
Toxicology Reports 8 (2021) 1179–1192

Available online 6 June 2021
2214-7500/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Pesticides: formulants, distribution pathways and effects on human health – 
a review 

Valeriya P. Kalyabina a,b, Elena N. Esimbekova a,b,*, Kseniya V. Kopylova a, 
Valentina A. Kratasyuk a,b 

a Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia 
b Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia   

A R T I C L E  I N F O   

Handling Editor: Dr. Aristides M. Tsatsakis  

Keywords: 
Pesticides 
Agricultural crops 
Health consequences 
Formulants 
Risk assessment 

A B S T R A C T   

Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide 
residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe 
to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can 
produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of 
particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a 
review of the latest literature data on the effects and consequences of contamination of agricultural crops by 
pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The 
effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.   

1. Introduction 

Pesticides include a wide variety of chemicals, which are increas-
ingly being used all over the world. The EU Pesticides Database [1] lists 
more than 1378 active ingredients, 466 of which have been approved 
and 858 have not been approved for use in the EU. The great variety of 
molecular mechanisms responsible for the effects of pesticides on their 
target organisms are shown in Table 1S (Supplementary materials). Each 
of them has its merits and demerits. For instance, carbamate-based in-
secticides are commonly used because of their low bioaccumulation, 
relatively low toxicity to mammals, and effectiveness in controlling a 
wide range of pests [2]. Organochlorine pesticides, which were 
commonly used in agriculture in the 1950s [3], at the present time are 
listed as persistent organic pollutants (POPs) and banned in most 
countries, in accordance with the Stockholm Convention [4]. Never-
theless, high concentrations of these pesticides and their transformation 
products (TPs) and degradation products, such as dichlorodiphenyltri-
chloroethane (DDT), which are very persistent and have long lifetimes, 
are still detected in agricultural soils [5–7]. Therefore, in recent years, 
obsolete organochlorine pesticides have been increasingly replaced with 
more effective and safer alternatives with faster biodegradation rates 
such as organophosphorus pesticides and neonicotinoids [8,9]. How-
ever, some of them still can affect non-target species via water, soil, and 

contaminated plant tissues [10,11]. 
Modern formulations, also called current-use pesticides (CUPs), are 

invented to avoid PBT (persistent, bioaccumulative, and toxic) proper-
ties. Nevertheless, they are sufficiently persistent to migrate over long 
distances. Thus, a number of studies report the discovery of CUPs in air 
and surface water samples in the Arctic [12,13]. CUPs often appear as 
representatives of emerging pollutants (EPs) – chemicals without regu-
latory status that can affect the environment, but with no sufficient 
toxicologically evaluated data on their properties, metabolism and 
ecological fate [14,15]. Guida et al. conclude that CUPs seemed to 
behave like pseudo-persistent pollutants because of their broad and 
permanent use [16]. The problem is that, despite the advantages of 
modern pesticide formulations, they also have disadvantages. As the 
modes of action of pesticides are not always specific, they may be haz-
ardous to non-target species, including humans [17,18] or wild animals 
by accidental exposure [19–21]. 

One more problem is that the toxic effects of commercial pesticide 
formulations are equated to the effects of their active ingredients, which 
may result in incorrect assessment of their safety. Considerable research 
effort has been devoted recently to separation of the effects and detec-
tion of hidden hazards [22–30]. 

A less obvious problem is that pesticides, as other chemical sub-
stances, can affect each other according to the additivity and interaction 
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concepts, decreasing (antagonism) or increasing (synergism) each 
other’s effect [31]. Another important effect is potentiation, when a 
non-toxic substance enhances the effect of another substance. Thus, to 
ensure that the effects of pesticide mixtures are not unpredictable, the 
data should be based on cumulative risk assessment rather than sum-
ming of the effects of all compounds assessed separately [32]. 

In the framework of modern approaches to risk assessment, it is 
necessary to consider not a single episode of exposure and effect of 
pesticides on non-target organisms, but a sequence of related events. 
This is in good agreement with the concept of the adverse outcome 
pathway (AOP). The AOP connects key events occurring at different 
levels of the biological organization that can initiate negative conse-
quences at the level of the whole organism and even several generations 
of organisms in a population [33,34]. Thus, the concept provides a ho-
listic view of the many key events involved in the toxicity of pesticides 
and allows estimating the scale of the effect of chemical compounds on 
biological processes – this plays an important role in predicting adverse 
effects in the framework of risk assessment. 

This review mainly focuses on the distribution pathways and transfer 
of pesticides into living organisms and negative effects of large-scale use 
of pesticides on non-target species. A particular emphasis is on inert 
ingredients of pesticide formulations and their effects based on the 
currently available data. 

2. Commercial formulations of pesticides 

The main side effects of pesticides on the environment are associated 
with their toxicity to non-target species [17,18] and persistence in the 
environment [5,6,35] and, thus, long-term effects [36–38]. Another 
issue, however, is the lack of systematic science-based approach to 
developing formulations [39] and incorporation of adjuvants whose 
toxicity has not been sufficiently investigated [22,23]. The general 
terms formulants or co-formulants refer to the inert ingredients that are 
usually added to enhance the effect and stability of pesticide formula-
tions [40]. For instance, the herbicide mobility and intake by leaves of 
weeds are enhanced by adding inert surfactants [39], penetrant en-
hancers, and co-solvents [41]. Another insufficiently studied aspect is 
the safety of safeners – inert agrochemicals used to protect crops from 
herbicide toxicity by enhancing their biochemical response [42]. 

Surfactants are often used as formulants. The most commonly used 
auxiliary ingredients are non-ionic surfactants such as alkylphenol 
ethoxylates (APEOs), alcohol ethoxylates (AEOs), and alkylamine 
ethoxylates (ANEOs), organosilicone polyethoxylates, polyethoxylated 
tallow amines, and cosolvents such as N-methyl-2-pyrrolidone (NMP). 
They improve the solubility of the active ingredient and protect it 
against rapid degradation. It has been shown that seed oil additives and 
surfactants increase the half-life of metazachlor and reduce its rate of 
destruction in soil [43]. Formulants also act as spreaders, (anti)foaming 
agents, dyes, and drift retardants, thus altering the physicochemical 
properties of the active ingredients of pesticide products. 

