to
excess edema, heart failure, and mortality in the bar-
doxolone methyl treatment arm, allegedly due to the
sodium-retaining effects of the drug. A post hoc anal-
ysis identified a subgroup of patients with brain
natriuretic peptide >200 pg/ml or previous heart fail-
ure that did not tolerate the drug and experienced
heart failure. Thus, the variation in response is not only
present in the on-target but also in the off-target risk
markers.

To complicate things even more, a patient with a
response in the on-target risk marker may not neces-
sarily exhibit a response in the off-target marker. Thus,
one individual may experience a reduction in blood
pressure and albuminuria during ARB treatment while
another experiences a blood pressure reduction but no
albuminuria reduction or vice versa. These variations
in response in on-target, off-target risk markers that are
even time-dependent underscore the marked hetero-
geneity of DKD. From a practical clinical perspective,
these findings highlight the need to strictly monitor the
individual’s response to multiple risk markers over
time to determine which patients will benefit most from
treatment.

Determinants of Variation in Response

Variability in drug response in DKD can be attributed to
different factors. First, therapy adherence is an obvious
and important determinant. Patients with DKD can be
prescribed more than 20 pills.22 Such a high pill burden
is associated with a lower therapy adherence and sub-
sequently poorer individual drug response. Individual
variation in drug absorption, distribution, metabolism, or
excretion is another factor that may explain why patients
respond differently. As an example, a study with the
endothelin receptor antagonist atrasentan found that
Asian patients showed, in general, a larger reduction of
albuminuria than North American patients. This differ-
ence between the populations was explained by the
higher exposure to atrasentan in Asian patients due to
genetic differences in drug metabolism. Environmental
factors can also play a role. Dietary habits, such as so-
dium and phosphate intake, have been shown to influ-
ence the response to RAAS inhibition.23–25 Finally, the
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underlying disease pathophysiology of DKD is a key
determinant of the individual response. For example,
increased RAAS activity is observed in some but not all
patients with DKD and associated with a higher rate of
renal function decline. The insertion/deletion poly-
morphism of the angiotensin-converting enzyme gene
influences the systemic and renal activity of the RAAS
and has been implicated in the progression of renal and
cardiovascular disease. A prespecified analysis of the
Reduction of Endpoints in NIDDM with the Angiotensin
II Antagonist Losartan trial demonstrated that the DD
angiotensin-converting enzyme polymorphism is associ-
ated with a higher risk of end-stage renal disease and,
interestingly, a better response to losartan compared with
the insertion/deletion or II genotype.26 These findings
were replicated in an independent study of the Ramipril
Efficacy in Nephropathy trial in nondiabetic kidney
disease and illustrate that underlying disease patho-
physiology, reflected here by the RAAS activity, de-
termines disease progression and response to treatment.27

Biomarkers in Clinical Trial Designs

In the classical design of clinical trials, patients are
randomly assigned to either a treatment or placebo group
(Figure 1a). In situations of a variable and prolonged
clinical course (like DKD), an a priori selection of patients
based on risk (enrichment) is useful to reduce the
necessary sample size and/or follow-up period
(Figure 1b). The incorporation of molecular biomarkers
to improve the clinical trial design by enriching the
population for patients with higher risk or more likely to
respond to the new intervention has been applied for
quite some time now in oncology research and is gaining
momentum also in chronic disease areas, including the
cardiovascular and renal field.

The PRIORITY (Proteomic prediction and renin
angiotensin aldosterone system inhibition prevention
of early diabetic nephropathy in type 2 diabetic pa-
tients with normoalbuminuria) study applies a risk
enrichment strategy making use of a proteomics marker
panel to identify subjects with DM at risk of progres-
sion from normo- to microalbuminuria.28 This capillary
electrophoresis-mass spectrometry–based urinary mul-
timarker classifier was developed in a cross-sectional
study in patient groups with varying etiologies of
chronic kidney disease.29 In PRIORITY, those patients
identified by the proteomics panel being at high risk
are randomly assigned to either receive spironolactone
or placebo (Figure 1b). The trial is currently still
ongoing and results of this marker-based enrichment
strategy trial are expected in 2019.

