
sensors

Article

Evolving Deep Architecture Generation with Residual
Connections for Image Classification Using Particle
Swarm Optimization

Tom Lawrence 1, Li Zhang 2,*, Kay Rogage 1 and Chee Peng Lim 3

����������
�������

Citation: Lawrence, T.; Zhang, L.;

Rogage, K.; Lim, C.P. Evolving Deep

Architecture Generation with

Residual Connections for Image

Classification Using Particle Swarm

Optimization. Sensors 2021, 21, 7936.

http://doi.org/10.3390/s21237936

Academic Editor: Jenny

Benois-Pineau

Received: 7 November 2021

Accepted: 26 November 2021

Published: 28 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer and Information Sciences, Faculty of Engineering and Environment,
Northumbria University, Newcastle upon Tyne NE1 8ST, UK; tom.lawrence@northumbria.ac.uk (T.L.);
k.rogage@northumbria.ac.uk (K.R.)

2 Department of Computer Science, Royal Holloway, University of London, Egham TW20 0EX, UK
3 Institute for Intelligent Systems Research and Innovation, Deakin University,

Waurn Ponds, VIC 3216, Australia; chee.lim@deakin.edu.au
* Correspondence: li.zhang@rhul.ac.uk

Abstract: Automated deep neural architecture generation has gained increasing attention. How-
ever, exiting studies either optimize important design choices, without taking advantage of modern
strategies such as residual/dense connections, or they optimize residual/dense networks but reduce
search space by eliminating fine-grained network setting choices. To address the aforementioned
weaknesses, we propose a novel particle swarm optimization (PSO)-based deep architecture genera-
tion algorithm, to devise deep networks with residual connections, whilst performing a thorough
search which optimizes important design choices. A PSO variant is proposed which incorporates a
new encoding scheme and a new search mechanism guided by non-uniformly randomly selected
neighboring and global promising solutions for the search of optimal architectures. Specifically,
the proposed encoding scheme is able to describe convolutional neural network architecture con-
figurations with residual connections. Evaluated using benchmark datasets, the proposed model
outperforms existing state-of-the-art methods for architecture generation. Owing to the guidance of
diverse non-uniformly selected neighboring promising solutions in combination with the swarm
leader at fine-grained and global levels, the proposed model produces a rich assortment of resid-
ual architectures with great diversity. Our devised networks show better capabilities in tackling
vanishing gradients with up to 4.34% improvement of mean accuracy in comparison with those of
existing studies.

Keywords: deep architecture generation; deep residual network; particle swarm optimization; image
classification

1. Introduction

Automatically constructing convolutional neural networks (CNNs) is a challenging
task, since handcrafting CNNs requires expert knowledge and significant manual trial-and-
error effort. When designing a deep network architecture, design choices include selecting
a suitable kernel size owing to its importance in adjusting the receptive field [1]. Other
important steps include balancing the depth of the network by adding or removing layers,
as well as increasing or decreasing the number of filters per layer within the network [2].

Popular CNN architectures such as LeNet [3], ResNet [4], Wide ResNet [2] and
DenseNet [5] have been designed by hand to compete on benchmark datasets such as
ImageNet [6], MS COCO [7], CIFAR-10 and CIFAR-100 [8]. Such network architectures
have been hand-crafted by domain experts in their respective fields. These hand-crafted
architectures and concepts introduced are often used as a starting point when designing a
new architecture from scratch, with respect to tasks in new domains. As an example, ref. [9]

Sensors 2021, 21, 7936. https://doi.org/10.3390/s21237936 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21237936
https://doi.org/10.3390/s21237936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237936
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237936?type=check_update&version=1


Sensors 2021, 21, 7936 2 of 23

used a DenseNet-inspired network to perform keyword spotting on smart terminal devices,
while the ResNet architecture was adopted by [10] for medical diagnosis.

The disadvantage of using an existing, state-of-the-art but hand-crafted network as
a starting point is that the network is often overly large for the task at hand. This is
because the design choices made during the construction of the hand-crafted networks
normally aim to maximize accuracy on challenging competition datasets. Such state-
of-the-art deep networks require a substantial amount of training data compared with
those used for training shallower networks [11]. When tackling new and novel image
classification problems, it is usually a challenging task to obtain a sufficient amount of data.
To combat this, methods such as pruning convolutional kernels have been proposed, to
slim down networks by up to 10 times smaller [12]. This is measured as a reduction in
the convolutional kernels of the final network architecture. A weakness of the pruning
approach is that it requires a suitable network as the starting point. On the other hand,
transfer learning is another mechanism used to leverage state-of-the-art CNN architectures
in new application domains. Many existing studies employ transfer learning to fine-tune
a pre-trained network for undertaking a task in a new domain. As an example, a pre-
trained ResNet network was re-trained by [13] for tackling malicious software classification
problems. However, such a transfer learning process relies heavily on existing hand-
crafted architectures. Since these state-of-the-art base networks [2,4,5] are often originally
constructed for large and complex datasets (such as ImageNet [6] and MS COCO [7]) and
the new domain is often a narrower problem (e.g., number plate recognition), the adopted
models could be overly complex. Moreover, in some cases, if a new domain is very different
from the pre-trained domain, the prior knowledge may not be relevant or sufficient enough,
which may constrain model performance.

Owing to the aforementioned weaknesses and challenges, a new research era emerges
which aims to address the research question of how to automatically design deep CNN
architectures for tackling problems in new domains. Such research efforts have resulted
in some impressive developments in the field where evolutionary algorithms are used to
automatically devise CNN models from scratch. As an example, sosCNN [14], psoCNN [15]
and GeNET [16], employed particle swarm optimization (PSO) [17] and generic algorithms
(GAs), respectively, for devising deep networks.

1.1. Research Problems

The weaknesses of current state-of-the-art research on CNN architecture generation
are as follows. On one hand, existing automated methods purely optimize important
design choices such as network depths, kernel sizes and pooling types. Moreover, they do
not take advantage of modern strategies such as skip or dense connections. This leads to
undesirable effects, such as the vanishing gradient problem [4] and underfitting [18] as
depths increase. On the other hand, existing methods which take skip or dense connections
into account, such as [5,19,20], limit the search spaces by fixing the kernel sizes, pooling
types and numbers of blocks. They purely focus on optimizing the optimal number of
layers within a block and model width. This compromises the variety of the generated
networks.