Due to the inert ingredients present in the formulation, pesticide 
products with the same active ingredient are marketed in the form of 
granules, dusts, solutions, wettable powder, flowable suspension 
concentrate, emulsifiable concentrate, sprayable oils, aerosols [24]. For 
example, there are approximately 750 different glyphosate-based 
pesticide formulations around the world [44]. The rate and the way of 
active substance release, the application method, and stability depend 
on the form of the pesticide preparation. For example, imidacloprid in 
granular formulation was more persistent than in wettable powder 
formulation [45]. Forms with the same active ingredient may differ in 
toxicity to both pests and non-target species. For instance, emulsifiable 
formulation is more toxic than aqueous capsule suspension [25]. Pesti-
cide products from different manufacturers have different proportions of 
active ingredient and formulants. This explains the variability of for-
mulations and, as a consequence, the complex effect of pesticides on 
non-target organisms. 

According to a report from the European Chemicals Agency, there is 
strong evidence that some formulants are potentially capable of inde-
pendently exhibiting toxic properties, resulting in higher toxicity in the 
final pesticide product [46]. For example, polyethoxylated alkylamines, 
POEA, (surfactants) used as constituents of glyphosate-based herbicides 
are potentially toxic [23,26,39,47]. Data on the increased toxicity of 
commercial formulations compared with active ingredients alone were 
also obtained for pesticides of other classes and mechanisms of action: 
bifenthrin and fipronil [27], carbaryl, malathion, imidacloprid [48]; 
azoxystrobin, tebuconazole [28]. Biotesting methods have shown that 
an insecticide based on neonicotinoid clothianidin, containing the sul-
fonic acid formulant, was 46.5 times more toxic for Daphnia magna than 
clothianidin alone [29]. Moreover, in a similar study, the combination of 
another neonicotinoid, acetamiprid, with linear alkylbenzenesulfonates 
acting as auxiliary components produced a pronounced synergistic toxic 
effect on Daphnia magna [49]. Results demonstrating that the toxicity of 
commercial pesticide formulations is higher than that of pure active 
ingredients have been obtained in other in vitro bioassays [50]. The 
same can be said for the potential harm to non-target organisms, for 
instance, the N-methyl-2-pyrrolidone (NMP) co-solvent was toxic to 
honey bees [41]. The effect of inert ingredients on non-target species has 
been shown for pesticide formulations based on pyraclostrobin [51], 
clomazone [25], acetamiprid [30]. Toxic effects have also been shown 
for herbicide safeners [52]. Some inert substances have such a pro-
nounced toxic effect that they are capable of separately acting as pes-
ticides: for example, surfactants [53,54]. 

Since formulants are defined as inert diluents, they are usually not 
required to be tested for chronic toxicity [47,55]. Usually pesticide 
formulations are only selectively tested for acute toxicity; the main 
package of toxicological tests is applied only to the active ingredient 
[56], and it includes comprehensive information about the structure, 
expected impact on target species, and ecotoxicological studies of the 
active ingredient [57,58]. 

There is evidence of the effects of commercial formulations on 
human tissues. A number of in vitro studies have shown that negative 
impacts on nerve cell cultures, placenta cell cultures, DNA [56], male 
gametes [59], endocrine system [60], mitochondrial and enzyme ac-
tivities [61] are more pronounced after the action of commercial for-
mulations than pure active ingredients. 

In addition, the auxiliary ingredients increase the penetration of the 
active ingredient not only into the target organism, but also into the skin 
of those who use them – that is, agricultural workers and farmers are 
vulnerable groups. This conclusion is based on the results of a compar-
ative study of the transdermal penetration of active ingredients and 
commercial formulations of pesticides [62,63]. Combination of in-
gredients in commercial formulations may change the percutaneous 
penetration of pesticides: significant differences in the penetration rate, 
lag-time, and amount of the penetrating substance between the pesticide 
product and the active ingredient are reported for methiocarb and pir-
imicarb [64]. This is an important factor for the correct assessment of 
the toxic effects of pesticides on workers and farmers. 

Formulants are assumed to differ by the degree of toxicity as well: in 
a comparative retrospective study, exposure of the patients to POEA- 
containing herbicides had more serious consequences than ingestion 
of herbicides with other co-formulants [65]. The main difficulty in 
testing the safety of commercial pesticide preparations is the impossi-
bility of testing all the constituent components, since manufacturers 
usually do not disclose exact compositions of the formulants and the 
data on the environmental toxicity of the formulation to consumers and 
users [22,41,66]. In accordance with FIFRA (Federal Insecticide, 
Fungicide and Rodenticide Act), only active ingredients must generally 
be indicated on pesticide product labels. All formulants can be combined 
into the category of inert ingredients and are listed as a percentage of 
product’s total weight to protect confidential commercial information 
[66,67]. It is obvious that testing of the pesticide formulations intended 
for sale is a mandatory step in the authorization process; however, 
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product’s marketing documentation seldom reveals any information 
about the ecotoxicity of the product as a whole [22]. 

Thus, confidentiality of commercial information, the definition of 
auxiliary ingredients of pesticide formulations as "inert", and, as a 
consequence, disregard for their toxicity result in incorrect calculation 
of threshold values for pesticide consumption [68]. However, as the 
formulants are conditionally inert, their toxicity is often neglected, and 
the illusion of safety is created [69]. The absence of the publicly known 
data on pesticide formulation ingredients hampers risk assessment of the 
product. It is necessary, though, to know how the formulants can alter 
metabolism and toxicity of the pesticide formulation to be able to carry 
out a comprehensive assessment of risks for non-target species including 
humans [47]. 

