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Abstract
The term host defense peptides arose at the beginning to refer to those peptides that are part of the host’s immunity. Because 
of their broad antimicrobial capacity and immunomodulatory activity, nowadays, they emerge as a hope to combat resistant 
multi-drug microorganisms and emerging viruses, such as the case of coronaviruses. Since the beginning of this century, 
coronaviruses have been part of different outbreaks and a pandemic, and they will be surely part of the next pandemics, this 
review analyses whether these peptides and their derivatives are ready to be part of the treatment of the next coronavirus 
pandemic.
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Introduction

In the last few decades, there have been three important out-
breaks related to coronaviruses; however, only the last one 
became pandemic. The first two coronavirus diseases: severe 
acute respiratory syndrome (SARS-CoV, 2002–2003) and 
the Middle East respiratory syndrome (MERS-CoV, 2012), 
showed less capacity to transmit from human-to-human thus 
the spreading worldwide was substantially minor compared 
with the novel coronavirus, which has extended worldwide 
leading to the considerable number of deaths (Parthasarathy 
and Vivekanandan 2020). Like the other two members, this 
new coronavirus belongs to the β-coronavirus genus and 
affects the lower respiratory tract and causes severe respira-
tory disorders and pneumonia in humans.

New promising drugs are starting to be used for the treat-
ment of coronavirus-related diseases, nonetheless, none of 
them has shown complete clinical efficiency (Brodin 2021). 
Nowadays, several vaccines are being applied, mainly to 
the population that is considered within the higher-risk 
group. The vaccine application brings a new hope to stop 
this pandemic, but the creation and clinical studies of the 

different vaccines delayed a year, thus is necessary to have 
newly available treatments for future coronavirus pandemics. 
Currently, there is no-specific antiviral treatment available, 
indeed the treatment is focused on symptomatology and oxy-
gen therapy, which represents the foremost intervention for 
patients with severe infection (Mohamed Khosroshahi et al. 
2021). Thus, it is necessary to keep antiviral research on 
coronaviruses, immunomodulators and, drug repositioning 
for further treatment alternatives.

During coronavirus exposure, most individuals have an 
effective initial immune response, which eliminates the virus 
or leads to a subclinical infection with no symptoms or mild 
symptoms. In a few cases, viral evasion of the immune 
response can lead to refractory alveolar damage, ineffective 
lung repair mechanisms, and systemic hyper-inflammation 
with associated organ dysfunction worsening the patient’s 
outcome (Zheng et  al. 2020). The immune response in 
these patients is highly variable and can include moderate 
to severe systemic inflammation or marked systemic immune 
suppression. Lately, several studies have suggested that an 
immunophenotype-driven approach such as anti-cytokine 
therapy or switching the proinflammatory stage to an immu-
noregulatory phenotype would help to succeed in treating 
patients with critical illness due to COVID-19. Although 
blocking antibodies therapy has been clinically tested and 
has shown promising results, the use of immunomodulators 
could improve the outcome.
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The rationale of using a molecule that on one hand could 
lead to direct viral elimination and on the other hand pro-
motes an anti-inflammatory profile puts in the spotlight 
some host defense peptides (HDPs) and their mimetic syn-
thetic compounds, but do we have enough scientific research 
to propose these molecules as a new hope for future pandem-
ics? In this review, we analyzed the potential use of HDPs 
and their synthetic counterparts as a further option for the 
treatment of coronavirus.

Coronavirus‑Related Pandemics

In the middle of the 1960s, different laboratories isolated 
from the human respiratory tract a new virus with unusual 
properties (Tyrrell and Bynoe 1966). Later in the same dec-
ade, other researchers found a similar virus in animals: mice 
and swine. In the late 1960s, researchers reported that all 
these viruses were morphologically similar, this new group 
was named coronavirus, because of its crown-like appear-
ance given by the spike protein (Kahn and McIntosh 2005). 
Currently, it is well known that Coronaviruses belong to the 
family Coronaviridae and subfamily Orthocoronavirinae. 
These viruses are RNA positive stranded, polyadenylated, 
infective, and can replicate in the cellular cytoplasm. This 
family has a unique characteristic to own the biggest genome 
reported among the enveloped RNA viruses, 27–32 kb, and 
is neatly packed along with the nucleocapsid protein (Brian 
and Baric 2005). All the coronaviruses share a similar struc-
ture in at least four important proteins: the spike glycopro-
tein (S protein), which constitutes the surface projections, a 
small envelope protein (E protein), a membrane glycoprotein 
(M protein), and a nucleocapsid protein (N protein) (Kahn 
and McIntosh 2005). Further, the coronaviruses are clas-
sified into α, β, γ, and δ genera; however, only the α and β 
viruses infect humans (Zheng et al. 2020).