Therefore, a gap in existing knowledge is identified, i.e., research on a new architecture
generation method to automatically construct a deep CNN network architecture, which
not only exploits modern strategies such as skip connections, but also remains capable
of constructing new and novel network topologies with a high degree of diversity. To
address this gap in knowledge, we propose a novel PSO variant by incorporating a new
encoding strategy and a new velocity updating mechanism capable of constructing deep
CNN architectures comprising skip connections. Our approach maintains the ability to
devise diverse CNN architectures by automatically formulating network architectures
composed of different kernel sizes, pooling types, depths and widths.

In addition, most existing search methods, such as sosCNN [14] and psoCNN [15],
adopt the traditional PSO operations by using the personal and global best solutions to



Sensors 2021, 21, 7936 3 of 23

guide the search process. Thus, their search processes are more likely to be trapped in local
optima, owing to the dominance of a single global best leader. Besides that, the architecture
search is a challenging multimodal optimization problem where there are multiple local
optimum solutions present in the search space. We propose a PSO variant with multiple
leaders, i.e., the neighboring best solutions as well as the swarm leader, for deep architecture
generation, to overcome limitations (e.g., local optimum traps) of existing search methods
and address the gap in knowledge. Figure 1 illustrates the system architecture.

In summary, there are two key differences between the proposed PSO model in this
research study and those in the aforementioned closely related studies, e.g., the original
PSO algorithm, psoCNN [15] and sosCNN [14]. The key differences are the following: (1)
our encoding strategy considers skip connections, whereby related studies do not exploit
skip connections; (2) our search strategy is guided by the neighboring and global best
solutions, whereby related studies (e.g., PSO, psoCNN [15] and sosCNN [14]) are guided
by personal and global best solutions.

Figure 1. The proposed system architecture where the identified best residual network architecture
is indicated by the global best solution.

1.2. Contributions

Specifically, the contributions of this research study are as follows:

• A new PSO algorithm, namely resPsoCnn, is proposed for residual deep architecture
generation. The novel aspects of the resPsoCnn model include (1) a new residual
group-based encoding scheme and (2) a new search mechanism guided by neighboring
and global promising solutions for deep architecture search. Specifically, the new
group-based encoding scheme is able to describe network configurations with residual
connections. In the encoding scheme, candidate models are firstly converted into
groups. Each group contains one or more convolutional blocks and an optional pooling
layer. The number of filters in the convolutional layers in each group, which controls
the network width, is also optimized. The kernel sizes of convolutional layers are
individually encoded, giving fine-grained control over the receptive field of each block.
The number of blocks within each group can vary to increase or decrease the model
depth, while different pooling layer types are embedded to control downsampling.

• We propose an optimization strategy that exploits the advantages of skip connec-
tions to avoid the vanishing gradient problem. Such a strategy addresses the weak-
nesses in related studies. As an example, (1) existing studies either perform opti-
mization tasks only on fixed skeleton models (e.g., fixed numbers of blocks with
fixed kernel sizes) that exploit skip connections but restrict model diversity, (2) or



Sensors 2021, 21, 7936 4 of 23

they optimize a range of hyperparameter settings, capable of producing diverse but
shallow networks, without residual connections. Our proposed strategy undertakes
both weaknesses by providing the ability to leverage skip connections in establish-
ing deep network architectures, whilst optimizing a range of network settings to
improve diversity.

• We propose a new velocity updating mechanism that adds randomness to the updat-
ing of both the group and block hyperparameters. Specifically, it employs multiple
elite signals, i.e., the swarm leader and the non-uniformly randomly selected neigh-
boring best solutions, for searching optimal hyperparameters. Such a search process
guided by multiple promising signals escalates social communication and is more
likely to overcome stagnation. The hyperparameter updating procedure at the group
and block levels is conducted by either selecting from the difference between the
current particle and global best solution, or the difference between the current particle
and a neighboring best solution, to increase search diversity. The proposed search
mechanism optimizes the number of groups, network width and depth, kernel sizes
and pooling layer choices to produce a rich assortment of optimal residual deep archi-
tectures. Owing to the guidance of multiple elite signals, our search process achieves
a better balance between exploration and exploitation to overcome weaknesses such
as the local optimum traps of existing search methods led by only single leader. Eval-
uated using a number of benchmark datasets, our devised networks produce superior
performances in respect to those yielded by several state-of-the-art existing methods.

The paper is organized as follows. We present related studies on deep architecture
generation and optimal hyperparameter selection using PSO and other search methods in
Section 2. The proposed PSO variant with new encoding and search strategies for deep
architecture generation is introduced in Section 3. Section 4 provides a comprehensive
evaluation of the proposed model against several state-of-the-art methods using a number
of benchmark datasets. We conclude this research study and identify future directions in
Section 5.

2. Related Studies

In this section, we discuss state-of-the-art related studies on deep architecture genera-
tion and hyperparameter fine-tuning using PSO and its variant methods, as well as other
evolutionary algorithms.

2.1. Deep Architecture Generation Using PSO Methods

The PSO algorithm [17] is a popular swarm intelligence algorithm, which simu-
lates fish schooling and bird flocking. A particle is represented by a position in a multi-
dimensional search space. Each element of the particle represents a particular hyperpa-
rameter to be optimized. The objective of the PSO algorithm is to find the most optimal
position within a search space. The fitness of a particle is measured by an objective function.
The search process aims to minimize this cost function.

A swarm is formed by multiple particles. Over a series of iterations, each particle
attempts to improve its current position by moving to a new location. The direction
and distance of the movement are guided by two elements, i.e., the swarm’s best known
position, referred to as the global best, and the particle’s best known position, referred to as
the personal best. Equation (1) defines the velocity calculation to determine the direction
and scale for position updating for a particular particle during the search process. In
Equation (1), Vt

i and Vt+1
i represent the velocities for the ith particle in the tth and t + 1th

iterations, respectively. Xt
i and Xt+1

i denote the positions of the ith particle, for the tth and
t + 1th iterations, respectively. Pt

i represents the personal best position of particle i for the
tth iteration, while Gt indicates the global best position for the tth iteration. Parameters
c1 and c2 are acceleration coefficients, which are typically assigned between 0.5 and 2.5.
When c1 is higher than c2, the velocity update is weighted more towards a global search
than a local search and vice versa. Parameters r1 and r2 are randomly generated values



Sensors 2021, 21, 7936 5 of 23

between 0 and 1, while w is a weighting factor to determine the effects of the previous
velocity on the generation of new velocity.

Vt+1
i = wVt

i + c1r1(Pt
i − Xt

i ) + c2r2(Gt − Xt
i ) (1)

The new position of particle i in the t + 1th iteration, i.e., Xt+1
i , is produced using

Equation (2), based on the velocity yielded by Equation (1).