3. Transport pathways of pesticides in the environment 

Pesticides not only accumulate in the crops but they can be trans-
ported through air, soil, and water over long distances, constituting a 
major pollution source in ecosystems [70,71]. (Fig. 1). 

The main sources of air pollution by agrochemicals are ground or 
aerial spraying procedures. Semivolatile pesticides, which are mainly 
adsorbed on atmospheric aerosol particles, have half-lives in particulate 
phase from several days to a month and are able to remain stable to-
wards gas-phase reactions toward hydroxyl radicals in the atmosphere 
[72]. Airborne pesticides can migrate over considerable distances: 
gaseous stable chemicals can be transported all over the world [38]. 
CUPs are able to persist in the gas phase of air samples irrespective of 
land use intensity or sampling year. In studies at various points on the 
planet, the atrazine and terbuthylazine herbicides and the carbaryl and 
chlorpyrifos insecticides were detected with high frequency [73,74]. 
POPs are transported in the environment over long distances as well [70, 
75,76]. Oxidation and photochemical reactions can transform the 
airborne pesticide residues into products that are more toxic than the 
original ones [38]. 

The movement of pesticides to remote regions is likely facilitated by 

a combination of properties: both the properties of pesticides (low sol-
ubility in water) and climatic factors (dry weather and relatively high 
temperatures in spring and summer) [77]. An important source of CUPs 
in the air is volatilization from surface water [74]. The elevated ambient 
temperatures may accelerate the volatilization of pesticides in warm 
seasons. 

Atmospheric precipitation in turn can transport pesticides to water 
bodies. In addition to that, water flow gradually removes agrochemicals 
from the field soil to various water environments, where they can affect 
aquatic organisms [35]. Chemical processes and microorganisms 
transform pesticides into products that can be transported via water 
pathways to surface waters [78]. 

Dissolved CUPs are widely present in water bodies. For example, 
comparative studies of China aquatic systems report high detection 
frequencies of napropamide, atrazine [79], chlorpyrifos, dicofol [74, 
80]. In a similar study in Argentina, less than 30 % of all detected pes-
ticides were quantified, and glyphosate and AMPA showed the highest 
concentrations in surface water [81]. 

Dissolved pesticides and pesticides bound to soil particles can be 
transported in the river, accumulating in river sediments. Among the 
pesticides transported with soil particles are pyrethroids [81], which 
have high affinity for solid particles [82]. The persistence of hydro-
phobic and cationic compounds is increased due to their ability to form 
long-lasting bound residues with the soil, while their mobility and 
availability for biotic and abiotic degradation are reduced [83]. 

Soil contamination chiefly occurs when pesticides are applied 
directly to soil to protect crops. For example, farmers in Southeast Asia 
lacking special knowledge often follow the advice of a sales clerk in a 
pesticide store and, thus, use far too large amounts of pesticides to 
control pests in their fields [83]. When applied onto crops, pesticides can 
be transported downward with the water flow and adsorb, desorb, and 
break down during their passage through soil. The velocity of passage 
through soil is determined by the properties of the pesticide, soil prop-
erties, and the prevailing environmental conditions [84]. The degree of 
pesticide leaching to groundwater may be increased considerably 

Fig. 1. A schematic representation of pesticide transport routes after application. Having been applied to soil or used to treat crops, pesticides are capable of 
migrating within various environments and, ultimately, accumulate in food chains or persist as degradation products. 
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because of soil fumigation [85]. Soils, in turn, can be a secondary source 
of pollutants because of air-soil exchange [86]. 

Since pesticides differ significantly in their physicochemical prop-
erties, the processes of their degradation or accumulation in the envi-
ronment will also be different. Thus, in comparative studies of soil 
samples, triazine herbicides and conazole fungicides were more com-
mon than other pesticides [87,88]. Large-scale analysis of soil samples 
collected in the European Union countries for the presence of chemical 
pollution showed that more than 80 % of the samples contained at least 
one pesticide residue, the most frequently occurring of which were 
glyphosate, DDT, and broad-spectrum fungicides (boscalide, epox-
iconazole, and tebuconazole) [89]. However, due to the complex in-
teractions between particular pesticides and soils and other confounding 
factors, there are no significant correlations between pesticide preva-
lence and soil properties [87]. 

The problem is aggravated by the formation and accumulation in the 
soil of not only CUPs, but also their TPs: for example, when atrazine was 
not detected, its TP, hydroxyatrazine, was often present in the tested 
soils, which may be explained by previous intensive use of the parent 
herbicide [88]. Concentrations of hydroxyatrazine usually exceed con-
centrations of atrazine and its other TPs in soils and sediments [90]. 
Hydroxyatrazine may be present in soils in significant concentrations for 
more than 20 years after cessation of use [91]. 

In natural media, some bacteria, fungi, and microalgae are able to 
degrade pesticides completely, without causing secondary environ-
mental pollution, which often results from chemical and physical 
degradation, but microbial degradation may be ineffective [92]. Met-
ribuzin is microbially degraded, and, thus, climatic conditions affect its 
decomposition: under cold conditions, it is degraded at a slower rate 
[93]. The persistence of metribuzin is determined by its rate of 
adsorption to soil particles, increasing in soils with a high organic matter 
content [94]. Pendimethalin is strongly adsorbed to soil organic matter 
and is not subjected to microbial degradation, but it is degraded by light 
in aquatic systems [95]. Metolachlor is subjected to the slow microbial 
and anaerobic degradation rates; due to its ability to leach through soil, 
metolachlor has the potential to contaminate groundwater [96,97]. 

Unintentional spills or accidents at chemical industries also release 
pollutants hazardous to humans that persist in the environment. A spill 
of pesticides from the pesticide factory at Wheathampstead, U.K., in the 
1960s caused long-term contamination of the River Lee (Lea) with DDT 
and TPs [35]; improper storage of chemicals at the former pesticide 
factory in Loma del Gallo, El Salvador, Central America, caused the 
elevated levels of toxic compounds in samples of surface and ground 
waters [98]. Obsolete pesticides are still stored in developing regions of 
Asia, Latin America, and Africa [99]. 

