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Abstract: Background: Missed findings in chest X-ray interpretation are common and can have
serious consequences. Methods: Our study included 2407 chest radiographs (CXRs) acquired at three
Indian and five US sites. To identify CXRs reported as normal, we used a proprietary radiology report
search engine based on natural language processing (mPower, Nuance). Two thoracic radiologists
reviewed all CXRs and recorded the presence and clinical significance of abnormal findings on a
5-point scale (1—not important; 5—critical importance). All CXRs were processed with the AI model
(Qure.ai) and outputs were recorded for the presence of findings. Data were analyzed to obtain
area under the ROC curve (AUC). Results: Of 410 CXRs (410/2407, 18.9%) with unreported/missed
findings, 312 (312/410, 76.1%) findings were clinically important: pulmonary nodules (n = 157),
consolidation (60), linear opacities (37), mediastinal widening (21), hilar enlargement (17), pleural
effusions (11), rib fractures (6) and pneumothoraces (3). AI detected 69 missed findings (69/131,
53%) with an AUC of up to 0.935. The AI model was generalizable across different sites, geographic
locations, patient genders and age groups. Conclusion: A substantial number of important CXR
findings are missed; the AI model can help to identify and reduce the frequency of important missed
findings in a generalizable manner.

Keywords: chest X-ray; missed finding; radiology; chest X-ray interpretation

1. Introduction

Chest radiography (CXR) is the most performed imaging test, with substantial applica-
tions in the screening, diagnosis and monitoring of a variety of cardiothoracic disorders [1,2].
According to some estimates, CXRs represent up to 20% of all imaging exams [3]. Data
from the year 2010 reported 183 million radiographic examinations in the United States
alone -, with CXRs representing up to 44% of all radiographs [4]. Easy and rapid access,
familiarity, low cost and interpretation access all contribute to the widespread use of CXRs.

Despite its overwhelming use, CXR interpretation is subjective and prone to wide
interobserver inconsistencies based on readers’ knowledge and experience [5–7]. The
discordance between radiologists and physicians in one prospective study was 12.5% for
CXRs reported as “normal” by physicians but abnormal in the opinion of radiologists [6].
There are also substantial variations among radiologists, with a misinterpretation rate for
CXRs as high as 30% in a prior study [8,9]. Not all missed findings are clinically important,
but some missed CXR findings have serious implications. Indeed, 19% of early lung cancers
that present as nodules on CXRs are missed [10].
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To aid the interpretation of CXRs and other imaging modalities, several commercial
and research computer programs have been developed and introduced to clinical prac-
tice, including those based on artificial intelligence (AI). The AI algorithms can identify
patterns and perform complex computational operations more rapidly and precisely than
humans [11]. Several studies have reported improved sensitivity, accuracy and efficiency
with the use of AI algorithms for the interpretation of CXRs [12,13]. In CXRs, there is a wide
range of analyzable findings, with AI algorithms from a single finding (e.g., pneumothorax,
lung nodules and pneumonia) to as many as 124 radiographic findings.

We hypothesized that an AI algorithm can reduce missed findings on CXRs. If suc-
cessful, AI algorithms could help to improve the quality of radiology reports, enhance
patient care and help avoid malpractice lawsuits from missed radiologic findings. Although
there are multiple prior publications on AI performance, to our best knowledge there are
sparse data on the performance of AI algorithms on missed radiological findings. To test
the hypothesis, we compared the standalone performance of an artificial intelligence (AI)
algorithm for identifying “missed” findings on chest radiographs (CXRs) clinically reported
as “normal” against the ground truth according to thoracic radiologists.