Xt+1
i = Xt

i + Vt+1
i (2)

The PSO algorithm has been widely adopted for automatic CNN architecture gen-
eration in related studies, e.g., IPPSO [21], psoCNN [15] and sosCNN [14]. PSO has also
been applied to the optimization of hand-crafted models such as DenseNet [5]. As an ex-
ample, Wang et al. [22] proposed a multi-objective PSO method for DenseNet architecture
generation, which maximized accuracy whilst minimizing the computational cost of the
devised CNN model. Their PSO operation was used for optimizing the number of dense
blocks, layers per block and the growth rate of each block. The architecture search required
a high computational cost, i.e., 3 days with the settings of 8 GPUs and a population size of
20, optimized over 20 iterations. Their optimized DenseNet model was evaluated on the
CIFAR-10 dataset and achieved an accuracy rate of 95.51%, with an improvement of 0.74%
over that of DenseNet-121. However, their work did not optimize other key parameters
such as kernel size and pooling types within each dense block.

Dutta et al. [23] proposed two PSO variants, namely qubit fractional order PSO (Qubit
FO-DPSO) and qutrit fractional order PSO (Qutrit FO-DPSO). Their PSO methods were
used to optimize the wavelength thresholds to minimize signal noise for hyperspectral
image (HSI) segmentation. First of all, improved subspace decomposition algorithm,
principal component analysis (PCA) and a band-selection CNN were used to conduct
discriminative band selection. In addition, their models maintained multiple swarms
simultaneously while using quantum parallelism to reduce computational costs. In the
Qubit configuration, each dimension was initialized randomly with a binary value of
0 or 1, whereas, in the Qutrit configuration, each dimension was initialized randomly
with either 0, 1 or 2. Fractional order (FO) was proposed for velocity calculation. It took
the last three velocities of each particle into account and employed a weighted sum of
these recent velocities for calculating the new one in the next iteration. Each particle was
evaluated using three objective functions, i.e., modified Otsu criterion, Masi entropy and
Tsallis entropy, for thresholding performance measurement. Moreover, a quantum disaster
operation (denoted as D) was proposed in the aforementioned variants to mitigate early
stagnation and increase search diversity. This operator deleted particles and even a whole
swarm when the fitness scores did not improve over 10 consecutive iterations. It also
generated new particles or a new swarm when a particular swarm illustrated enhanced
fitness over generations. Evaluated using benchmark datasets, their models achieved
measurable improvements in terms of the peak signal-to-noise ratios and Dice similarity
scores in comparison with those of other search methods for HSI segmentation.

Fielding and Zhang [19] proposed a PSO-based method for optimizing skeleton block-
based CNN architectures comprising dense connectivity [5]. Their work employed novel
weight inheritance learning mechanisms with the attempt to reduce the computational
costs. Specifically, their work initialized a network containing four dense blocks. These
dense blocks were subsequently optimized using a modified PSO algorithm with cosine
search coefficients. The objective was to discover the optimal number of layers within
each dense block and the growth rate of the overall model. The growth rate controlled
the number of filters within the model, i.e., the model’s width. The weight inheritance
processes were subsequently applied to any CNN architecture devised by the PSO variant.
They employed the layer position and the size of its parameter matrix as the search key for
weight inheritance. Evaluated on the CIFAR-10 dataset, in comparison with related studies
such as [24], their method reduced the computational cost of the architecture search from



Sensors 2021, 21, 7936 6 of 23

1000 to 150 GPU hours and also improved the accuracy rate from 89% to 90.28%. Moreover,
their model did not optimize lower-level features, such as the kernel sizes, pooling types,
or the number of blocks, which could restrict their network diversity.

A PSO variant was proposed by Zhang et al. [25] for optimal hyper-parameter se-
lection for evolving ensemble hybrid network construction pertaining to human action
recognition. Each base network within the ensemble model was composed of a GoogLeNet
in combination with a bidirectional long short-term memory (BLSTM) network. Hyperpa-
rameters, such as the learning and dropout rates and the number of hidden units in the
BLSTM layers, were optimized using their proposed PSO variant. The PSO operation was
guided by hybrid leader signals generated using nonlinear crossover operators, as well as
3D superellipse coefficients, to overcome stagnation. A number of base googLeNet-BLSTM
networks were optimized using their PSO method. The devised base networks were
subsequently used to construct ensemble models. Evaluated using several well-known
human action datasets (e.g., KTH, UCF50 and UCF101), their ensemble networks showed
impressive performance in comparison with those of ensemble models devised by other
PSO variants and existing state-of-the-art methods.

Liu et al. [26] developed two PSO-based methods, i.e., PSO-Net and CPSO-Net, for
cell-based CNN architecture generation with respect to HSI classification. Their encoding
process was used to transform architectures into arrays by embedding information such
as connections and operation types between network nodes. In both methods, PSO was
used to devise optimal CNN architectures. In particular, in CPSO-Net, a SuperNet was
maintained first, which was trained using gradient descent. Each particle subsequently
inherited the network weights from those of this fixed SuperNet. In comparison with PSO-
Net, where each network devised by each particle was trained individually, the SuperNet
in CPSO-Net was trained only once per iteration using the gradients of all particles in
the swarm to accelerate optimal network generation process. Evaluated using biased and
unbiased HSI datasets, their methods obtained improved accuracy rates as compared with
those of existing state-of-the-art studies.

An evolutionary group-based PSO (EGPSO) was proposed by Juang et al. [27] for
optimizing weights in recurrent neural networks (RNNs) with respect to the generation
of forward walking gait of a hexapod robot. Their model incorporated group-based GAs
with PSO, which outperformed other GA and PSO methods for optimizing the walking
speed of a robot. Tan et al. [28] proposed a PSO variant for optimal hyperparameter
selection for a VGG network for melanoma classification. Their PSO variant employed
three subswarms guided by distinctive adaptive nonlinear search coefficients, as well as
sub-dimension-based search for leader enhancement. A wrapper-based feature selection
was also conducted using the PSO algorithm for ensemble model construction pertaining
to lesion classification. Moreover, a PSO method with elliptical search coefficients was
proposed by [29] for hyperparameter fine-tuning of a mask R-CNN for medical image seg-
mentation, while PSO, in combination with random walk strategies and FA operations [30],
was exploited for K-Means clustering centroid enhancement and deep architecture gen-
eration for image segmentation and classification, respectively. PSO-based generative
adversarial networks (GANs) were also proposed by [31] for facial image generation. The
PSO model was used to optimize the parameters of the generator network to improve
training stability. The quality and diversity measurements of generated images were taken
into account in the cost function. Evaluated using the CelebA dataset, the PSO-enhanced
GAN model outperformed the original GAN and other variant methods and overcame the
vanishing gradient problem of the original GAN model.