Coronaviruses have been related to animals rather than 
humans, indeed, only seven sorts of coronaviruses can infect 
humans: HCoV-229E, HCoV-OC43, HCoV-NL63, and 
HCoV-HKU1 are viruses that cause mild respiratory symp-
toms, whereas the pandemic viruses SARS-CoV, MERS-
CoV, and SARS-CoV-2 cause severe acute respiratory symp-
toms. Bats and rodents are the main β-coronaviruses sources; 
however, there are other potential intermediate hosts, which 
finally can be the transmission source to humans (Zheng 
et al. 2020).

The first outbreak emerged in southern China and it was 
nominated as Severe Acute Respiratory Syndrome (SARS), 
and the etiological agent was recognized as SARS-CoV. 
During November 2002 and July 2003 around 8,000 cases 
of SARS were reported in 29 countries in North America, 
South America, Europe, and Asia, and 774 died, represent-
ing a mortality rate of 10% according to the Centers for 

Disease Control and Prevention (CDC 2003). Subsequent 
studies revealed that the SARS-CoV spread from bats to 
palm civets and subsequently to humans, probably originated 
through the selection and mutation of the SARS-like animal 
virus, which finally allowed human-to-human transmission 
(Halaji et al. 2020). Ten years later, in September 2012 arose 
the Middle East Respiratory Syndrome Coronavirus named 
MERS-CoV. The first report was in Saudi Arabia and all 
cases were established in the Middle East and North Africa 
region, Europe, East Asia, and the United States (Ramadan 
and Shaib 2019). The origin of this virus is not fully under-
stood, but the evidence suggests bats as the primary host 
and then subsequent transmission to camels and humans. 
In 2012, MERS-CoV infected nearly 900 persons with 334 
deaths resulting in a mortality rate of 35% (Halaji et al. 
2020). To date, the World Health Organization (WHO) has 
notified 2,279 cases and 732 fatalities in 27 countries, thus 
MERS-CoV is by far the less contagious coronavirus, but 
it is the most fatal (Ramadan and Shaib 2019). The current 
pandemic is caused by a new emerging virus denominated 
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2) for its high similarity to SARS-CoV. This outbreak 
started in early December 2019 in Wuhan, China. In January 
2020, the WHO announced a Public Health Emergency of 
International Concern, and finally, in March 2020 the WHO 
declared the disease COVID-19 as a pandemic. One year 
after, there are more than 100 million cases and more than 2 
million deaths in at least 216 countries (Ganesh et al. 2021).

The MERS-CoV and SARS-CoV receptors are dipeptidyl 
peptidase 4 (DPP4) and angiotensin-converting enzyme 2 
(ACE-2), respectively. These receptors are highly expressed 
in the respiratory tract mainly in epithelial cells. Both SARS 
viruses use the same mechanism for entry into host cells, 
but SARS-CoV-2 has around 10–20 times increased affinity 
and, therefore, higher infectivity rates. In the three infec-
tions, the symptoms are similar, including fever, myalgia, 
diarrhea, cough, and shortness of breath, with pneumonia 
or severe acute respiratory distress syndrome as the main 
complications (Ganesh et al. 2021). Besides, DPP4 is also 
expressed in kidneys, explaining common kidney failure in 
patients with MERS (Ramadan and Shaib 2019). Regarding 
the transmission route in coronavirus infections, the main 
lane in human-to-human is through the contact with oral, 
nasal, and eye mucous but also by coughing, sneezing, and 
inhaling respiratory droplets that contain the virus (Halaji 
et al. 2020).

No vaccination or convincing evidence for an effective 
treatment exists to MERS-CoV (Ramadan and Shaib 2019) 
and SARS-CoV (Stockman et al. 2006); however, in the 
absence of antiviral therapies, infected patients receive sup-
porting therapy to avoid a critical state (Ganesh et al. 2021; 
Stockman et al. 2006). In contrast, in the current pandemic, 
there are essential advances regarding the development of 
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efficient treatment or vaccines. Worthy to consider that RNA 
viruses have a high rate of genetic mutations that lead to 
the potential evolution of new resistant viral strains and, 
therefore, the possibility to evade the host immune response 
or avoid antiviral drugs (Brian and Baric 2005). Thus, it 
is important to consider new treatments to prevent future 
coronaviruses outbreaks.

Available Treatments and Vaccines, Is There 
Something Left?

Since the Sars-CoV-2-associated-disease, COVID-19, 
was officially known as the new pandemic, several clini-
cal research groups started to seek potential treatments for 
novel coronavirus. Even though the scenery was not good, 
there was a history of previous coronavirus outbreaks, which 
allowed us a start, not from zero. Similar drugs that were 
used in previous pandemics began to be used and special 
attention was paid to the spike protein as a therapeutic target, 
in addition to using the artillery used to treat other types 
of RNA viruses (Khan et al. 2020). Several studies have 
suggested the use of interferon (IFN)-α, ribavirin combined 
with IFN-α or lopinavir/ritonavir, chloroquine phosphate, 
nelfinavir, and arbidol (Wolfel et al. 2020). Other antiviral 
drugs have been tested during this pandemic (reviewed com-
prehensively elsewhere) (Peng et al. 2021; Ratre et al. 2021), 
as well as the use of immunotherapy such as convalescent 
plasma from recovered patients, intravenous injection of an 
anti-SARS-CoV-2 human immunoglobulin, and tocilizumab, 
all of them accompanied by the use of glucocorticoids 
such as methylprednisolone to damper inflammation, thus 
allowing better oxygenation. Preventing complications and 
providing organ function support are also key therapeutic 
approaches; nevertheless, no specific antiviral treatment of 
COVID-19 still exists.