Related Work

Previous studies reported on a considerable frequency of missed findings in chest ra-
diography [14,15]. Hwang et al. reported that AI detected 13.3% of false-negative CXRs in a
dataset of 4208 CXRs [16]. Another study by Ahn et al. reported a significant improvement
in the detection of CXR findings with an AI algorithm compared to unaided interpretation
for all six trained radiologists or trainees [17]. Tam et al. also reported the improved detec-
tion of suspicious pulmonary nodules on CXR with AI-aided interpretation (sensitivities
89–94%) versus unaided reporting interpretation for all three radiologists (sensitivities
69–86%), with a slight increase in false positives and a decrease in specificity [18]. Another
CXR study reported that standalone AI performance for pneumothorax, pleural effusion
and lung lesions was similar to that for radiology residents, but was significantly better than
the performance of non-radiology residents [19]. Beyond CXRs, other studies have reported
on missed findings of intracranial hemorrhage in noncontract head CT examinations and
mammography [20].

2. Materials and Methods
2.1. Approval and Disclosure

The Human Research Committee of our Institutional Review Board approved the
study. The need for written informed consent was waived. Two coauthors (MKK: Coreline
Soft Inc., Seoul, South Korea; Riverain Tech., Miamisburg, OH, USA; Siemens Healthineers,
Erlangen, Germany; SRD: Lunit Inc., Seoul, Korea; Qure.ai, Mumbai, India) received
industrial research grants for unrelated research. AG, PP, BR and MT are employees of
Qure.ai, who helped to organize the processing of CXRs but did not take part in case or site
selection, ground-truthing or data analysis. SG, VM and VV are employees of Caring Inc.
Other coauthors have no pertinent disclosures.

2.2. Patients

The study data comprised 2407 CXRs from 2407 adult patients (mean age [± standard
deviation] 39 [±17] years; male–female ratio 1248:1159) who had a CXR between 2015 and
2021 at one of eight healthcare sites in India (3 sites) or the United States (5 sites) (Figure 1).

At the Indian sites, we used a natural-language-processing-based program embedded
within the CARPL Platform (CARPL.AI PVT LTD., Delhi, India) to identify radiology re-
ports of consecutive CXRs reported as normal in all sections of reports from three healthcare
sites (Defense Colony Hospital, Hauz Khas Hospital and Safdarjung Hospital; all based in
Delhi, India).

At the US sites, we used a radiology report database search engine, mPower (Nuance
Inc., Burlington, MA, USA; Microsoft Inc., Redmond, WA, USA), to perform a similar
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search for CXR reports that were interpreted as normal. Among the US sites, there were
two quaternary hospitals (Massachusetts General Hospital and Brigham Women’s Hos-
pital; both in Boston MA) and three community hospitals (Cooley Dickinson Hospital,
Northampton, MA, USA; Newton-Wellesley Hospital, Newton, MA, USA; Salem Hospital,
Salem, MA, USA). At all sites, search filters were set to include CXRs from patients who
were 21 years or older.
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The data from each site with the radiology reports were exported in tabular form.
Next, we excluded all CXRs with identical medical records or examination numbers to
avoid sharing any personal health identifying information across the sites. The resulting
data were de-identified and populated into a single Microsoft Excel file (Microsoft Inc.
(Redmond, WA, USA)). We selected 250 consecutive CXRs from each of the 5 US sites
and consecutive 450 CXRs from each of the Indian sites as the initial study size. A study
coinvestigator (PK: a second-year post-doctoral fellow in radiology) reviewed all 2600 CXR
reports to exclude 163 CXR reports with description of a radiological finding in any section
of the radiology reports (main body, findings or impression sections). Thus, our final study
sample size was 2407 CXRs (1262 CXRs from India; 1145 CXRs from US) (Figure 1).