2.2. Deep Architecture Generation Using Other Search Methods

There are other search methods used for CNN architecture generation. The sosCNN [14]
method was proposed by [14] for deep network generation, based on the search operations
of psoCNN [15]. It employed a symbiotic organisms search (SOS) [32] algorithm for
the search of evolving network architectures, by introducing two new strategies. Firstly,



Sensors 2021, 21, 7936 7 of 23

since the original SOS algorithm excessively eliminated deep networks early in the search
process, a slack gain strategy was proposed for devising architectures with greater depths.
Specifically, the difference between the global best position and the current particle position
was calculated, then a random number was generated for each layer in the network. If
the random number was smaller than 0.5, the difference between the global best and the
current position was selected for particle position updating. Otherwise, the original particle
position was selected. Secondly, a dissimilar mutation strategy was introduced which
strictly limited the difference in mutations. This ensured that, when a block mutation
occurred, the resulting block was not too dissimilar. The authors claimed that such a
process also helped to ensure faster convergence. The work achieved an error rate of 0.3%
on the MNIST dataset. However, both sosCNN and psoCNN [15] do not construct models
comprising residual connections; therefore, they are susceptible to the vanishing gradient
problem [4,33].

In order to better balance the search between exploration and exploitation of the
monarch butterfly optimization (MBO) algorithm [34], a new hybrid variant model, namely,
the MBO-artificial bee colony firefly enhanced (MBO-ABCFE) algorithm, was proposed [35]
for deep architecture generation. The model incorporated MBO with artificial bee colony
(ABC) and firefly algorithm (FA) to increase search diversity and overcome stagnation
of the original MBO algorithm [36]. Specifically, it diversified global exploration by in-
corporating the search mechanisms of ABC [37], along with a control parameter which
adjusted the intensification. The local exploitation was also increased by adopting the
search strategy of the FA [38]. In addition, two new parameters were introduced, i.e.,
an exhaustiveness parameter and a trial parameter. After each iteration, if an individual
butterfly solution did not improve, the trial parameter of the butterfly was increased by one.
Once the trial parameter exceeded the exhaustiveness parameter, a new individual was
randomly initialized. Therefore, the search exploration was further improved by replacing
poor performing individuals stuck in local optima with new solutions. A number of hyper-
parameters were optimized in their work, i.e., the number of convolutional layers, kernel
size, type of activation functions, pooling size, batch size and learning rate. Evaluated
using the MNIST dataset, MBO-ABCFE-devised networks achieved an error rate of 0.34%
with an improvement of 0.02% over MBO-optimized models.

Chen et al. [39] proposed a BASCNN method by applying a recently proposed meta-
heuristic algorithm, i.e., beetle antenna search (BAS) [40], for optimization of CNN hyper-
parameters. The BAS algorithm models food-sensing behaviors of beetles and searches for
optimal solution in the search space using a single search agent. It was used to optimize
initial weights and biases of a LeNet model at the early stage of model training. The
model was evaluated using a brain CT scan dataset containing 200 images, half of which
were taken from patients with intracranial hemorrhage. The BASCNN model achieved an
accuracy rate of 93.93%, outperforming those of existing studies, such as [41,42]. Moreover,
the experiments were limited to optimization of the CNN’s initial weights and biases,
without optimizing the network structures.

A GeNET model was proposed in [16] for CNN architecture generation based on
the GA method. Their work employed an encoding scheme based on a fixed-length
binary string. This fixed-length binary string encoded the inter-connections between CNN
architecture nodes. Each node contained a set of convolutional, batch-normalization and
ReLU layers. Genetic operations such as selection, mutation and crossover mechanisms
were subsequently conducted for architecture search. In particular, the mutation operation
operated with a low probability of flipping a bit within the fixed-length binary string, thus
slightly altering the node connections. The work achieved error rates of 0.34%, 5.39% and
25.12% for the MNIST, CIFAR-10 and CIFAR-100 datasets, respectively.

Architecture generation has also been investigated by combining strategies from
multiple evolutionary techniques simultaneously. As an example, Tirumala [43] proposed
a multi-population competitive and cooperative neuroevolution method, namely, DNN-
COCA, for deep neural network architecture generation. Specifically, their model divided



Sensors 2021, 21, 7936 8 of 23

a population into two sub-populations P1 and P2 and applied a different search strategy in
each sub-population. The sub-population P1 employed a competitive co-evolution search
method, whereas P2 adopted a cooperative search strategy. To maintain search diversity,
the work introduced an interpopulation migration strategy that migrated individuals
between P1 and P2. A table of the best individuals from both populations was maintained
and used to generate offspring solutions. The model achieved an accuracy rate of 98.7% on
the MNIST dataset by evolving a total number of 5–7 layers within a CNN. Moreover, such
constrained settings limit their model performance.

Calisto and Lai-Yuen [44] employed a multi-objective evolutionary algorithm based
on decomposition (MOEA/D) [45] for the automatic construction of an ensemble of 2D
and 3D residual models for medical image segmentation. A 2D CNN model extracted
in-plane intra-slice information, while a 3D CNN model exploited volumetric inter-slice
information. The work employed a multi-objective cost function that minimized the error
rate and the number of model parameters simultaneously. The algorithm optimized the
number of residual blocks, the number of filters of the first residual block, the kernel size
of convolutional layers within each block, the activation function, dropout and learning
rates, for both 2D and 3D models. Evaluated using the prostate segmentation task in
the PROMISE12 Grand Challenge [46], the model achieved an impressive pixel-wise
classification accuracy rate of 89.29%, ranked among the top 10 results for the challenge at
the time of publication. In addition, GA and grey wolf optimizer (GWO) were adopted for
optimal hyper-parameter identification and network topology optimization in the LSTM
fully convolutional network (LSTM-FCN) and convolutional neural network-long short-
term memory (CNN-LSTM) networks by Ortego et al. [47] and Xie et al. [48], respectively,
for time-series prediction, with respect to diverse classification and regression problems.