4. Transfer and bioaccumulation, bioavailability of pesticides 

Collateral effects of pesticides are associated with their ability to take 
part in biological processes. As pesticide residues are sequentially 
transferred from soil to plants and then to humans, they can be trans-
formed and accumulated. Whether the pesticides will be removed from 
the human body without causing any significant damage to it or whether 
they will accumulate, producing long-term subclinical and clinical ef-
fects depends on the type of the pesticide and its interactions with the 
body at different levels – from molecular to organismic ones. 

The uptake and translocation of toxic compounds from soil to plants 
is determined by the physicochemical properties of the pesticides [100] 
– such as pesticide mobility in soil, solubility, and dissipation of pesti-
cides; abiotic factors – soil composition, pH, temperature, and moisture 
content; physiological properties of plants – plant transpiration rate, 
plant growth, cultivation techniques, varieties of fruits and vegetables 
[101]. It is necessary to take into account the solubility of pesticides, 
since this parameter can be of great importance for the transfer of pol-
lutants. The presence of dissolved and particulate organic matter and the 
lipophilicity of compounds can significantly alter the bioavailability and 

overall toxicity of the CUPs. Therefore, widely known predictors of 
bioavailable fraction – the values of log KOC, log KOW, log KOA – are used 
to describe the behavior of pesticides. 

Pesticides with a log KOW less than 3 (for example, triazines and 
carbamates) have low lipophilicity, and their bioavailability is weakly 
influenced by the impact of particles [102]. For example, neonicotinoids 
are readily soluble in water, which ensures their systemic effect (with an 
increase in solubility, the bioavailability of the pesticide increases to 
protect plants from pests) and removal from the environment. However, 
in dry soils with a high content of organic matter, the persistence of 
neonicotinoids in the soil increases significantly [103]. The most lipo-
philic CUPs (log KOW 5–7, log KOC more than 3.7), for example, pyre-
throids, during interaction with organic matter, demonstrate a decrease 
in toxicity [102]. Pesticides with intermediate lipid solubility (log KOW 
values ranging from 3 to 5) and high octanol-air partitioning (log KOA 
values ranging from 7 to 11) are likely to have optimal parameters for 
bioaccumulation in marine and terrestrial food chains [13]. 

Also an important factor is soil composition: humic acids and 
colloidal clay can serve as adsorbents for certain chemicals [100,104]. 
Strong adsorption of pesticides onto soil particles may result in lower 
uptake of the pesticides by plants [101]. However, due to the complex 
interactions of pesticides with particles, as well as the different physi-
cochemical properties of pesticides, predicting of bioavailability and 
bioaccumulation only based on KOW and KOC is insufficient for an ac-
curate assessment. 

Cultivation techniques contribute to an increase in bioconcentration 
of pesticides by plants. For instance, insecticides and fungicides are 
detected more frequently in tomatoes grown in greenhouses than in 
field-grown tomatoes. The reasons for this are that, on the one hand, the 
rates of application of agrochemicals in the greenhouse are higher 
because of different pesticide-use regimes or slower rates of pesticide 
removal [105] and, on the other, pesticides are removed from the open 
soil by large amounts of precipitation, especially in wet regions [106]. 

Some plant species accumulate greater amounts of pesticides in some 
of their organs, i.e. are prone to bioaccumulation, as supported by 
research evidence [107,108]. Leaf vegetables (spinach, lettuce, cabbage, 
etc.) accumulate greater concentrations of pesticides than root vegeta-
bles [75,109], exceeding maximum residue limits (MRLs) in compara-
tive studies [110]. This may be caused by intensive photosynthesis and 
transpiration processes in plant edible parts and by their growing con-
ditions: located close to the soil surface, they are attacked by insects 
more frequently, and, hence, larger amounts of pesticides are applied to 
protect them. 

As pesticides move up the food chain, biomagnification occurs. 
Insignificant concentrations of pesticides enter into the food chain at a 
low trophic level, but they increase cumulatively at higher trophic levels 
[111]. 

A realistic scenario of the adverse effects of pollutants on organisms 
should be based on the accurate data on their bioavailability, tox-
icokinetics, uptake, distribution, metabolism, and excretion by the 
organism. 

Bioaccumulation by the organism is the result of accumulation of 
pesticides and their TPs that the organism has received from different 
sources and that have accumulated in different organs. Pesticides 
belonging to the POPs and CUPs probably differ fundamentally in bio-
accumulation: the highest concentrations of POPs are usually found in 
organisms of the highest trophic level (mammals) – thus, bio-
magnification of persistent pesticides is observed. The situation is 
different with CUPs, whose concentrations were the highest in in-
vertebrates and decreased with increasing trophic level [13]. Such 
specific biomagnification with trophic dilution in food webs probably 
indicates the metabolization of these pesticides by non-target organisms 
[112]. 

Pesticides are usually distributed in the organism by binding with 
plasma proteins, blood cells, and lipids in different organs and periph-
eral tissues [113]. The strength of binding is determined by the 
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lipophilicity of molecules. Thus, the data on the water solubility of 
toxicants provide the basis for estimating their bioaccumulation, 
biodegradation, hydrolysis, and adsorption [114]. The lipophilicity of 
pesticides increases both their effectiveness in pest control and their 
subsequent bioaccumulation [115]. The hydrophobicity and chemical 
structure of both the starting product and pesticide TPs play an impor-
tant role [78]. 