2.3. Ground-Truthing

DICOM CXRs of 2407 patients were de-identified and exported offline. All CXRs were
then uploaded to a secure-server-based CARPL Annotation Platform (from the Centre for
Advanced Research in Imaging, Neuroscience, and Genomics (CARING), Delhi, India) for
ground-truthing. Two experienced thoracic subspecialty radiologists (SRD: 17 years of
experience; MKK: 14 years of experience) independently reviewed all CXRs on the CARPL
platform. Each radiologist commented on the presence of any of the following CXR findings:
pleural effusion, pneumothorax, consolidation, lung nodule, opacity (linear scarring or
atelectasis), enlarged cardiac silhouette, mediastinal widening, hilar enlargement and
rib fracture. We limited the evaluation to these findings because they represented the
key detectable findings for the assessed AI algorithm (Qure.ai, Mumbai, India) on CXRs.
Since these findings were not reported during clinical interpretation, they were labeled as
missed findings.

For each missed finding, the two radiologists also drew an annotation box within
the CARPL Platform (Figure 2) around the finding and gave a score for the perceived
clinical importance of the missed finding (1: not clinically important; 2: unlikely of clinical
importance; 3: borderline clinical importance; 4: moderate clinical importance; 5: criti-
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cally important finding). Disagreements between the two radiologists were resolved in a
consensus, joint review to establish the final ground truth.
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prominence (E).

2.4. AI Algorithm

All 2407 deidentified frontal CXRs were processed with the AI algorithm (Qure.ai).
The ground-truth radiologists had no access to AI output at the time of interpretation. To
avoid data sharing and maintain data privacy, all AI processing was conducted behind the
institutional firewall of Massachusetts General Hospital.

All 2407 frontal CXRs were exported as DICOM images and processed with an AI al-
gorithm (Qure.ai, Mumbai, India) installed on a personal computer within our institutional
firewall. The AI algorithm is cleared for clinical use in 50 countries, including India, but did
not have clearance from the US Food and Drug Administration at the time of preparation of
this manuscript. The algorithm is based on several convolutional neural networks (CNNs)
which identify individual radiographic findings. The specific information pertaining to
training and testing of the algorithm has been described in prior studies [21].

Following post-processing of the test datasets, the AI algorithm generated an Excel
file with information on model outputs for specific CXR findings based on the probability
scores from zero to one hundred. The algorithm also provided a heat map to mark the
detected findings on CXRs. The AI outputs were imported into the CARPL platform for
data analysis and visualization.

2.5. Statistical Analysis

The ground truths and AI output files were uploaded to the CARPL platform for
analysis of different radiographic findings based on country, site, finding threshold (vendor-
recommended and Youden’s-Index-based), as well as patient gender and age.

We obtained the confusion matrices and area under the receiver operating characteris-
tic (ROC) curve (AUC) from the embedded analytical and statistical functions provided
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within the CARPL platform. The platform was assessed in a prior research study [22]. In
addition, the platform provided an interactive scatter plot to identify the distribution of
false-positive and false-negative findings. The findings and country-specific accuracies
were calculated based on the vendor-suggested optimal thresholds for individual findings
as well as the best performance threshold determination estimated from Youden’s Index
with SPSS Statistical Software (SPSS Version 32, IBM Inc., Armonk, NY, USA).

3. Results
3.1. Prevalence of Missed Findings

With the ground truth, there were 410 CXRs (17.1%, 410/2407), with missed findings
in 342/2407 CXRs (14.2% missed finding rate). The most frequent missed findings included
lung nodules (n= 177/410, 43.1%), subsegmental atelectasis or scarring (n = 67/410, 16.3%),
consolidation (n = 62/410, 15.1%), enlarged cardiac silhouette (n = 35/410, 8.5%), medi-
astinal widening (n = 24/410, 5.8%), hilar enlargement (n = 19/410, 4.6%), rib fractures
(n = 11/410, 2.7%), pleural effusions (n = 11/410, 2.7%) and pneumothorax (n = 4/410,
0.1%). Figure 3 presents examples of missed findings on CXRs.
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Tables 1 and 2 summarize the distribution of findings without clinical importance
(scores 1 and 2) and those with some clinical importance (scores 3–5). The most frequent
missed findings without clinical importance included subsegmental atelectasis or scarring
(67/137, 62.6%), calcified lung nodules (19/137, 17.8%) and old rib fractures (11/137, 10.2%).
The lung nodules deemed as “not important” likely represented calcified granulomata.
Likewise, mediastinal widening with little or no clinical importance was related to unfolded
thoracic aorta. The most frequent clinically important missed findings included lung
nodules (158/273, 52.1%), pulmonary nodules (60/273, 19.8%) and old rib fractures (11/107,
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10.3%). Although missed lung nodules were the most frequent missed findings at all sites,
the frequency of missed findings varied substantially across the participating sites from
India and the US, as well as within each country (p < 0001).