3. The Proposed PSO-Based Deep Architecture Generation

In this research study, we propose a PSO-based deep architecture generation method,
namely resPsoCnn, to devise deep networks with residual connections. The novel aspects
of the proposed resPsoCnn model include (1) a new residual group-based encoding scheme
and (2) a new search mechanism guided by neighboring and global promising solutions
for deep architecture search. Specifically, the proposed encoding scheme is capable of
representing deep CNN models comprising residual connections. The important settings,
such as the number of groups and residual blocks, the kernel size and number of filters for
each residual block, as well as pooling layer choices for each group, are optimized using
the proposed resPsoCnn algorithm. Moreover, the search process led by the swarm leader
and non-uniformly randomly selected neighboring promising solutions at the fine-grained
and global levels illustrates a better balance between diversification and exploitation. Thus,
it produces a rich assortment of residual architectures with great diversity. We introduce
each key element of resPsoCnn in the following sub-sections.

3.1. Encoding Strategy and Initialization

The proposed encoding strategy stores multi-dimensional swarm position information
for representing CNN model architecture configurations. At the start of the optimization
process, a swarm containing a fixed number of particles is initialized with random particle
positions constrained by predetermined search ranges. The following elements summarize
the CNN architecture settings encoded within the proposed encoding strategy:

• A model contains at least one group. We optimize the number of groups between 1
and gmax.

• A group contains at least one residual block. The number of blocks the model can
contain during initialization is set between 1 and bmax. We optimize the number of
residual blocks in each group.

• All blocks within a group share the same number of channels for compatibility. We
optimize the number of channels used by a group between outmin and outmax.



Sensors 2021, 21, 7936 9 of 23

• A group contains an optional pooling layer, which can be of the following types: max
pooling, average pooling or no pooling. We optimize the pooling type by dividing a
search range between 0 and 1 into three regions and attribute a pooling type to each
region.

• A block contains a stack of convolutions layers, performing the same convolutions,
i.e., the appropriate padding is used to ensure the dimensions of the output match
those of the input volume. The degree of padding depends on the kernel size. The
kernel size of a convolutional layer is optimized on a block-by-block basis between
kmin and kmax. This is necessary, as the kernel size controls the receptive field, which,
in turn, controls the visibility degree of an image with respect to one filter, at one
time [1].

The parameters optimized by the proposed PSO algorithm, including their search
ranges, are summarized in Table 1.

Table 1. The optimized network parameters and their corresponding search ranges. The settings of
the search ranges used in our experiments are provided in Section 4.

Domain Parameter Range

Model Number of groups from 1 to gmax
Group Number of residual blocks from 1 to bmax
Group The number of channels cout for all blocks in a group from outmin to outmax
Convolution Kernel size k from kmin to kmax
Pooling Pooling type ptype from 0 to 1

3.2. Decoding Strategy

The position information encoded within a particle is decoded to construct a valid
CNN model architecture. As an example, a high-level overview of a constructed CNN
model after the decoding process is visualized in Figure 2.

Figure 2. An example decoded network where the model configurations, i.e., the number of groups,
the number of blocks per group and the contents of each group (e.g., the kernel size of each
ResNet block, the number of channels and the pooling type for each group), are embedded in the
encoding process.

Skip connections require that the number of output channels from the previous layer
matches that of the current layer, so that an add operation can be performed. A transition
layer that precedes each group is used to either increase or decrease the number of output
channels. Such a process ensures that the dimension of the input fed into a group matches
the expected dimension of the group. A transition block comprises a 1 × 1 convolution
and an ReLU activation function. A ResNet block comprises two stacked sets of a single
convolutional layer, followed by a batch normalization layer and an ReLU layer. Both the
transition block and the ResNet block are visualized in Figure 3.

In addition, the final group of a model is followed by an adaptive average pooling
layer and a linear layer. The linear layer performs the final image classification with the
number of neurons set as the number of target classes in the dataset.



Sensors 2021, 21, 7936 10 of 23

Figure 3. The structures of a ResNet block (left) and a transition block (right).

3.3. The Optimization Strategy

The search of optimal architectures is conducted by optimizing important hyperpa-
rameters such as the kernel size and model depth. A list of the hyperparameters to be
optimized is provided in Table 1. The optimization process is outlined in the following
steps: In step 1, we calculate the particle differences with respect to the global and neighbor-
ing best solutions, as indicated in Section 3.4. In step 2, we calculate a new velocity based
on the differences between the current particle position and the global and neighboring
best solutions, as indicated in Section 3.5. In step 3, the position updating is performed by
applying the new velocity to the current particle, as indicated in Section 3.6. The fitness of a
new particle is subsequently evaluated using a fitness function, as described in Section 3.7.
The above search process iterates until the termination criterion is fulfilled.

To benefit the discussion in the subsequent sub-sections, we define the following
notations in Table 2. Specifically, they represents particle encoded information, such as the
kernel size k of a particular block b, within the group g of a particle position X.

Table 2. A summary of the notations.

Notation Description

Xi The position X of the ith particle in the swarm
gn The nth group
bm The mth block
k(Xi gnbm) Kernel size for the mth block of the nth group of the ith particle in position X

3.4. Particle Difference Calculation

During the optimization process, the generation of new particle velocity is an impor-
tant step. The new velocity guides the particle movement by considering the differences
between the best known positions, namely, gbest and pbest, and the current individual.
We adopt a velocity update rule for guiding particle search. It requires a mechanism
for calculating the difference between a pair of particles. We propose a new method for
particle difference calculation. At a high level, the difference of X2 with respect to X1 is
calculated as X1 − X2. This means that the resulting position difference could be negative
or positive, based on the guidance of the global or neighboring promising solutions. If
the difference is negative/positive, it means to update the particle with a smaller/larger
network configuration setting than the current one. Moreover, owing to the search range
constraints of hyperparameter settings provided in Section 4.2, it is not possible for an
update to result in an out-of-boundary network configuration in our experiments. We



Sensors 2021, 21, 7936 11 of 23

introduce the proposed particle difference calculation method, as well as the new velocity
and position updating formulae in the following sub-sections.

3.4.1. Particle Difference Calculation between Groups with Respect to the Number of
Channels cout

We calculate the particle difference on a group-by-group basis. A group maintains a
record of the number of output channels cout that each block within the group should use.
Therefore, the difference with respect to cout between particles X1 and X2 is calculated by
subtracting the current setting of cout with respect to particle X2 from that of particle X1 on
a group-by-group basis to return ∆cout for each group.

3.4.2. Particle Difference Calculation between Groups with Respect to the Number
of Blocks

Groups vary with respect to the number of ResNet blocks they contain. We introduce
a strategy to temporarily pad the groups of both particles to the same length by adding
empty blocks to the one with a smaller number of blocks, as shown in Figure 4. The
location of the empty block is used to decide where a block should be added or removed,
as explained in Section 3.5.

Figure 4. Groups from particles X1 and X2 which are temporarily padded to the same length in
preparation for the particle difference calculation.