In the last months, several vaccines have emerged against 
the COVID-19, these vaccines came through because of the 
general global effort, a few candidates are in phase three and 
they are being used for the vaccination of susceptible groups, 
all of them with promissory results, many other candidates 
are in developing phases (WHO 2021). The development of 
these vaccines took about a year and during this time, clini-
cal practitioners have been struggling with the COVID-19, 
using the drugs they have in their hands to save as many lives 
as they can. Therefore, we must have new alternatives for the 
next pandemic, which will happen undoubtedly, the question 
is when. There is no doubt that in that scenario, we will have 
the experience from this pandemic and some drugs ready to 
be used, of course, a new vaccine will be developed, but in 
the meantime, it will be necessary to provide pharmaceuti-
cal alternatives.

Role of HDPs to Control Viral Infections

Several HDPs have shown important antiviral activity 
against a wide variety of viruses (Ahmed et al. 2019). 
These peptides are fundamental components of the innate 
immune system and their role in viral infections has been 
highlighted in the past decades. HDPs are amphipathic 
small peptides with a net positive charge and are classi-
fied based on their structure as linear α-helical, β-sheet, 
cyclic peptides, and with extended flexible loop structures 
(Mookherjee et al. 2020). They can influence and modulate 
the immune response, beyond possess a wide microbicidal 
activity against bacteria, fungi, and viruses (Xhindoli et al. 
2016). HDPs are synthesized and stored in immune and 
non-immune cells; they are expressed in a wide variety of 
tissues, mainly at sites normally exposed to higher loads of 
microbes such as the respiratory epithelium (Mookherjee 
et al. 2020).

HDP’s antiviral activity along with the IFN production 
help directly and indirectly in respiratory viral infections 
produced by enveloped virus mainly by the destabiliza-
tion of the viral envelope, virion damage, and opsoniza-
tion of viral particles, thus inhibiting the entry to host 
cells (Ahmed et al. 2019; Jenssen et al. 2006). To a lesser 
extent, HDPs have antiviral activity against non-envel-
oped viruses by decreasing viral replication or preventing 
nuclear entry of the viral genome (deeper analyzed in Wil-
son et al. 2013). Furthermore, HDPs promote an antiviral 
state by their immunomodulatory effects, including the 
enhancement of phagocyte function and orchestration of 
cytokine production (Mookherjee et al. 2020).

Human rhinoviruses (HRV) are the most common cause 
of viral respiratory infections in young people, the elderly, 
immunocompromised individuals, and patients with 
pre-existing pulmonary conditions. Some authors have 
reported that human cathelicidin LL-37 decreases viral 
HRV replication through a cytotoxic effect on the virions 
(Schögler et al. 2016) rather than in infected cells; how-
ever, LL-37 treatment also reduces the metabolism of the 
infected cells to avoid viral spreading (Sousa et al. 2017). 
Besides, the LL-37 absence during HRVs infections could 
lead to chronic obstructive pulmonary disease exacerba-
tion (Mallia et al. 2012). Similarly, the enteroviruses elicit 
human β-defensin-3 (HBD-3) expression that can exert 
virucide extracellular activity (Chen et al. 2018) although 
this mechanism needs further examination.

Influenza A viruses (IAV) remain a major threat to 
human health because of past epidemics (Salvatore et al. 
2007). Several mechanisms are related to the response of 
HDPs during IAV infection. For instance, the human neu-
trophil peptide (HNP)-1, which belongs to the α-defensins 
family, has shown the ability to inactivate IAV through 
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direct binding to the virus, giving place to the formation 
of a complex, therefore preventing the entry of the virus 
into host cells and promoting phagocytosis (Daher et al. 
1986). But also, there is evidence that HNP-1 inhibits pro-
tein kinase C activation in infected cells, which is required 
for viral replication and viral protein synthesis (Salvatore 
et al. 2007). Besides, HNPs were described as IAV viral 
particle aggregation inducers, facilitating their uptake by 
neutrophils (Tecle et al. 2007). Regarding human defensins 
(HD)-5 and HD-6, they both have similar activity as shown 
by HNP-1 against IAV but with lesser affinity (Doss et al. 
2009). The IAV infection in plasmacytoid dendritic cells 
(DCs) and monocytes induced an early expression of 
human β-defensin (HBD)-1 and decreased viral replica-
tion, which suggests HBD-1 plays a protective role (Ryan 
et al. 2011). Besides, HBD-3 prevents the IAV fusion with 
the host cells by binding the viral glycoprotein hemagglu-
tinin in a dose-dependent manner (Leikina et al. 2005). 
Complementary to α- and β-defensins, LL-37 has similar 
inhibition activity as HNPs, in this case, LL-37 damages 
viral IAV membranes and reduced the viral M protein gen-
eration in infected cells (Tripathi et al. 2013). Further, 
the LL-37 immunomodulatory properties are related to 
lesser disease severity since LL-37 treatment induces less 
secretion of proinflammatory cytokines in the lung (Bar-
low et al. 2011).