A disadvantage of a risk enrichment strategy that
solely focuses on the prognostic aspect is the fact that it
is unknown if the biomarker-enriched population will
Kidney International Reports (2019) 4, 212–221
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Figure 1. Clinical trial designs in diabetic kidney disease (DKD). (a) The classical trial setup is depicted where DKD patients are randomly
assigned to either the treatment or the placebo control arm. (b) Two different marker enrichment trial setups are displayed in which high-risk
patients with DKD are either identified by prognostic markers or responders are identified in a run-in phase with a later assignment to either the
treatment or placebo control arm. PRIORITY, proteomic prediction and renin angiotensin aldosterone system inhibition prevention of early
diabetic nephropathy in type 2 diabetic patients with normoalbuminuria; SONAR, study of diabetic nephropathy with the endothelin receptor
antagonist atrasentan.
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actually respond to the investigational treatment. Clinical
trial enrichment strategies enrolling populations that are
more likely to respond to the new intervention is another
approach. This type of enrichment approach was taken
in the study of diabetic nephropathy with the endothelin
receptor antagonist atrasentan (SONAR). After a first
run-in phase to optimize RAAS blockade, the key
element of SONAR was a subsequent enrichment period
to separate atrasentan responders from nonresponders
based on the level of reduction in urinary albumin-to-
creatinine ratio (>30% decrease) (Figure 1b). In this
case, albuminuria was not primarily used as a prognostic
marker but rather to describe treatment efficacy, as the
post hoc analyses from multiple trials indicate that the
drug-induced change in albuminuria is an indicator of
the patient’s responsiveness to the drug. Importantly,
not only does the SONAR trial focus on the on-target risk
marker, but it also integrates the individual’s response in
off-target risk markers: patients with a rise in body
weight or B-type natriuretic peptide level, as proxies for
sodium retention, at the end of the enrichment period are
excluded to ensure the safety of the intervention.30 The
Kidney International Reports (2019) 4, 212–221
SONAR trial with its enrichment design focusing on the
individual response to atrasentan may therefore be a
precedent for future clinical trials in DKD. It should,
however, be mentioned that the SONAR trial was in the
meantime stopped early due to a lower event rate than
expected. Unintended consequences of this new trial
design may occur and the final results of the SONAR trial
will establish the utility of this type of enrichment
design.

Applications of Biomarkers in Other Areas of

Medicine

The previously described enrichment strategies have
already been applied for quite some time in other areas
of medicine. In modern oncology, biomarkers are not
only used to predict prognosis and monitor disease
activity, but to assess individual pathophysiology of a
tumor. For example, the antineoplastic antibody tras-
tuzumab was found to be effective in patients with
advanced gastric or gastroesophageal junction cancer
with an upregulation of the HER2 receptor (human
epidermal growth factor receptor 2).31 Notably, the
215
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protein marker HER2 is also the drug target and serves
for identifying patients eligible for the respective ther-
apy. Ideally, baseline predictive biomarkers also change
during treatment (dynamic predictive biomarker), thus
also allowing monitoring of treatment efficacy. In the
BATTLE (Biomarker-integrated Approaches of Targeted
Therapy for Lung Cancer Elimination) study, biomarker
data on the genetic markers epidermal growth factor
receptor and KRAS/BRAF, as well as expression status of
vascular endothelial growth factor/vascular endothe-
lial growth factor-2 and retinoid X receptors/Cyclin
D1 in cancer tissue, were used to assign patients to 1 of
4 treatment arms (erlotinib, vandetanib, erlotinib-
bexarotene, or sorafenib) to increase efficacy.32 The
BATTLE study is the first completed prospective,
adaptively randomized study that mandated tumor
profiling with "real-time" biopsies, taking a substantial
step toward realizing personalized lung cancer therapy
by integrating real-time molecular laboratory findings in
delineating specific patient populations for individual-
ized treatment.