3.4.3. Particle Difference Calculation with Respect to the Block Kernel Size k

We compute the difference between two blocks with respect to the kernel size k by
calculating ∆k = k(X1gnbm) − k(X2gnbm). Two special cases exist, i.e., (1) if the block from X1
is an empty block as a result of the group padding described in Section 3.4.2, the output is
also empty. Conversely, (2) if the block from X2 is an empty block then the difference for
the mth block is set as ∆k = k(X1gnbm), as shown in Figure 5.



Sensors 2021, 21, 7936 12 of 23

Figure 5. An example particle difference computation for X1−X2.

3.4.4. Particle Difference Calculation with Respect to the Pooling Type ptype

We compute the particle difference between two pooling layers with respect to the
kernel pooling type ptype as follows: We subtract the pooling type from the respective
group of X2 from that of X1, in order to calculate ∆ptype.

3.5. Velocity Calculation

Within a PSO algorithm, the velocity Vi of particle i is calculated by computing
the differences of particle position Xi with respect to the global best solution gbest and
its personal best solution pbest. We propose a novel mechanism of velocity calculation,
with two new features: (1) calculating velocity based on gbest and a randomly selected
neighboring best solution, namely, nbest, and (2) allowing velocity to be calculated based on
the aforementioned encoding scheme. The hypothesis for using nbest instead of pbest within
the proposed velocity calculation is that we intend to increase social communications and
learning between neighboring particles. The adoption of randomly selected neighboring
elite solutions is able to add a degree of randomness and encourage global exploration
before converging toward the swarm leader.

The neighboring best position nbest is a non-uniformly randomly selected particle from
the swarm. We implement random selection using the python numpy [49] function ran-
dom.choice(). The random.choice() function accepts a probability array containing values
between 0 and 1. To compute the probability array, we use the losses of the entire swarm
from the previous iteration losst−1 as the reference. Note that losses closer to 0 indicate
better particle positions and we want to favor such particles with higher probabilities. To
achieve this, we inverse the losses and scale them between 0 and 1 for probability array
construction. A higher probability score for index i indicates a higher chance for particle i
to be selected as nbest.

From the observations of the experiments, the selected neighboring promising solution
in each iteration is more likely to be one of the top solutions in the swarm. Such an operation
not only adds randomness to the guiding signals in the search process, but also ensures
that the swarm is more likely to be guided towards optimal regions.



Sensors 2021, 21, 7936 13 of 23

After determining nbest, we compute the difference between nbest and the current
particle i, i.e., nbest − Xi, as well as the difference between gbest and the particle i, i.e.,
gbest − Xi. Then, we iterate over each block and the pooling layer. For every block, we
generate a random number r between 0 and 1. We compare the random number r against
a threshold α. If r ≤ α, the difference of gbest − Xi is selected, otherwise the difference
of nbest − Xi is adopted, as shown in Figure 6. A similar process is also conducted for
pooling-layer generation.

The above velocity updating operation is conducted in three steps, i.e., (1) a selection
is made for ∆cout for each group, (2) a selection is made for ∆k for each ResNet block within
each group and (3) a selection is made for ∆ptype for each group. The velocity generation
procedure is diversified by introducing randomness into the selection criteria in each step,
as depicted in Equation (3). Owing to the guidance of multiple neighboring and global elite
solutions in velocity updating in block and group levels, the search process is equipped
with better diversity and capabilities in overcoming local optimum traps.

velocitySelectionPerGroupAndBlock =

{
gbest − Xi if r ≤ α

nbest − Xi otherwise
(3)

Figure 6. An example of velocity calculation between the selection of nbest−Xi and gbest−Xi.

3.6. Position Updating

Once the new velocity Vi has been calculated, the position of particle Xt+1
i can be

updated by adding the weighted velocity to the current particle position Xt
i . The weighting

factor β controls the degree at which the new velocity is added to the current position.
Higher values of β result in larger degrees of movement, whereby smaller values of β
encourage a granular search of intermediate positions. We set β = 0.5 in our experiments
to balance between exploration and exploitation. The modified position-updating formula
is provided in Equation (4).



Sensors 2021, 21, 7936 14 of 23

Two special cases exist when applying velocity. (1) If an empty block within velocity
Vi corresponds to a non-empty block in particle position Xi, the block is removed from the
particle position Xi. (2) If a non-empty block within Vi corresponds to an empty block in
particle position Xi, the block from velocity Vi is copied into particle position Xi. In this
way, a positive value of k is ensured based on the definitions of both special cases.

Xt+1
i = βVi + Xt

i (4)

3.7. Fitness Evaluation

Each particle i within a swarm is evaluated by decoding the particle position X to
construct a new CNN model. We trained the new model on a training set using the
Adam optimizer [50] with a learning rate of 0.001 for 1 epoch. Such training settings were
adopted from existing studies, i.e., sosCNN [14] and psoCNN [15], for the purpose of
direct comparison. The average cross-entropy loss during training was used as the fitness
score. The overall objective of the optimization process is to minimize the fitness scores by
improving the particle positions over a number of iterations.

We employed the proposed encoding scheme and search operations guided by multi-
ple elite solutions for optimizing deep architectures with residual connections. A compre-
hensive evaluation was conducted, which is elaborated in detail in the next section.

4. Experimental Studies
4.1. Datasets

We evaluated our proposed model using six well-known benchmark datasets for
direct comparison against closely related studies in similar settings. The adopted datasets
were Rectangles-I, MNIST and four MNIST variant datasets. In comparison with the
MNIST dataset, the four MNIST variant datasets are more challenging owing to the as-
sociated transformations such as rotations, addition of backgrounds, as well as other
distracting factors.

Table 3 provides a summary of the experimental datasets including the official training
and test split sample sizes.

Table 3. A summary of the datasets used in our experiments. All datasets have an input size of 28 × 28 × 1 [51].

Dataset Description Classes Train/Test Samples

MNIST [3,52] Handwritten digits 10 60,000/10,000
MNIST-RD [53,54] Rotated MNIST digits 10 12,000/50,000
MNIST-RB [53,54] MNIST digits with random background noise 10 12,000/50,000
MNIST-BI [53,54] MNIST digits with background images 10 12,000/50,000
MNIST-RD+BI [53,54] Rotated MNIST digits with background images 10 12,000/50,000
Rectangles-I [53,54] Rectangle border shapes with background images 2 12,000/50,000

4.2. Parameter Settings

We adopt the settings shown in Table 4 in our experiments. Specifically, we set the
maximum number of groups gmax to 2 owing to the selected input image sizes (28 × 28)
provided by the datasets. As each group could potentially contain a pooling layer and
each pooling layer halves the output dimension size, adding more groups could negatively
impact performance by reducing the output dimension too aggressively. For datasets
containing larger input sizes, larger values for gmax could be selected.