Human adenoviruses (HAdVs) are non-enveloped DNA 
viruses capable of infecting several systems, including 
the respiratory system, and frequently caused severe fatal 
disseminated infections in immunocompromised patients 
(Smith and Nemerow 2008). Both HNP-1 and HBD-2 are 
released by polymorphonuclear cells, reducing adenoviral 
infection in a dose-dependent manner (Bastian and Schafer 
2001). Likewise, HD-5 and HBD-1 protect host cells from 
adenoviral infections (Gropp et al. 1999). These peptides 
bind to the viral capsid thus preventing viral uncoating 
and disabling it to penetrate cellular endosomes, which in 
turn hamper the adenovirus particles to spread, triggering 
a virion accumulation in early endosomes and lysosomes 
instead of their traffic to the nucleus (Nguyen et al. 2010; 
Smith and Nemerow 2008). To note, the correct peptide-
folding and its net charge allow viral neutralization by bind-
ing to critical HAdV sites (Gounder et al. 2012; Smith et al. 
2010). Less information exists regarding LL-37 effective-
ness in HAdV infections. LL-37 exerts a rapid viral inactiva-
tion and the mechanism proposed is through the adenoviral 
particle disruption (Gordon et al. 2005). Nevertheless, this 
effect has only been observed in HAdV, probably because of 
their structural viral differences (Uchio et al. 2013).

The coronavirus outbreaks in the past years revealed the 
need for a deeper understanding of the immune processes to 
stop virus spreading, this knowledge will help us to develop 
new efficient therapies. The mechanisms described herein 

expose both, the redundancy and diversity in the functions of 
HDPs to neutralize viruses, placing these peptides as poten-
tial therapeutic molecules. Beyond the virucidal effects, 
HDPs also exert a wide immunomodulatory capacity that 
could lead to infection resolution (Fig. 1, Table 1).

What Do We Know About Coronavirus 
and HDPs?

To date, scarce information has been generated regarding 
the role of HDPs in response to the coronavirus infection, 
indeed, it is unknown whether the efficient production 
of these HDPs leads to the elimination of the coronavi-
rus, causing mild or no symptomatology at all or if the 
low production or lack of HDPs could be associated with 
severe symptoms. The results generated from several stud-
ies in this context allow us to propose a new hypothesis 
of the possible role of these peptides. For instance, using 
molecular dynamic simulation, researchers determined 
that α-defensin-5 can block ACE-2 in the human intesti-
nal epithelium, which was reflected in inhibiting the entry 
of SARS-CoV-2 pseudovirions to cells at concentrations 
as low as 10 μg/mL (Wang et al. 2020). Similarly, previ-
ous studies have shown that α defensins play an important 
role in preventing viral entry into host cells and in the 
transmission of viral infection among cells (Wilson et al. 
2017). Previous studies reported that α-defensin levels 
were elevated in patients with COVID‐19, suggesting this 
defensin as a therapeutic target (Kerget et al. 2021). Other 
studies have demonstrated that β-defensins-derivative 
peptides exhibited potent and broad-spectrum antiviral 
effects on multiple respiratory viruses such as influenza 
A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV, 
and MERS-CoV. This antiviral activity was related to 
their high affinity to viral glycoproteins; they also prevent 
endosomal acidification by blocking membrane fusion 
and subsequent viral RNA release (Zhao et  al. 2016). 
Similar studies in MERS-CoV infection showed that the 
conjugation of HBD-2 to spike protein receptor-binding 
domain induces antigen-specific protective immunity, 
thus suggesting that HBD-2 potentiates immune responses 
against the viral antigen and could be used as an adju-
vant to enhance the immunogenicity of subunit vaccine 
candidates against MERS-CoV (Kim et al. 2020). Other 
approaches have emphasized the importance of HDPs to 
promote antiviral-related-immunity limiting viral prolif-
eration in SARS-CoV-infected mice. The experimental 
use of defensins displayed significant reductions in levels 
of RANTES, IL-1α, IL-1β, IL-6, keratinocyte chemoat-
tractant, MIP1α, monocyte chemoattractant protein 1, and 
IL-12 (p40), whereas the viral-control-related cytokines 
were increased (Wohlford-Lenane et al. 2009). Similar 
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studies have reported that HBD-2 conjugated with the 
receptor-binding domain (RBD) of the S protein (S-RBD) 
present in MERS-CoV activates the primary antiviral 
innate response in monocytic cells, enhancing the expres-
sion of antiviral molecules such as type I IFN (IFN-I) and 
chemokines. Then, chemokines promote leukocyte recruit-
ment, suggesting the induction of an effective adaptive 
response (Kim et al. 2018). Hence, S-RBD–HBD-2 pro-
motes the expression of Nod2 and IFN-I through the acti-
vation of the transcription factor IRF3 to set up an antiviral 
cell state. Besides, HBD-2 induces the expression of M1 
macrophage markers which are associated with antigenic 
presentation and antibody production (Kim et al. 2019). 
Thus, immunization with S-RBD–HBD-2 leads to a pro-
tective immune response against MERS-CoV and could be 