There are a couple of reasons why the number of
marker-guided clinical trials in the area of oncology is
much higher than in the area of chronic diseases. A set of
fairly well-characterized mechanisms being critical for
cancer development and growth have been described,33

and a number of therapies directly affecting targets in
core biological processes are available. Nonetheless, other
disease areas are also moving toward better personalizing
therapies. Procalcitonin-guided antibiotic therapy im-
proves the diagnostic and therapeutic management of
patients presenting with respiratory illness,34 and in
resistant hypertension, a metabolic marker panel linked
to citric acid metabolism was reported to predict the
response to spironolactone.35

Personalizing Medicine: Matching DKD Patho-

physiology With Drug Mechanism of Action

The pathophysiology of DKD is multifactorial and the
pathways involved in initiation and progression,
confounded by the ones involved in comorbidities and
drug response, constitute a wide and complex as well
as redundant molecular network. Not all pathways that
drive a specific phenotype must, however, be active in
all patients at all stages of the disease as also discussed
by McCarthy36 in the context of type 2 DM, which
again would require frequent monitoring of the patients
(ideally by noninvasive biomarkers) and adjustment of
tailored therapy. Phases of tubulointerstitial inflamma-
tion, for example, might be followed by progressive
fibrosis, both contributing to a drop of GFR but probably
mandating different therapy. A panel of 2 biomarkers,
one for inflammation and the other for fibrosis, could
allow quantitative and/or qualitative upfront
216
stratification of patients, thereby supporting therapeutic
decision making. Even though this approach seems
straightforward, one major obstacle is that it depends on
the availability of a “complete” inventory of the patho-
physiologically relevant molecular processes of DKD and
identification of associated markers. Our capacity to
analyze deregulations associated with a disease on a mo-
lecular level has increased dramatically with the wide-
spread introduction of various “omics” techniques, and
changes of the molecular phenotype have been described
in DKD at the level of the genome, transcriptome, pro-
teome, and metabolome.37

There are, however, challenges in implementing the
various “omics” techniques in DKD, one being trans-
forming the massive amount of data into meaningful
context. Biological vocabularies, such as the gene
ontology (GO) can be of help in this endeavor, with the
Renal Gene Ontology Annotation Initiative specifically
dedicated to renal development and disease.38 Proteins
involved in renal development, function, and disease
are annotated with information on (i) their respective
molecular function(s) (i.e., the activities that they can
directly perform), (ii) contribution to biological pro-
cess(es), and (iii) subcellular location(s). Using this
categorization, the proteins are allocated to specific GO
terms, which are organized into a graph, each term
being linked to 1 or more general “parent” terms and 1
or more specific “child” terms if applicable.

Using published data on deregulated proteins in
DKD and the GO vocabulary, Heinzel et al.39 defined
involved GO biological processes via enrichment anal-
ysis, thereby constructing a GO process model of DKD.
Another approach uses molecular pathways rather than
GO terms. Proteins are assigned to pathways, and the
respective information can be retrieved from databases,
like the Kyoto Encyclopedia of Genes and Genomes or
Reactome, as well as consolidated efforts, like Path-
wayCommons, National Center for Biotechnology In-
formation Biosystems, or GeneCards.39 Alternatively,
one can use experimentally derived or computationally
inferred information on protein-protein interactions to
construct molecular network models informing on
deregulated molecular processes in DKD.39,40

Irrespective of the modeling method used, genes/
proteins are grouped to make the massive amount of
information obtained from “omics” experiments
accessible for interpretation. However, many input
data used come from association studies and thus the
relevance of groups (or processes) identified with re-
gard to a specific phenotype (e.g., progression of dis-
ease) yet needs to be established. Therefore, in a next
step, biomarkers can be chosen to represent each
group/process and their potential to predict the event
of interest can be tested in baseline samples of a
Kidney International Reports (2019) 4, 212–221
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prospective cohort or sometimes an interventional
study. The various models of DKD currently available
hold 20 to 40 processes. After complete characteriza-
tion, some of them (and their associated biomarkers)
will form a panel that summarizes “all” pathophysio-
logically relevant processes contributing to the
phenotype of interest in the population. In case some
processes are active only in some patients or at some
specific stage of the disease, the biomarker panel will
give positive results in only a fraction of the tested
markers. Repetitive measurements will allow moni-
toring changes in the activity of relevant pathways/
processes and ultimately guide combination/sequential
therapy if the molecular drug mode of action can be
adequately linked to the pathophysiologically relevant
process(es). Figure 2 schematically depicts the delin-
eation of predictive biomarkers via network interfer-
ence analysis on the molecular level.