Sensors 2021, 21, 7936 15 of 23

Table 4. Algorithm settings and the search space in our experiments. We adopt the settings to closely
match those of existing studies [15,51], to ensure a fair comparison.

Name Description Value Used

kmin Minimum kernel size 3
kmax Maximum kernel size 7
outmin Minimum number of channels 16
outmax Maximum number of channels 256
bmax Maximum number of blocks 15
gmax Maximum number of groups 2
α Layer selection boundary threshold 0.5
β Velocity weighting factor 0.5

We selected a pooling layer type of a group based on the current value of ptype, which
ranged between 0 and 1. The pooling operation selected based on the current value of ptype
is explained in Equation (5).

pooling =


NoPooling if ptype ≤ 0.33,
AvePooling if ptype > 0.33 & ptype ≤ 0.66,
MaxPooling otherwise

(5)

4.3. Benchmark Models

To test model efficiency, hand-crafted networks such as LeNet [3] and several deep
architecture generation methods, i.e., IPPSO [21], MBO-ABCFE [35], GeNet [16], DNN-
COCA [43], psoCNN [15] and sosCNN [14], were employed for performance comparison.

IPPSO [21] is a PSO-based method for designing CNN architectures. It employs a test
methodology consisting of 20 particles over 10 iterations. The search process of IPPSO is
constrained to a maximum of 9 convolutional layers with kernel sizes ranging between 1
and 8 and 3 fully connected layers.

MBO-ABCFE [35] is a variant of the MBO algorithm [34], which incorporates the
search mechanisms of ABC [37] and FA [38] to increase exploration and exploitation of
MBO, respectively. The experiment was conducted with a population size of 50, over 50
iterations. Their optimized hyperparameters included the number of convolutional layers
between 1 and 4, kernel size between 2 and 9 and the number of filters as either of the
following: 8, 16, 32, 64, 128, 256, 512 and 1024. Their model also optimized the activation
function type as either ReLU or a linear activation function and batch size as 25, 50, 100
or 200.

GeNet [16] is a GA-based approach for deep network generation. GeNet adopts a
block-based architecture design with a fixed kernel size and a fixed number of filters per
block. The model adopts a search strategy that optimizes the connections between network
blocks, forming nonlinear block connection patterns. The model was evaluated using the
MNIST dataset and achieved an error rate of 0.34%, with a population size of 20 individuals
over 50 iterations.

DNN-COCA [43] employs a multi-population strategy which adopts competitive and
cooperative neuroevolution methods for the search of optimal architectures. The model
was evaluated using the MNIST dataset. It generated CNNs of depths between 5 and 7
layers and achieved an accuracy rate of 98.7%.

psoCNN [15] is another PSO-based deep architecture generation method. It introduces
a flexible encoding mechanism which describes a CNN model as an array. Each element
within the array denotes a type of layer. The possible layer types comprise convolutions
layers with kernel sizes between 3 × 3 and 7 × 7 inclusive and a maximum of 256 channels,
as well as pooling layers and fully connected layers. Based on a selection criterion, the
position of a particle within a swarm size of 20 is optimized over 10 iterations on a layer-



Sensors 2021, 21, 7936 16 of 23

by-layer basis. The new layer type and its settings are determined by choosing either from
the global or personal best solution.

Finally, sosCNN [14] is an SOS [32]-based deep architecture generation method. It
uses a swarm of 20 individuals, optimized over 10 iterations. The hyperparameters selected
for optimization are the layer types, i.e., convolution layers with kernel sizes between 3 × 3
and 7 × 7 and up to 256 filters, pooling layers or fully connected layers. The maximum
number of layers is limited to a total of 20.

4.4. Results
4.4.1. Performance Comparison with Existing Studies

We employed the following settings in our experimental studies: a population of 20
and a maximum number of iterations of 10—as used in existing studies, e.g., IPPSO [21],
psoCNN [15] and sosCNN [14]. During the search stage, we train each devised network
with 1 epoch. The best model identified at the end of the search phase was trained for
100 epochs. A set of 10 trials was conducted.

In Table 5, we present our results against those of the aforementioned benchmark
models, i.e., hand-crafted models LeNet-1, LeNet-4 and LeNet-5 [3], as well as evolutionary
methods, i.e., IPPSO [21], MBO-ABCFE [35], GeNet [16], DNN-COCA [43], psoCNN [15]
and sosCNN [14]. All reported results pertaining to the benchmark models are taken from
their respective publications, to ensure a fair comparison.

In the last two rows of Table 5, we present the best and mean classification error rates
over 10 runs achieved by the proposed model, resPsoCnn. The remaining rows are the best
and mean error rates (where available) reported by the compared methods in their original
studies. The best results are highlighted in bold for a given dataset.

Table 5. Experimental results of the proposed model, resPsoCnn and those of the compared methods extracted from their
original studies. The best results are highlighted in bold for a given dataset.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles-I

Hand-crafted architectures

LeNet-1 [3] 1.70% 19.3% 7.50% 9.80% 40.06% 16.92%

LeNet-4 [3] 1.10% 11.79% 6.18% 8.96% 33.83% 16.09%

LeNet-5 [3] 0.95% 11.10% 5.99% 8.70% 34.64% 12.48%

Evolutionary algorithms for architecture generation

IPPSO (best) [21] 1.13% - - - 33% -

IPPSO (mean) [21] 1.21% - - - 34.50% -

MBO-ABCFE (best) [35] 0.34% - - - - -

GeNET (best) [16] 0.34% - - - - -

DNN-COCA (mean) [43] 1.30% - - - - -

psoCNN (best) [15] 0.32% 3.58% 1.79% 1.90% 14.28% 2.22%

psoCNN (mean) [15] 0.44% 6.42% 2.53% 2.40% 20.98% 3.94%

sosCNN (best) [14] 0.30% 3.01% 1.49% 1.68% 10.65% 1.57%

sosCNN (mean) [14] 0.40% 3.78% 1.89% 1.98% 13.61% 2.37%

resPsoCnn (best) 0.31% 2.67% 1.70% 1.74% 8.76% 1.19%

resPsoCnn (mean) 0.33% 3.02% 1.76% 1.90% 9.27% 1.47%

As indicated by the reduction in the error rates reported across all the benchmark
datasets, in comparison with the baseline methods, the proposed model showed better
performances in most test cases. In addition, sosCNN was the best performing compared
method across all datasets. In Table 6, we compare the error rates of resPsoCnn against
those of sosCNN [14], to clearly indicate performance improvement.