Pesticide (and heavy metal) transfer affects all systems in the human 
body, often resulting in bioaccumulation of toxic compounds in different 
organs (Fig. 2). Pesticides can be removed from the body via several 
routes, including urinary, biliary, and respiratory ones. CUPs are rapidly 
metabolized after entering the body and are mainly excreted in the urine 
as polar metabolites. This allows the body to get rid of dangerous 
compounds, but in some cases, the biotransformation products them-
selves can be bioaccumulative [13]. Chemical substances are effectively 
eliminated by the body through secretory glands. Residues of organo-
chlorinated pesticides were more often detected in samples of sweat 
than in blood serum [116]. However, the most serious cause for concern 
is that pesticides can be transferred to the breast milk and then to the 
baby (Fig. 2). 

Gestational exposure to pesticides, even at low concentrations, also 
causes concern. CUP bitertanol is rapidly metabolized after adsorption 
from the gastrointestinal tract, but it was detected in the amniotic fluid 
of orally exposed Wistar rats, which suggested potential risk to the fetus 
[118]. 

Pesticides undergo transformations in the body. Pesticide TPs may be 
more toxic and persistent than the initial pesticide [119]. For instance, 
more pronounced negative effects in comparison with the parent com-
pound are shown for the main bioactive metabolites of glyphosate – 
aminomethylphosphonic acid (AMPA) and N-(phosphonomethyl)imi-
nodiacetic acid (PMIDA) [40,120]; carbosulfan – carbofuran and 
3-hydroxycarbofuran [121] and imidacloprid [18]. Moreover, the 
impact can be implicitly expressed. Despite the fact that the degradation 
products of glyphosate and atrazine – AMPA and hydroxyatrazine, 
respectively, – did not cause morphological and physiological changes in 
the model plant Arabidopsis thaliana, they induced clear metabolic and 
genetic effects, possibly through novel mechanisms of toxicity [122]. 

Although biotransformation is not the major process in pesticide tox-
icokinetics [123], it should be taken into account. 

Bioaccumulation of pollutants during digestion is largely determined 
by the bioavailability of the substances [124], i.e. their ability to 
penetrate into the body and be distributed among the tissues [125]. 
Several studies reported that bioavailability of pollutants can vary 
depending on pH and the type of the food being digested [126–128]. 
Pesticide sedimentation rate is significantly affected by the fat content of 
food [126,127,129,130]. The diet rich in fish and other foods of animal 
origin increases the effect of POPs compared to the diet rich in foods of 
vegetable origin [131]. Digestion time influences the effectiveness of 
absorption as well [132]. 

A number of studies suggest a contribution of human membrane drug 
transporters to pesticide toxicokinetics in the body, as they can interact 
with different types of pesticides [133], but further studies are needed to 
understand their interaction mechanisms. 

Pesticide bioavailability and, hence, hazard, may be increased by 
administration of antibiotics. The interaction between antibiotics and 
pesticides is mediated by the intestinal microbial community: the 
antibiotic-altered gut microbiota affects intestinal absorption of toxi-
cants, decreasing metabolic enzyme gene expression [134]. Other fac-
tors such as diseases of the gastrointestinal tract, eating behavior, and 
unhealthy habits also alter microbiota, making it more susceptible to the 
effects of pesticides. For instance, the effect of organophosphates on gut 
microbiome was found to bring about neurotoxic damage [135]. Joint 
effects of several pesticides may alter toxicokinetics of individual com-
pounds, thus changing the predicted toxicity [32]. In addition, the 
presence of one pesticide may affect the absorption rate and metabolism 
of another pesticide [136]. 

5. Health effects after pesticide exposure 

Pesticides can affect humans both directly and indirectly, via various 
routes (Fig. 3). Food, however, is the primary source of direct con-
sumption of toxic substances by humans. Vegetables and fruits grown on 
contaminated agricultural soils accumulate pesticides in their edible and 
inedible parts in concentrations that are high enough to cause clinical 

Fig. 2. Routes of uptake, distribution, and excretion associated with the exposure to heavy metals and pesticides in the humans. Reproduced from [117] with 
permission from Frontiers Media S.A. publisher. 
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problems in animals and humans [137–140]. 
Pesticides penetrate the human body through skin, mouth, eyes, and 

respiratory system [17], and, thus, scientifically confirmed acute dis-
eases associated with pesticides include headaches, stomachaches, 
vomiting, skin rash, respiratory disorders, eye irritation, sneezing, 
convulsions, and coma [141]. Direct exposure to pesticides may even 
cause death [142,143]. 

Oral exposure to pesticides is the key factor determining their 
toxicity [37,133]. Frequent consumption of food based on agricultural 
crops grown on soil with pesticides results in short-duration (acute) and 
long-duration (chronic) diseases and disorders [144,145]. Acute pesti-
cide poisoning has now become a rare event, but long-term subclinical 
effects remain an issue. Chronic toxicity caused by long-duration 
exposure to low doses of pesticides can become evident much later 
[8]. Chronic diseases include cancer, asthma, dermatitis, endocrine 
disorders, reproductive dysfunctions, immunotoxicity, neurobehavioral 
disorders, and congenital defects [17,146]. Chronic disorders may result 
from disturbance of cellular homeostasis caused by the primary action of 
pesticides (disorders of enzymes, ionic channels, and receptors; 
morphological changes of mitochondria) [147] and accumulation of 
DNA damage [36]. 

For example, the relationship of pesticides and carcinogenesis is 
widely discussed in the scientific literature. A positive association be-
tween the risk of developing tumors and pesticide exposure has been 
found for glyphosate [148] and several other pesticides [149,150]. 
Environmental concentrations of neonicotinoids and pyrethroids could 
contribute to the genetic and molecular changes and potentially induce 
carcinogenic processes [151,152]. However, for some pesticides 

previously considered carcinogenic, a relationship with the risk of 
developing cancer in more recent studies is rarely established [153] or 
marked as contradictory [154]. 

Sometimes, under long-duration pesticide exposure, acute effects of 
toxic exposure can concur with subclinical symptoms. Both acute and 
chronic effects were identified in persons receiving occupational pesti-
cide exposure, such as farm workers [40,155]. Long-term health effects 
of occupational exposure include reproductive disorders and congenital 
defects, which can be mediated via DNA damage. These data are sup-
ported by recent epidemiological studies involving farmers and rural 
workers [156–158]. 