used as an approach for vaccine development (Kim et al. 
2018, 2019, 2020).

Moreover, the HD-5 structure allows interaction with the 
SARS-CoV-2 receptor, ACE-2, even with a higher affinity 
than the virus itself. HD-5 hides amino acids crucial for 
the ACE-2 recognition by the S protein and hence, HD-5 
competes with the virus inhibiting its entry to host cells 
(Wang et al. 2020). These results agree with a study where 
patients with COVID-19 showed reduced expression lev-
els of defensins, such as HBD4A, HBD106B, HBD107B, 
HBD103A, and HD1B in the nasopharyngeal cavity (Idris 
et al. 2020). Thus, suggesting that insufficient production 
of defensins allows progressive disease and it is also pro-
posed the use of an HD-5 aerosol before potential exposure 
to SARS-CoV-2 as a preventive measure (Niv 2020).

Fig. 1   Host defence peptides antiviral activity. (1) Host defence pep-
tides (HDPs) have shown antiviral activity against the main viruses 
involved in respiratory infections such as adenoviruses (HAdV), rhi-
noviruses (HRVs), and Influenza A viruses (IAV). (2) HAdV bind 
the coxsackievirus and adenovirus receptor (CAR), HRVs bind to 
several glycoproteins such as ICAM-1 while IAV bind to hemagglu-
tinin (HA) protein. (3) Once the viruses infect host cells, the expres-
sion of viral particles and specific HDPs is induced. (4) HAdV, 
HRVs, and IAV promote LL-37 expression; moreover, HRVs also 
induce human beta-defensin (HBD)-3, and IAV induce HBD-1 and 
human neutrophil peptide (HNP)-1 as well. (5) Some HDPs have 

direct virucidal effects. LL-37 can damage HAdV, HRVs, and IAV 
virions. Also, HBD-3 shows cytotoxic activity against HRVs. (6) 
Other HDPs have virucidal indirect effects. HNP-1 binds to HA pro-
tein, avoiding the IAV infection, but it also binds directly to the virus 
promoting its aggregation and inactivation. Besides HNP-1 inhib-
its protein C kinase (PKC) in infected cells, which is necessary for 
viral replication. To note, HD-5 and -6 have similar effects but with 
lesser potency. (7) In infected cells, HD-5 and HBD-2 bind directly 
to HAdV preventing its uncoating and promoting its accumulation in 
endosomes to avoid viral replication
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Less information is available regarding other HDPs 
such as LL-37 or the antimicrobial protein lactoferrin (Sal-
vatore et al. 2007). SARS-CoV promotes high lactofer-
rin expression in polymorphonuclear cells (Reghunathan 
et al. 2005), which in turn inhibits viral entry into host 
cells since both lactoferrin and SARS-CoV compete for 
the same receptor (Elnagdy and AlKhazindar 2020; Lang 
et al. 2011). Similar results have been proposed for SARS-
CoV-2 because of the similitude between both viruses.

Recent studies have demonstrated that LL-37 binds to 
SARS-CoV-2 S protein and inhibits binding to its receptor 
hACE2, and most likely viral entry into the cell, in vitro. 
Several reports suggest that vitamin D supplementation 
is associated with a lower risk of SARS-CoV-2 infection 
or disease progression (Entrenas-Castillo et  al. 2020; 
Grant et al. 2020a, 2020b; Mercola et al. 2020; Panfili 
et al. 2021). This protective effect could be mediated by 
LL-37 immunomodulatory properties since vitamin D is 
the main LL-37 inducer through the activation of the vita-
min D response elements located in the promoter of the 
hCAP18 gene, which is the precursor of LL-37 mature 
peptide (Beard et al. 2011).

Other approaches have been suggested to counterattack 
coronavirus infection, for instance, the peptide OC43-HR2P, 
derived from the heptad repeat 2 (HR2) domain of HCoV-
OC43, exhibited a broad fusion inhibitory activity against 
multiple HCoVs. EK1, the optimized form of OC43-HR2P, 
showed substantially improved pan-CoV fusion inhibitory 
activity, indeed, lipopeptides derived from EK1 showed 
important fusion inhibitor activity against SARS-CoV-2 S 
protein-mediated membrane fusion (Xia et al. 2019, 2020). 
Thus, pan-coronavirus fusion inhibitory peptides are poten-
tial candidates for pharmaceutical development.