Table 1. Summary of site-wise distribution of missed findings (per radiologist ground truth) with
“no or likely no” clinical importance, which were not documented in the radiology reports.

Sites Nodule Rib
Fracture Pneumothorax Pleural

Effusion

Hilar
Enlarge-

ment

Mediastinal
Widening

Cardiac
Silhouette

Enlargement
Consolidation Opacity All

Site 1 1 5 0 0 1 0 6 0 14 27
Site 2 1 1 0 0 0 0 9 0 10 21
Site 3 2 0 0 0 0 0 3 0 6 11
Site 4 2 1 0 0 0 0 3 0 4 10
Site 5 6 0 0 0 1 1 4 0 9 21

US 12 7 0 0 2 1 25 0 43 90

Site 6 3 0 0 0 0 1 4 0 7 15
Site 7 2 2 0 0 0 1 1 0 6 12
Site 8 2 2 0 0 0 0 5 0 11 20
India 7 4 0 0 0 2 10 0 24 47

All 19 11 0 0 2 3 5 0 67 137

Table 2. Summary of site-wise distribution of clinically important missed findings (per radiologist
ground truth) in radiology reports which were not documented in the radiology reports.

Site Nodule Rib
Fracture Pneumothorax Pleural

Effusion

Hilar
Enlarge-

ment

Mediastinal
Widening

Cardiac
Silhouette

Enlargement
Consolidation Opacity All

Site 1 26 0 1 0 2 2 0 12 0 43
Site 2 18 0 0 0 2 4 0 10 0 34
Site 3 9 0 0 0 2 0 0 11 0 22
Site 4 10 0 0 0 0 0 0 2 0 12
Site 5 24 0 2 3 5 6 0 6 0 46

US 87 0 3 3 11 12 0 41 0 157

Site 6 32 0 1 3 2 3 0 4 0 45
Site 7 27 0 0 4 2 2 0 11 0 46
Site 8 12 0 0 1 2 4 0 6 0 25
India 71 0 1 8 6 9 0 21 0 116

All 158 0 4 11 17 21 0 60 0 273

3.2. Performance of AI Algorithm

Table 3 summarizes country-wise distribution of CXR findings at the vendor-
recommended thresholds. There were variations in the performance of the algorithm
across the Indian and US sites, although the differences were not statistically significant
(p > 0.2). Pneumothorax and mediastinal widening had the lowest AUCs for the AI
algorithm, whereas highest AUCs were reported for pleural effusions, enlarged cardiac sil-
houette, hilar prominence and rib fractures. Figure 2 presents examples of the AI-detected
CXR findings which were not reported in the radiology reports. Figure 4 presents findings
missed by both the AI algorithm and in the original radiology reports.

Table 4 summarizes the performance of the AI algorithm based on thresholds deter-
mined from Youden’s index. There were no significant differences in AI performance based
on country or gender (Table 5) (p > 0.1). Likewise, there were no significant differences
in the performance of the AI algorithm between three different age groups (<40 years,
41–65 years, >65 years) (p > 0.05) (Table 6). There were no significant differences in the
AUCs for most findings with and without clinical importance (p > 0.16). However, the AI
algorithm had higher AUC (0.71) for detecting calcified nodules without clinical impor-
tance as compared to clinically important, non-calcified pulmonary nodules (AUC 0.55)
(p = 0.006). Figures 5–7 display scatterplots of detected and missed CXR findings with the
AI algorithm based on country (Figure 5), gender (Figure 6) and age group (Figure 7).
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Table 3. Accuracy and area under the curve (AUC) of the AI algorithm based on vendor-based
thresholds for different findings on CXRs. The numbers within the parentheses represent 95%
confidence intervals.