In Fig. 3, we summed up the major groups of pesticide-related effects 
on humans. The literature data suggest that chronic effects include 
hepatotoxic, carcinogenic, cytotoxic, teratogenic, neurotoxic, repro-
ductive, and endocrine disorders [3,17,18,32,36,131,135,146,147, 
159–161]. These effects, however, are underpinned by numerous dis-
orders in biochemical reactions of the body. 

A number of studies suggested that certain pesticides as well as other 
synthetic chemicals can be endocrine disruptors and function as pseudo- 
hormones [32,159–162]. The endocrine-disruptive effect was shown for 
more than one hundred pesticides of different classes and with different 
modes of action [99], e.g., fipronil, ziram, zineb, pyrimethanil, thiazo-
pyr [160], vinclozolin, dicofol, atrazine [111] – active ingredients of 
pesticides in different functional groups. 

The endocrine-disruptive properties of pesticides are often deter-
mined by their ability to disrupt hormonal signaling mediated by nu-
clear hormone receptors due to changes in their transcriptional activity 
[149]. The study by [163] showed that a large number of pesticides with 
various structures and mechanisms of action can act as agonists of 
human pregnane X receptor (hPXR). Moreover, in a recent review [162] 
other mechanisms that mediate the negative effects of endocrine dis-
rupting pesticides are also considered; among the main ones are in-
teractions with membrane-associated receptors and ion-channels, 
suppression of key signaling pathway in cells, DNA methylation and 
histone modifications. Thus, pesticides are potentially capable of dis-
rupting the complex hormonal regulation, causing a cascade of distur-
bances: for example, atrazine [164], cypermethrin [165] and ziram 
[166] could alter the levels of steroidogenic enzymes associated with 
reproductive functions. 

In addition, pesticide TPs are able to exhibit stronger endocrine 
disrupting effects than their corresponding initial pesticides; this is also 
based on changes in gene expression and hormonal secretion [167]. 
Since endocrine disrupting chemicals affect epigenetic marks such as 
DNA methylation and histone modifications, they have the potential to 
cause chronic effects associated with alterations in epigenome and pass 
them on to future generations [168]. 

Positive correlation was revealed between pesticide effects and 
thyroid disorders: a case–control study established that in regions with 
increased long-duration pesticide use, the incidence and the risk of 
thyroid diseases were considerably higher [169]. Systemic toxicity for 
thyroid and liver was reported in other studies [158,170]. In some cases, 
formulants rather than active ingredients of pesticides exhibit endocrine 
disrupting properties [26,69]. However, it is important to keep in mind 
that the effects of pesticides on human thyroid function are still limited. 
The mechanisms underlying thyroid toxicity caused by realistic envi-
ronmental levels of pesticides are complicated, and the sensitivity to 
thyroid hormone disturbances differs between species [171]. Therefore, 
thorough research is needed to correctly assess the risk. 

One of the less obvious effects of pesticides is their effect on the gut 
microbiome of non-target organisms. There are comprehensive reviews 
[172,173] that discuss a possible antimicrobial capability of various 
types of pesticides against select groups of beneficial bacteria in the 
microbiome. Mesnage et al. [174] showed that glyphosate could 
potentially block the shikimate pathway of gastrointestinal microor-
ganisms in rodents. Studies have been conducted on representatives of 
various taxonomic groups. Direct or indirect effects of administration of 

Fig. 3. Routes of exposure to pesticides and potential effects on humans.  
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pesticide formulations on the gut microbiome were mainly detected in 
rats and mice, but there are data on the effects of pesticides on the gut 
microbiome of worms [175], pigs [176], fish [177], and honey bees. For 
example, glyphosate affects susceptibility of the gut microbiome of 
honey bees to pathogens, making them more vulnerable to infections 
[178]. 

We cannot leave unmentioned the well-known adverse effects of 
highly toxic persistent pesticides. For instance, chlordecone mostly ac-
cumulates in liver, disrupting its function [179]; lindane and endosulfan 
are associated with the damage to the reproductive system [180]; car-
bofuran can disrupt the function of acetylcholinesterase, penetrating 
through the blood-brain barrier [181]. 

5.1. Pesticide effects at the cellular and molecular levels 

Toxic effects of pesticides are based on their ability to trigger the 
processes that result in damage at the cellular and molecular levels. 
Pesticides change enzymatic reaction rate, affecting the activities of 
various enzymes such as superoxide dismutase, catalase and glutathione 
peroxidase [182], alanine transaminase and aspartate transaminase, 
alkaline phosphatase [18,183,184], lactate dehydrogenase [111], 
whose elevated levels in cells are indicative of the toxic effects on the 
organism. Carbamate pesticides inhibit the function of acetylcholines-
terase, and this can serve as a biomarker of neurotoxicity [181]. Pesti-
cides are capable of inhibiting activity of carboxylesterases – enzymes 
responsible for detoxification [32]. As enzymes are highly sensitive to 
the side effects of pesticides, they are widely used in assays for selective 
and integrated detection of residual commercial formulations in various 
natural environments [185,186]. 

Some pesticides can significantly decrease activity of NADH- 
dehydrogenase – the main enzyme of the mitochondrial electron trans-
port chain. Impairment of NADH-dehydrogenase activity caused by 
chlorpyrifos may mediate oxidative stress and neurotoxicity [147]. 
Moreover, pesticides are able to induce generation of reactive oxygen 
species (ROS) [182] and reactive nitrogen species (RNS) in cells, which 
ultimately leads to oxidative stress and damage to cell structures. 
Enhanced production of ROS/RNS in mammals during metabolism and 
biotransformation of toxic substances is the cause of hepatotoxicity 
[18]. The ability of ROS to interact with macromolecules of cells me-
diates inactivation of enzymes and DNA damage, which can finally 
result in cell necrosis or apoptosis [111]. 