HDPs Immunomodulatory Capacity Could be 
Used for Treating Coronavirus

Although the proinflammatory activity of HDPs has been 
widely described in the past decade, several findings have 
demonstrated that HDPs under certain conditions selectively 
act as anti-inflammatory molecules. Indeed, some HDPs are 
balanced toward anti-inflammatory activity, such as the case 
for LL-37. Administration of exogenous LL-37 decreased 
tumor necrosis factor (TNF)-α) and interleukin (IL)-17 while 
inducing anti-inflammatory IL-10 and transforming growth 
factor (TGF)-β production in Mycobacterium tuberculosis-
infected macrophages, whereas in uninfected macrophages 
promoted a proinflammatory profile (Torres-Juarez et al. 
2015). This cathelicidin is also capable of inhibiting neutrophil 
chemotaxis, inducing the internalization of the CXCR2 (Zhang 
et al. 2009) and promoting non-inflammatory necrosis, thus 
controlling excessive inflammation (Li et al. 2009). Another 
anti-inflammatory mechanism described for LL-37 is that this 
peptide modulates the TLR-to-NFκB pathway contributing 
to the local regulation of inflammation, furthermore, LL-37 
promotes the production of IL-1-soluble receptor, whereas 
induces the expression of anti-inflammatory cytokines such 
as IL-10 and TGF-β (Hemshekhar et al. 2018; Mookherjee 
et al. 2006, 2009; Torres-Juarez et al. 2015). Interestingly, 
other molecular mechanisms are involved with the capacity 
of LL-37 to inhibit the Th1 immune responses produced in 
response to IFN-γ by suppressing the production of TNF-α 
and IL-12 in monocytes, macrophages, and DCs, as well as 
inhibiting the activation of class-switching in splenic B cells, 
these inhibitory effects are merely mediated through suppres-
sion of STAT1-independent-signaling pathway (Nijnik et al. 
2009). KR-12 is a short fragment from LL-37 corresponding 

Table 1   Host defense peptides antiviral activity

HRV Human rhinovirus, IAV Influenza A virus, HAdV human adenovirus, PKC protein C kinase

Peptide Structure Virus Target References

LL-37 α-helical linear HRVs Cytotoxic effect against the virions (Schögler et al. 2016)
prevents viral spreadig (Sousa et al. 2017)

IAV Damages viral membranes (Tripathi et al. 2013)
Reduce viral M protein generation (Tripathi et al. 2013)

HAdV Viral inactivation (Gordon et al. 2005)
HNP-1 β-sheet IAV Virus binding and avoids the entry to cells (Daher et al. 1986)

Inhibits PKC activation (Salvatore et al. 2007)
HAdV Reduces infection (Bastian and Schafer 2001)

HD-5 β-sheet IAV Binding to the virus (Gropp et al. 1999)
HBD-1 α-helical and β-sheet IAV Early expression in macrophages (Smith and Nemerow 

2008; Nguyen et al. 
2010)

HBD-3 α-helical and β-sheet IAV Binds to the viral glycoprotein hemagglutinin (Leikina et al. 2005)
HBD-2 α-helical and β-sheet HAdV Reduces infection (Bastian and Schafer 2001)



Archivum Immunologiae et Therapiae Experimentalis (2021) 69:25	

1 3

Page 7 of 12  25

to residues 18–29 and exhibits antimicrobial activity and 
important anti-inflammatory activity, indeed, alleviates inflam-
mation in colitis models, this suggests that KR-12 is worth 
being considered as a potential therapeutic, nonetheless, the 
mechanism to reduce inflammation has not been elucidated 
(Fabisiak et al. 2021). Similar studies have reported that LL-37 
restored glucocorticoid sensitivity impaired by dsRNA, pos-
sibly by inhibiting the Akt pathway, in addition to Erk1/2 path-
way. These findings suggest LL-37 as a therapeutic agent for 
treating viral infections in inflammatory pulmonary diseases 
(Li et al. 2020).

While LL-37 and its derivatives have shown clear evidence 
to modulate the immune response, other HDPs have similar 
functions and can even act synergically. The HBD-3 has 
recently been associated with anti-inflammation, this defen-
sin can attenuate the production of IL-6, IL-10, GM-CSF, and 
TNF-α response of human myeloid DCs (Pingel et al. 2008). 
Other studies showed that in tuberculosis patients the concen-
tration of cortisol correlates positively with the levels of HBD-
3, which strongly suggests its relation in anti-inflammatory 
processes (Bongiovanni et al. 2020). In the same line, HBD-3 
can polarize macrophages into M2 phenotype contributing to 
an anti-inflammatory environment (Lyu et al. 2017). HBD-3 
also is a potent inhibitor of the accumulation of proinflam-
matory cytokines such as TNF-α and IL-6, both in vivo and 
in vitro; overall, these studies suggest a role of HBD-3 in the 
resolution of inflammation, which is necessary to avoid tissue 
damage by effectors of antimicrobial action and cytokine storm 
(Semple et al. 2010). On the other hand, α-defensin (HNP-1) 
blocked the release of IL-1β from LPS-activated monocytes, 
but not the expression and release of TNF-α (Shi et al. 2007).