Findings
India Sites US Sites

Accuracy (%) AUC (95% CI) Accuracy (%) AUC (95% CI)

Opacity 97.93 0.607
(0.472–0.743) 96.06 0.737

(0.661–0.814)

Pleural Effusion 99.52 0.982
(0.955–1.000) 99.65 0.680

(0.325–1.000)

Cardiac silhouette enlargement 99.60 0.977
(0.937–1.000) 97.90 0.916

(0.849–0.983)

Hilar enlargement 99.60 0.786
(0.506–1.000) 98.86 0.642

(0.476–0.808)

Nodule 94.13 0.737
(0.675–0.798) 91.00 0.702

(0.643–0.760)

Rib fracture 99.44 0.789
(0.654–0.923) 99.38 0.86

(0.681–1.000)

Pneumothorax 99.92 0.515
(0.488–0.543) 97.64 0.653

(0.288–0.557)

Mediastinal widening 81.45 0.594
(0.423–0.766) 79.03 0.422

(0.288–0.557)

Consolidation 98.65 0.729
(0.623–0.836) 96.15 0.576

(0.494–0.658)
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Table 4. Accuracy and area under the curve (AUC) of the AI algorithm based on Youden’s-Index-
based thresholds for different findings on CXRs. The numbers within the parentheses represent 95%
confidence intervals.

Findings
Accuracy (%) AUC (95% CI) Youden’s Index

US India US India US India

Opacity 92.57 95.87 0.521
(0.430–0.613)

0.520
(0.399–0.640) 0.384 0.307

Pleural Effusion 97.99 98.57 0.666
(0.289–1.000)

0.687
(0.456–0.918) 0.312 0.882

Cardiac silhouette enlargement 93.62 96.27 0.637
(0.507–0.768)

0.800
(0.610–0.989) 0.76 0.896

Hilar enlargement 91.79 96.19 0.500
(0.342–0.658)

0.583
(0.325–0.842) 0.231 0.640

Nodule 90.04 93.82 0.553
(0.489–0.517)

0.580
(0.507–0.652) 0.349 0.361

Rib fracture 99.21 98.81 0.571
(0.334–0.808)

0.499
(0.216–0.782) 0.690 0.615

Pneumothorax 90.91 99.04 0.656
(0.282–1.000)

0.500
(0.000–1.000) 0.441 0.515

Mediastinal widening 79.03 81.45 0.438
(0.296–0.580)

0.546
(0.367–0.725) 0.123 0.269

Consolidation 96.15 98.65 0.499
(0.409–0.588)

0.595
(0.455–0.735) 0.193 0.359

Table 5. Variations in the AI algorithm’s performance for detecting different radiographic findings
based on patients’ stated gender (female versus male patients). Table represents area under the curve
with 95% confidence intervals in parentheses.

Gender Nodule Rib Fracture Pneumothorax Pleural
Effusion

Hilar En-
largement

Mediastinal
Widening

Cardiac
Silhouette

Enlargement
Consolidation Opacity

Female 0.569
(0.503–0.635)

0.667
(0.2689–1.000)

0.494
(0.000–1.000)

0.642
(0.395–0.888)

0.500
(0.329–0.671)

0.500
(0.342–0.658)

0.707
(0.396–602)

0.499
(0.396–0.602)

0.498
(0.392–0.604)

Male 0.561
(0.491–0.630)

0.498
(0.298–0.699)

0.662
(0.286–1.000)

0.750
(0.434–1.000)

0.563
(0.343–0.782)

0.500
(0.329–0.671)

0.635
(0.438–0.659)

0.539
(0.440–0.638)

0.539
(0.440–0.638)

Table 6. Variations in the AI algorithm’s performance for detecting different radiographic findings
based on age group (female versus male patients). Table represents area under the curve with
95% confidence intervals in parentheses. (Key: NA—not applicable because there was no missed
pneumothorax in patients over 65 years.)