A study of the effect of glyphosate and its main metabolite AMPA on 
the DNA molecule revealed damage to single- and double-stranded DNA, 
which most likely occurred through ROS-mediated effects [187]. A 
similar experiment, carried out to estimate the effects of low concen-
trations of pesticide mixtures, showed that DNA damage was mediated 
by mitochondrial dysfunction, causing ROS production. Accumulation 
of DNA damage finally resulted in inhibition of repair activity of en-
zymes [36]. Frequently used pesticides such as diazinon and malathion 
exhibited an ability to change gene promoter DNA methylation levels in 
the in vitro experiments, inducing carcinogenesis [188]. DNA methyl-
ation in patients with Parkinson’s disease is also associated with the 
chronic exposure to low concentrations of organophosphates [189]. The 
molecular mechanisms that determine the ability of pesticides to influ-
ence DNA and potentially explain the long-term effects are intricate and 
still under investigation. A study of atrazine showed that they could be 
associated with the ability of that pesticide to alter DNA methylation by 
affecting epigenetic enzyme expression levels [190]. 

Toxic effects of pesticides on RNA should be also evaluated. The 
article [191] reports a study of the effects of various herbicides on the 
transcriptome in the HepaRG human liver cell line. Genes associated 
with fatty acid metabolic pathways were found to be affected. In addi-
tion, the authors of that study noted a possible non-linear dose response 
in pesticide effects on non-target organisms, which indicated the 
complexity of metabolic processes underlying their toxicity. 

Thus, pesticides alone and together with heavy metals are able to 

damage the organism severely, through mediated processes and mech-
anisms. Damages at the molecular and cellular levels tend to accumu-
late, exhibiting subclinical effects for long stretches of time. Impaired 
enzyme functions, DNA expression, damaged membranes taken together 
(Fig. 4) will finally cause inevitable disturbance in metabolism and 
functions of systems of organs. Eventually, this may cause diseases and 
disorders described above. 

5.2. High-risk groups 

Although toxic pollutants of food may be hazardous to the health of 
people of all ages, they present the greatest hazard to children – the most 
sensitive population [17,138]. Children are disproportionally impacted 
because they are still developing and consume greater amounts of food 
and fluids relative to their bodyweight [131]. Long-term effects of pes-
ticides on this group of population include cancer, asthma, neuro-
behavioral disorders, learning and developmental disabilities, and 
congenital defects. 

Experiment carried out by a team of U.S. scientists showed that 
school and preschool children could receive considerable amounts of 
pesticides with their daily food [192]. The data obtained in experiments 
with animals also demonstrated that pesticides could cause trans-
generational epigenetic changes (Fig. 5). Altered epigenetic markers 
were even detected in the third-generation rats [137,193]. Data sup-
porting the possibility of epigenetic transgenerational inheritance were 
also reported in other studies: in the case of pesticide mixture containing 
permethrin and N,N-Diethyl-meta-toluamide [194] and atrazine [195], 
effects of pesticides on gestating rats resulted in an increase in anomalies 
and diseases in F3 generation. Of course, more in-depth research, pri-
marily epidemiological, is needed to establish mechanisms and 
cause-effect relationships. However, the already available data suggest 
the conclusion that epigenetic alterations can potentially mediate 
pesticide toxicity to human health [196]. 

Similar damage can be done to organisms other than human. 
Although pesticides are impressively diverse and have selective modes 
of action, they may sometimes cause disturbance of metabolic functions 
and immunotoxicity in non-target organisms [99]. One of the implicit 
consequences of pesticide contamination in individuals is a long-term 
negative effect on populations and even ecosystems. A study by Köhler 
and Triebskorn [99] showed that even insignificant endocrine and 
metabolic disruptions in individuals could result in tremendous changes 
of the entire ecosystem. 

Negative effects of commonly used pesticides are detected in non- 
target species at all levels of the food chain: plants [197], relict plants 
[198], non-target insects, including honey bees [11], and aquatic or-
ganisms [199]. 

In recent years, numerous data have been collected on harmful ef-
fects of modern pesticides such as pyrethroids and neonicotinoid in-
secticides, which were previously considered as safe to non-target 
organisms. Although these substances are more selective, they can be 
toxic to other plants and animals [200]. Negative effects of neon-
icotinoid insecticides on honey bees have been reported in many studies. 
For instance, imidacloprid produced a harmful effect on young bees, 
thus affecting the entire colony [11]. Another example: in summer 2019, 
in several regions of Central Russia, about 40 000 bee colonies (tens of 
millions of bees) were killed by neonicotinoids such as the widely used 
imidacloprid and clothianidin. 

The indirect effects and biomagnification of pesticides in food chains 
result in unpredictable negative consequences. As neonicotinoid in-
secticides, e.g. imidacloprid, damage non-target invertebrates, the sta-
ple food for birds, bird population decreases year by year [201]. In 
recent years, imidacloprid has been associated with direct negative ef-
fects on large vertebrates such as white-tailed deer [10] and a number of 
damaging effects on reproductive function of mammals [202]. 

The death of useful organisms often causes severe and almost 
irreparable disruptions in interactions in ecosystems, involving the loss 
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of biodiversity. As pesticides are used everywhere, their effects are 
detected even in the non-agricultural species such as seals, Polar bears 
[203], and sea snails [199]. Authors of [204] propose non-chemical 
methods for pest management as an alternative to pesticides, which 
threaten non-target species, but further research is needed to develop 
and use these methods. 

6. Conclusion and future outlook 

Development, use, disposal, and storage of pesticides still remain a 
concern. Although modern agrochemical companies are committed to 
developing safe formulations to avoid persistent and bioaccumulative 

properties of substances, it cannot be denied that it is impossible to 
anticipate and prevent all potential negative effects of pesticides on 
human health and on whole ecosystems. CUPs show long-range trans-
port potential and are found in air, water, and sediments in remote 
areas. Even modern pesticides with an allegedly short half-life under 
certain conditions can persist in soil for up to several years, becoming a 
source of potential risk for soil invertebrates [103]. In pursuit of safety, 
alternative strategies (for example, the development of biopesticides) 
can lead to weakening of toxic properties and faster development of 
resistance to pesticides and pesticide mixtures in target species [205], 
which will likely result in more intensive use of those pesticides to 
achieve efficient crop production. 