In severe COVID-19, there is an exacerbated immune 
response that promotes important tissue damage. Considering 
that the main HDPs antimicrobial mechanisms are through the 
lysis of pathogenic membranes and immunoregulation, these 
peptides can be selectively induced, thus promoting anti-
inflammatory activity while eliminating viral particles, thus 
avoiding tissue damage (Garcia-Fandino and Pineiro 2021). 
Additionally, the α-defensins released by apoptotic neutrophils 
inhibit the biosynthesis of pro-inflammatory cytokines by 
macrophages (Brook et al. 2016). In summary, this evidence 
suggests that HDPs' cooperative action could reduce or control 
the tissue damage induced by excessive inflammation during 
viral infections, such as in COVID-19.

What Do We Have: Clinical Trials 
with Antiviral HDP, Peptoids, and Synthetic 
Peptides

The emerging novel viruses have prompted the research 
for new antiviral therapies, putting into the spotlight HDPs 
because of their antiviral and immunomodulatory features. 

Although thousands of HDPs have been reported, only a few 
of them have reached clinical trials, and even fewer have 
been approved for clinical practice.

Because of the widely documented antiviral activity of 
HDPs, several groups have explored other related options 
such as peptoids, which are peptidomimetics described as 
foldamers consisting of N-alkylated glycine oligomers; 
lactoferrin, which is an antimicrobial protein with known 
antiviral activity for viruses based on DNA and RNA; and 
synthetic peptides, which have proven an excellent type of 
molecule for the mimicry of protein/peptides activity, most 
of them have diverse chemical modifications, which includes 
the incorporation of a large range of non-proteinogenic 
amino acids and the modification of the peptide backbone. 
Apart from extending the chemical and structural diversity 
presented by peptides, such modifications also increase the 
proteolytic stability of the molecules, and the affinity for 
certain binding sites, enhancing their utility for clinical 
applications.

The most representative peptide for clinical use in viral 
infections is Enfuvirtide (T20), which is approved in patients 
with HIV (Poveda et al. 2005). This peptide has 36 amino 
acids with a conserved region called HR2 (C-terminal hep-
tad repeat), which disrupts the HIV-1 molecular machinery 
at the final stage of fusion with the target cell, preventing 
uninfected cells from becoming infected. Enfuvirtide was 
designed to mimic components of the HIV-1 fusion machin-
ery and displace them, is often used for treating patients that 
do not respond to retroviral therapy (Poveda et al. 2005). 
Sifuvirtide has 36 amino acids in length and shares some 
sequence and structure properties with the native CHR pep-
tide of HIV-1 gp41 glycoprotein. In comparison with T-20, 
it has 22 different amino acids residues. It has an increased 
half-life than T-20 and is highly effective against T-20-resist-
ant strains. The use of sifuvirtide is still in phase III clinical 
trials in China (He et al. 2008), interestingly, sifuvirtide-
resistant strains have already been characterized and mecha-
nisms underlying this resistance have been described (Yu 
et al. 2018).

The synthetic peptide derivatives not only have been 
used to control HIV infection but also in opportunistic 
viral infections. Synthetic Ezrin Peptide One (HEP1) ther-
apy reduced the incidence of opportunistic infections. The 
result of clinical trial phases I and II reported that the inci-
dence of viral infection decreased for herpes zoster, vagi-
nal candidiasis, oral candidiasis, and acne vulgaris (Sala-
mov et al. 2007). Another mechanism to alter or enhance 
the properties of the peptide is the use of a combination of 
drugs. The clinical phase III trial of Boceprevir (a linear 
peptidomimetic NS3/4A serine protease inhibitor), with 
peginterferon/ribavirin, shows that the combination was 
effective in adults with chronic hepatitis C who failed 
response with prior peginterferon/ribavirin treatment. The 
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mechanism of action is a NS3/4a protease inhibitor used 
to inhibit viral replication (Vierling et al. 2014). These 
drugs are evidence for the use of synthetic peptides that 
provide a predictive mechanism of action. Similarly, brila-
cidin is peptidomimetic, with non-peptidic scaffolds and 
side chains, which has structural and biological properties 
similar to HDPs, it has been tested in phase II for skin 
acute bacterial infection, ulcerative proctitis, and viral 
infections. Recently, this peptidomimetic has been evalu-
ated in a human lung cell line and Vero cells. These results 
suggest that SARS-CoV-2 inhibition in these cell culture 
models is likely to be a result of the impact of brilacidin 
on viral entry and its disruption of viral integrity (Bakovic 
et al. 2021).