Age
(Years) Nodule Rib Fracture Pneumothorax Pleural

Effusion
Hilar En-

largement
Mediastinal
Widening

Cardiac
Silhouette

Enlargement
Consolidation Opacity

<40 0.577
(0.496–0.659)

0.500
(0.173–0.827)

0.745
(0.299–1.000)

0.600
(0.313–0.886)

0.536
(0.374–0.697)

0.500
(0.268–0.732)

0.666
(0.448–0.884)

0.500
(0.399–0.601)

0.518
(0.404–0.631)

41–65 0.554
(0.484–0.623)

0.623
(0.299–0.947)

0.494
(0.098–0.889)

0.750
(0.216–0.784)

0.500
(0.216–0.784)

0.500
(0.320–0.680)

0646
(0.488–0.805)

0.565
(0.434–695)

0516
(0.404–0.628)

>65 0.580
(0.466–0.694)

0.500
(0.214–0.786) NA 0.745

(0.299–1.000)
0.500

(0.000–1.000)
0.500

(0.296–0.704)
0.768

(0.563–0.973)
0.498

(0.281–0.715)
0.540

(0.354–0.727)
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Figure 5. Screen captures of the AI validation platform displaying scatterplots of AI-detected and 
undetected CXR findings based on country (true positive (red dots), true negative (blue dots), false 
negative (yellow dots) and false positive (green dots)). 

Figure 5. Screen captures of the AI validation platform displaying scatterplots of AI-detected and
undetected CXR findings based on country (true positive (red dots), true negative (blue dots), false
negative (yellow dots) and false positive (green dots)).
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Figure 6. Screen captures of the AI validation interface illustrating the scatterplots of AI output for 
gender-wise distribution of CXR findings (true positive (red dots), true negative (blue dots), false 
negative (yellow dots) and false positive (green dots)). 

Figure 6. Screen captures of the AI validation interface illustrating the scatterplots of AI output for
gender-wise distribution of CXR findings (true positive (red dots), true negative (blue dots), false
negative (yellow dots) and false positive (green dots)).
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Figure 7. Screen captures of the AI validation platform showing the scatterplots of AI performance
based on three age groups for CXR findings (true positive (red dots), true negative (blue dots), false
negative (yellow dots) and false positive (green dots)).

4. Discussion

Our study demonstrates that a substantial number of clinically important findings
are missed on CXRs, regardless of practice type and location. The most frequent and
clinically important missed findings included lung nodules and consolidation at all eight
participating sites in both India and the US. A high frequency of missed lung nodules on
CXRs has also been reported in prior studies [23]. Apart from the distribution of missed
radiographic findings, our study reports on the performance of an AI validation platform
(CARPL) and an AI-CXR algorithm (Qure.ai). The validation platform enabled seamless
comparison of AI performance with both summary statistics (e.g., AUCs, accuracies) as well
as individual case-level false positives, false negatives, true positives and true negatives. To
assess the generalizability of AI results, the validation platform helped to investigate model
performance across different findings, participating sites, countries, patient age groups and
genders using either vendor-specified or Youden’s-Index-adjusted thresholds.