Fig. 4. Routes of exposure and mechanisms of action of heavy metals and pesticides. Reproduced from [117] with permission from Frontiers Media S.A. publisher.  

Fig. 5. Multi- and transgenerational effects of pesticides.  
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Current trends in agriculture and monitoring tend to reduce the 
harmful impacts of pesticides on humans and biota. Pesticide formula-
tions become less dangerous and persistent, and innovative strategies 
are proposed for their accurate delivery to target species [206]. 

The ecosystem-based strategy of Integrated Pest Management (IPM) 
in the framework of the Concept of Sustainable Agriculture [207] fo-
cuses on long-term prevention of pests through a combination of tech-
niques among which are, for example, biological control and use of 
resistant varieties [208]. The strategy promotes an environmental 
approach to pest control allowing reduction in the amounts of pesticides 
used. 

Monitoring the use of pesticides is becoming more conscious and 
rigorous. A new model based on Mathematical Programming-based 
Multi-Agent System (MPMAS), simulation software that allows assess-
ing ex-ante the impact of alternative pesticide use reduction strategies, 
has shown reducing average use of pesticides by 34 % over current levels 
without adverse effects on the average farm income [209]. 

To maintain a predetermined concentration of pesticide for a suffi-
cient time, controlled release systems (CRS) of pesticides are proposed. 
They enable relocation of an active ingredient from entrapped com-
partments to a targeted surface, thus reducing unwanted losses of pes-
ticides due to various factors and achieving the desired impact on the 
target pests [210]. 

As the concern about the hidden hazards posed by formulants as 
components of pesticide formulations is growing, interactions between 
ingredients should be studied in a more systematic way. Many manu-
facturers of pesticides do not disclose their composition, thus, making it 
impossible to assess accurately the effects of potentially toxic chemicals 
[39,69]. Authorization to commercialize the pesticide does not usually 
imply assessment of potential risks of additives, impurities, and for-
mulants, which are included in the pesticide product [114]. For 
example, the fact that formulants may contribute to transdermal pene-
tration of the active ingredient into non-target organisms is the reason 
for taking greater precautions when handling pesticides. Inert in-
gredients increase persistence of the product in the environment, which 
may be underestimated. 

To reduce the proportion of hazardous formulants in pesticide 
products, new technologies are being actively developed. For example, 
nanocarriers also reduce pesticide losses, preventing premature release, 
and increase the accuracy of delivery of active ingredients due to 
enhanced affinity to the target pest species [211,212]. Moreover, 
pesticide nanocarriers are biodegradable. 

An important aspect of ensuring safety of agricultural products to 
consumers is government regulations. Although developed countries 
have established complex systems for pesticide approval and controlling 
pesticide sale and use, other countries do not always follow the same 
strict rules [138,139,213]. Preventive measures include testing of the 
safety of formulants for non-target species, based on complete and 
reliable data on their effects, performing mandatory assessment of 
chronic effects of adjuvants, and enhancing predictive power of in silico 
methods in toxicology. The main preventive measure, however, is cor-
rect and justified application of chemicals in cultivation of crops: in the 
context of the increasing environmental awareness and decreasing 
impact on ecosystems and the Earth, judicious use of pesticides is the 
imperative of our time. 
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[99] H.R. Köhler, R. Triebskorn, Wildlife ecotoxicology of pesticides: can we track 
effects to the population level and beyond? Science (80-.) 341 (2013) 759–765, 
https://doi.org/10.1126/science.1237591. 

[100] V.L.R. Pullagurala, S. Rawat, I.O. Adisa, J.A. Hernandez-Viezcas, J.R. Peralta- 
Videa, J.L. Gardea-Torresdey, Plant uptake and translocation of contaminants of 
emerging concern in soil, Sci. Total Environ. 636 (2018) 1585–1596, https://doi. 
org/10.1016/j.scitotenv.2018.04.375. 

[101] J.-I. Hwang, S.-E. Lee, J.-E. Kim, Comparison of theoretical and experimental 
values for plant uptake of pesticide from soil, PLoS One 12 (2017) e0172254, 
https://doi.org/10.1371/journal.pone.0172254. 

[102] K. Knauer, N. Homazava, M. Junghans, I. Werner, The influence of particles on 
bioavailability and toxicity of pesticides in surface water, Integr. Environ. Assess. 
Manag. 13 (2017) 585–600, https://doi.org/10.1002/ieam.1867. 

[103] J.M. Bonmatin, C. Giorio, V. Girolami, D. Goulson, D.P. Kreutzweiser, C. Krupke, 
M. Liess, E. Long, M. Marzaro, E.A. Mitchell, D.A. Noome, N. Simon-Delso, 
A. Tapparo, Environmental fate and exposure; neonicotinoids and fipronil, 
Environ. Sci. Pollut. Res. 22 (2015) 35–67, https://doi.org/10.1007/s11356-014- 
3332-7. 

[104] P. Besse-Hoggan, T. Alekseeva, M. Sancelme, A.M. Delort, C. Forano, Atrazine 
biodegradation modulated by clays and clay/humic acid complexes, Environ. 
Pollut. 157 (2009) 2837–2844, https://doi.org/10.1016/j.envpol.2009.04.005. 

[105] G. Allen, C.J. Halsall, J. Ukpebor, N.D. Paul, G. Ridall, J.J. Wargent, Increased 
occurrence of pesticide residues on crops grown in protected environments 
compared to crops grown in open field conditions, Chemosphere. 119 (2015) 
1428–1435, https://doi.org/10.1016/j.chemosphere.2014.10.066. 
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