A recent article41 used the molecular process model
representation of DKD as described by Mayer et al.40 as
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well as Heinzel et al.39 In brief, large-scale -omics
profiling was combined with scientific literature min-
ing for deriving a set of 2466 protein coding genes
(PCGs) deregulated in DKD. This feature set was map-
ped onto a hybrid protein interaction network holding
more than 16,000 PCGs as nodes and more than 600,000
connecting edges reflecting their interactions. The
resulting subgraph was further segmented into 34
internally highly connected clusters of PCGs using the
Molecular Complex Detection method.42,43 These pro-
cesses covered 688 PCGs, the size of each ranging from
3 to 128 nodes. Sixteen markers that best represented
the 4 largest processes holding in total 398 PCGs were
selected and measured in a discovery study for their
ability to predict a decline in eGFR.44 In a subsequent
study using baseline serum samples of 1765 patients
from 2 large clinical trials, an ultimate panel of 9 of
these makers (CHI3L1, GH1, HGF, MMP2, MMP7,
MMP8, MMP13, TIE2, TNFR1) was measured for
validation. The explained variability of annual eGFR
rker B
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loss by the biomarkers indicated by the adjusted R2

was 15% and 34% for patients with $60 and <60 ml/
min per 1.73 m2, respectively, and by clinical pre-
dictors 20% and 29%, respectively. A combination of
molecular and clinical predictors increased the adjusted
R2 to 35% and 64%, respectively.41

Identifying specific molecular processes associated
with a specific phenotype of DKD and biomarkers
associated with these processes, based on a molecular
model of DKD, can be used to characterize the pro-
gression of patients based on individual pathophysi-
ology. Matching the molecular mode of action of
drug(s) to these specific molecular processes might
allow selecting a specific drug or drug combinations
that prevent or reverse deregulations in identified
molecular pathways and thus guide therapy. This sit-
uation mirrors the one applied in infectious diseases, in
which repetitively pathogens are identified and anti-
microbial therapy is adjusted according to the results
obtained. Matching a DKD disease progression model to
a drug mechanism of action model was used in a study
by Pena et al.45 A panel of serum metabolites being
linked to molecular processes of inflammation and
stress response, as well as downstream consequences of
fibrosis and extracellular matrix rearrangement, was
able to predict albuminuria response to ARBs in both
type 1 and type 2 DM. This observation supports the
concept that improved molecular characterization of
drug effect and disease pathophysiology can predict
treatment response.

Using Biomarker Panels to Monitor the Individ-

ual Drug Response

Using biomarker panels to match individual patients in
whom specific molecular processes are deregulated and
drive disease progression, with the molecular mode of
action to reverse these pathological processes may lead
to more targeted drug development and prescription.
However, even when these novel drug-patient matches
are identified, it remains important to monitor the in-
dividual response. Panels that capture the individual
short-term response to an intervention on multiple
biomarkers and integrate and translate this short-term
individual response in a predicted effect on clinical
outcomes are necessary. A recently developed response
panel, the so-called multiple parameter response effi-
cacy (PRE) score integrates multiple short-term drug
effects on clinical parameters to predict the long-term
drug effect on renal and cardiovascular outcomes.
The PRE score is composed of clinical parameters that
are measured in routine clinical care. Parameters that
are used in the PRE score include, among others, uri-
nary albumin-to-creatinine ratio, systolic blood pres-
sure, hemoglobin, uric acid, potassium, and cholesterol
218
levels. The clinical markers included in the PRE score
have been associated with renal disease in type 2 DM
and, importantly, changes in these markers in the short
term (up to a few weeks) have been associated with
renal and cardiovascular risk changes. For example, in
patients with type 2 DM and nephropathy, short-term
reductions in albuminuria during treatment with ARBs
have been associated with reductions in the risk of end-
stage renal disease in the long term.46,47 Similarly, re-
ductions in uric acid during treatment with losartan
have been shown to be associated with reductions in
risk for renal and cardiovascular endpoints.47,48

Conversely, some drugs, such as renin-angiotensin-
aldosterone-blockade and increases in potassium in
the short term are associated with increased renal and
cardiovascular risk.49 Because many drugs used for the
management of DKD affect multiple cardiovascular risk
markers, changes in these risk markers should be
measured and integrated in a response panel (PRE
score) to predict the effect of a drug on long-term
clinical outcomes.