The polypeptide aprotinin from bovine lung is a broad-
range inhibitor of serine proteases that exhibits antimicro-
bial activity against different microorganisms. The safety 
and efficacy of aprotinin were shown in clinical trials 
(Schütz et al. 2020), and now the aprotinin has been exper-
imentally used in Calu-3 human airway epithelial cells 
infected with SARS-CoV2 showing considerable thera-
peutic potential for the treatment of COVID-19 (Bestle 
et  al. 2020). Indeed, aprotinin inhibited SARS-CoV-2 
replication in therapeutically achievable concentrations. 
An analysis of proteomics and translatome data indicated 
that SARS-CoV-2 replication is associated with a down-
regulation of host cell protease inhibitors; thus, aprotinin 
may interfere with SARS-CoV-2-mediated downregulation 
of host cell protease inhibitors during later virus replica-
tion cycles (Bojkova et al. 2020). As an anti-influenzal 
compound, aprotinin used as small-particle aerosol has 
been approved in Russia for local respiratory application 
in mild-to-moderate influenza to provide both an antiviral 
effect and a decrease in systemic pathology and inflam-
mation (Zhirnov et al. 2011). Regardless, the use of apro-
tinin in clinics for coronavirus infections deserves further 
investigation.

The most recent use of an antimicrobial protein from 
animals in a clinical trial is the treatment with lactoferrin 
(Chang et al. 2020). Lactoferrin is a glycoprotein found 
predominantly in milk, several studies have confirmed its 
antiviral activity against several viruses, including SARS-
CoV-2, through the blocking of the viral receptors on the 
host cells thus preventing the entry and replication. Data 
revealed that lactoferrin interacts with heparan sulfate 
proteoglycans and ACE-2 receptors that are reported as 
SARS-CoV-2-binding sites to enter the host cell, suggest-
ing a potential significance of lactoferrin as an antiviral 
against SARS-CoV-2 (Fig. 2). Moreover, the immunoregu-
latory effects of lactoferrin can protect against the cytokine 

storm and thrombotic complications that result from the 
COVID-19 infection (Chang et al. 2020) (Table 2).

Scenarios that Should be Considered

Some authors have highlighted that HDPs are involved in 
the immunopathology of COVID-19, the mechanisms have 
not been deeply studied, however, the researchers hypothe-
size that the massive modification of the altered host mem-
branes by the virus triggers the response of natural HDPs 
by destroying them as they do with the membranes of other 
pathogenic agents. In theory, this model could contribute 
explaining the first cause of death by COVID-19: acute 
respiratory failure due to the self-immune disruption of 
the lung cells; therefore, the reestablishment of lipid com-
position or even the blockage of specific HDPs involved in 
the destruction of host cells could be considered as pos-
sible therapeutic intervention point (Garcia-Fandino and 
Pineiro 2021). The design and use of HDPs and peptide-
derived therapeutics must be focused on those with anti-
inflammatory and specific anti-viral activity. Besides, it 
will be necessary to determine specifically what HDPs 
are involved in the immunopathogenesis of COVID-19 to 
specifically block those detrimental peptides.

Future Perspectives

As previously mentioned, HDPs have a wide variety of 
functions that can influence the onset of the immune sys-
tem, on one hand, promoting inflammatory response and 
on the other hand promoting anti-inflammation (Rivas-
Santiago and Torres-Juarez 2018), which not necessar-
ily means abrogation of direct antiviral activity. Since the 
immunopathology of Coronavirus-related diseases is most 
inflammatory, the use of antimicrobial peptides and their 
derivatives as therapeutics must be deeply evaluated and 
research should be focused on those candidates with mark-
edly anti-inflammatory effects and prominent antiviral 
activity, as described above. There are several candidates 
and many more will emerge using bioinformatic design-
ing choosing or modeling the ideal HDPs. We should not 
forget the lessons learned from this pandemic and we 
should be prepared well in advance, planning appropriate 
preventive measures for the next wave of the outbreak of 
coronavirus in the future; thus, the question should not be 
whether or not there will be another pandemic, the correct 
question is when it will happen, by then, we should have 
a long list of candidates ready to be used.
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Fig. 2   Potential activity of HDPs during coronavirus infection. (1) 
SARS-CoV-2 spike protein binds to ACE-2 receptors expressed 
mainly in epithelial cells. (2) However, the presence of lactoferrin 
and HD-5 can block ACE-2 and inhibits the entry of SARS-CoV-2. 
(3) Once this virus infects the epithelial cells, the expression of HDPs 

is regulated. (4A) The genetic expression of LL-37 increases in 
infected cells and, LL-37 has antiviral direct activity; (4B) whereas 
the expression of defensins is downregulated; however, HBD-2 is a 
cytokine regulator
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