Although the AUCs for standalone AI performance reported in our study are lower
than those in prior studies [24], the assessed AI algorithm detected several missed findings
not documented in the original radiology reports. The incremental value of AI for interpret-
ing CXRs in our study follows the trends reported in other AI studies [23,25]. The lower
AUCs obtained with the assessed AI algorithm for some missed findings in our study are
likely related to the fact that missed findings are more likely to be subtle or difficult to
detect, and therefore bring an additional level of complexity to AI performance. Indeed,
a recent study from Yen et al. reported that their AI algorithm only detected 19.4% of
the unreported lung nodules greater than 6 mm [26]. Likewise, in a real-world dataset of
2972 CXRs, Jones et al. reported that their AI model led to significant changes in report
in 3.1% of cases and changes in patient care for 1.4% of patients. The projectional nature
of CXRs, the subtlety of radiographic findings and the subjective nature of radiographic
interpretation pose similar problems to both AI models and human interpreters. Our study
outlines a compelling case for the complementary use of AI in the interpretation of CXRs
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but stresses the importance of careful primary interpretation of CXRs to avoid missed
findings—particularly in patients with lung nodules and consolidation.

Likewise, there are some investigations on pulmonary nodule detection by artificial
intelligence in which the system was able to identify more than 99% of the nodules (false
positives per image was 0.2) [27]. Furthermore, the AI algorithm could detect fresh, healing
and old fractures with high performance (F1-scores, 0.849, 0.856 and 0.770, respectively,
with p = 0.023 for each) [28].

The chief implication of our study pertains to the validation of AI model performance
across multiple sites from two geographically distinct regions of the world. Validation
of AI models across diverse datasets is critical for establishing their generalizability. We
report on methods and platforms for assessing variations in AI performance based on
geographic location, type of hospital setting, patient gender and age group for different
types of CXR findings. Users of AI models should be aware of the impact of such variations
on their local CXRs. We document the use of an AI validation platform (CARPL) for data
annotation and model output analyses of the impact of variables such as age, gender and
geographic origin on AI performance. Another implication of our study is the high rate of
missed CXR findings at all sites, which is neither a new nor a groundbreaking discovery
but stresses the role of AI algorithms in reducing the frequency of such missed findings—at
least those deemed clinically important. Although the assessed AI algorithm was not
perfect, it successfully detected a substantial number of findings missed by radiologists at
eight different sites.

Limitations

Our research has some limitations. Several missed findings such as pneumothoraces,
pleural effusions and rib fractures were rare (n < 11) in our study sample, and therefore it is
difficult to assess the performance of the AI model for such findings. Our study limited
the number of CXRs per site (250 or 400), whereas a larger number could have yielded a
larger number of missed findings—especially for findings with small numbers. Despite
a large number of CXRs from 2407 patients from eight sites, including community and
quaternary hospitals, the included CXRs primarily originated from two large metropolitan
communities. Consequently, the geo-racial variations reported in our study across the US
and India could have led to an under- or overestimate of AI performance. However, due to
concerns over data privacy and security, multi-site, international studies with thousands of
imaging studies are difficult and expensive.

Another limitation of our study is the lack of pediatric CXRs, since the assessed AI
model was not trained with adequate pediatric CXRs. Although the assessed AI model
could evaluate more than 10 findings included in our study, we did not include other
findings due to logistical challenges associated with the interpretation of unfunded studies.
Since we assessed the use of only one AI model in our study, we cannot comment on the
impact of applying more than one AI model on the overall reduction in missed finding
frequency. Future studies should investigate if the use of multiple AI algorithms can
further reduce missed finding rates and thereby improve the quality and content of CXR
reports. Finally, given the inter-observer variations in radiologists’ interpretation of CXRs,
ground-truthing was performed by only two radiologists. However, both radiologists had
multiple years of experience as practicing thoracic radiologists and fellowship training in
thoracic imaging.

5. Conclusions

Our study shows that the assessed AI algorithm could help to detect a substantial
proportion of clinically important missed findings on CXRs. The assessed AI validation
platform helped to assess generalizability of AI models across different findings, geographic
locations, practice types, patient genders and age groups.
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