This response panel was originally developed in pa-
tients with DKD within the Reduction of Endpoints in
NIDDM with the Angiotensin II Antagonist Losartan
trial,14 and subsequently validated in several other clin-
ical trials.21,50–52 In all analyses so far, the score predicted
at a population level the treatment effect on clinical
endpoints during 3- to 4-year follow-up based on the
short-term, 3 to 6 months, treatment effect on multiple
biomarkers. Importantly, the score also improved pre-
dictions for individual patients who would benefit from
ARB therapy.21

The previously mentioned studies that test the
ability of the PRE score to predict cardio and renal
events have shown that applying this multiple
response score instead of using the response in 1
single marker improves the prediction of long-term
drug effects on a population level as well as in in-
dividual patients. In clinical practice, such a multiple
response score can be used as a tool for clinicians to
predict long-term treatment effects more accurately,
and accordingly adjust treatment strategies and/or
monitoring frequency if necessary. It is important to
emphasize that the current clinical parameters used
in the PRE score are usually measured in routine
clinical care and consist of standard physical and
biochemical laboratory parameters. The advantage is
that this approach may be implemented with rela-
tively low extra costs and efforts. The disadvantage
is that the effects of novel interventions that target
deregulated molecular pathways in DKD, such as
inflammation, oxidative stress, or fibrosis, are likely
not predicted by the PRE score, as to date it does
include only clinical biochemical parameters that
Kidney International Reports (2019) 4, 212–221
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Figure 3. Proposed platform trial design for diabetic kidney disease (DKD). Schematic representation of a platform trial design for DKD in which
patients are assigned to a treatment arm based on concentration levels of a set of predictive markers for the available treatment options.
Markers and renal function parameters are used for patient monitoring and identification of responders who remain in the assigned treatment
arm, whereas nonresponders are shifted to the next-best suitable treatment based on marker profiles.
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probably do not predict effect of novel anti-
inflammatory or antifibrotic agents. It is therefore
likely that additional biomarkers (e.g., peptides or
metabolites) are needed to fully capture the ultimate
effect of these novel therapies on cardiovascular and
renal outcome.

Conclusions

DKD disease initiation and progression is heterogeneous,
and because of the different mechanisms involved, there
is also variation in drug response. This variation can be
between patients in the on-target parameters, but also in
the off-target parameters. Furthermore, there can be
variation in response within an individual within a panel
of markers. This variation in response can be due to a
number of factors, such as adherence; heterogeneity in
drug absorption, metabolism, or excretion; environ-
mental factors, such as dietary habits; and underlying
pathophysiology of DKD. The large variation in drug
response indicates that part of the treated population does
not benefit or is even harmed by the prescribed drug.

Biomarker panels can be used to minimize the
response variability and the concomitant therapy
Kidney International Reports (2019) 4, 212–221
resistance. Biomarker panels can help to identify
patients at high risk in whom more intensified risk
factor management is required, they can be used to
identify populations more likely to respond to
the prescribed drug, and, finally, they can be used
to monitor the individual therapy response
(Figure 3).

Despite the ever-increasing number of biomarker pa-
pers in DKD, the set of markers used in daily clinical
practice is mainly limited to serum creatinine, eGFR, and
albuminuria, mostly to predict prognosis and judge
treatment efficacy. Novel omics methodologies are
developed and are being used in other fields of medicine,
such as oncology. The challenge for the future will be to
broadly implement these techniques in the management
of chronic diseases like DKD. Omics technologies enable
the concerted cataloging of molecular processes being
associated with DKD development and progression.
Biomarker panels reflecting these molecular processes and
disease pathophysiology will guide treatment selection.
Biomarker panels that capture the short-term drug
response after the drug is selected will then contribute in
clinical decision making. The complementary use of
219
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biomarker panels integrated into systems medicine
models makes implementation of personalized medicine
into clinical practice more and more realistic.
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