Sensors 2021, 21, 7936 17 of 23

Table 6. The best and mean error rates over 10 runs for the proposed method, resPsoCnn and the best baseline method,
sosCNN [14], where a (−)/(+) symbol indicates that resPsoCnn performed better/worse than sosCNN.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles-I

resPsoCnn (best) 0.31% 2.67% 1.70% 1.74% 8.76% 1.19%

resPsoCnn (mean) 0.33% 3.02% 1.76% 1.90% 9.27% 1.47%

sosCNN (best) [14] 0.30% 3.01% 1.49% 1.68% 10.65% 1.57%

sosCNN (mean) [14] 0.40% 3.78% 1.89% 1.98% 13.61% 2.37%

error difference (best) 0.01%(+) −0.34%(−) 0.21%(+) 0.06%(+) −1.89%(−) −0.38%(−)

error difference (mean) −0.07%(−) −0.76%(−) −0.13%(−) −0.08%(−) −4.34%(−) −0.90%(−)

MNIST represents a relatively simple handwritten digit classification problem with
a small margin available for improvement. For MNIST, as indicated in Table 6, sosCNN
reported a mean error rate of 0.40%. In comparison, our model, resPsoCnn, achieved the
lowest mean error rate of 0.33%, with an improvement of 0.07% over sosCNN.

For the MNIST-RD dataset, sosCNN obtained a mean error rate of 3.78% and the top-1
error rate of 3.01%. resPsoCnn showed a mean error rate of 3.02% and a top-1 error rate of
2.67%, with improvements of 0.76% and 0.34% over sosCNN, respectively.

For the MNIST-RB dataset, sosCNN achieved a mean error rate of 1.89%. resPsoCnn
obtained a mean error rate of 1.76%, with an improvement of 0.13% over sosCNN.

resPsoCnn achieved a mean error rate of 1.90% with respect to the MNIST-BI dataset,
with an improvement of 0.08% over the mean error rate of 1.98% obtained by sosCNN.

The MNIST-RD+BI dataset depicted a more challenging classification problem due to
the composition of rotated MNIST digits and background images. For this dataset, sosCNN
obtained a mean error rate of 13.61% and a top-1 error rate of 10.65%. resPsoCnn showed a
mean error rate of 9.27% and a top-1 error rate of 8.76%, with improvements of 4.34% and
1.89% over sosCNN, respectively.

For the Rectangles-I dataset, sosCNN reported a mean error rate of 2.37% and a top-1
error rate of 1.57%. resPsoCnn depicted a mean error rate of 1.47% and a top-1 error rate of
1.19%, with improvements of 0.38% and 0.90% over sosCNN, respectively.

4.4.2. Evaluation of the Proposed Encoding and Search Strategies

To further demonstrate the contributions to the overall results gained from the pro-
posed encoding scheme and multiple leader-guided search strategy, we performed addi-
tional experiments to isolate the two proposals.

As mentioned earlier, we refer to our overall model as resPsoCnn. In addition, we
denote the version using our proposed encoding strategy isolated from the proposed search
strategy as resPsoCnn-PB-GB. Moreover, resPsoCnn-PB-GB uses the original PSO operation
based on the personal and global best solutions to guide the search process. The purpose of
providing two sets of results is to demonstrate the contribution of each strategy in isolation
from the other.

In Table 7, rows 1 and 2 indicate the top-1 and mean error rates of the best per-
forming compared model, sosCNN. Rows 3 and 4 show the results of resPsoCnn-PB-GB,
where our encoding strategy in combination with the original PSO operation was used for
architecture search.

Rows 5 and 6 indicate the performance of the overall proposed model, resPsoCnn,
where both proposed encoding and search strategies are combined. Specifically, the ar-
chitecture search in resPsoCnn is led by the swarm leader and a non-uniformly selected
neighboring best solution.

For the MNIST dataset, the mean and top-1 error rates of sosCNN were 0.40% and
0.30%, respectively. resPsoCnn-PB-GB, with our encoding strategy alone, obtained identical
results in terms of the mean and top-1 error rates. When both proposed strategies were
combined, resPsoCnn achieved a mean error rate of 0.33%, with an improvement of 0.07%
over sosCNN.



Sensors 2021, 21, 7936 18 of 23

Table 7. Evaluation results of resPsoCnn (the proposed encoding scheme in combination with the proposed search strategy),
resPsoCnn-PB-GB (the proposed encoding scheme in combination with the original PSO operation) and sosCNN.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles-I

sosCNN (best) [14] 0.30% 3.01% 1.49% 1.68% 10.65% 1.57%
sosCNN (mean) [14] 0.40% 3.78% 1.89% 1.98% 13.61% 2.37%
resPsoCnn-PB-GB (best) 0.30% 2.84% 1.51% 1.79% 9.20% 0.89%
resPsoCnn-PB-GB (mean) 0.40% 3.23% 1.76% 2.02% 9.74% 1.66%
resPsoCnn (best) 0.31%(+) 2.67%(−) 1.70%(+) 1.74%(+) 8.76%(−) 1.19%(+)
resPsoCnn (mean) 0.33%(−) 3.02%(−) 1.76%(−) 1.90%(−) 9.27%(−) 1.47%(−)

For the MNIST-RD dataset, resPsoCnn-PB-GB achieved a mean error rate of 3.23%
and a top-1 error rate of 2.84%, with improvements of 0.55% and 0.17% over those of
sosCNN, respectively. Furthermore, when the proposed encoding and search strategies
were combined, resPsoCnn illustrated more significant improvements, of 0.76% and 0.34%,
in terms of the mean and top-1 error rates, respectively, over sosCNN.

With respect to the MNIST-RB dataset, the mean error rate reported by sosCNN is
1.89%. The mean error rates of resPsoCnn-PB-GB and resPsoCnn were both 1.76%, i.e., an
improvement of 0.13% in respect to sosCNN. Furthermore, resPsoCnn-PB-GB performed
better than resPsoCnn with respect to the top-1 error rate, with an error difference of 0.19%
between the two models.

For the MNIST-BI dataset, the mean error rate reported by sosCNN is 1.98%. The
mean error rate of resPsoCnn-PB-GB was 2.02%. When combining both proposed strategies,
the mean error rate of resPsoCnn increased to 1.90%, with an improvement of 0.08% over
sosCNN. The best top-1 error rate, 1.68%, was achieved by sosCNN, whereas resPsoCnn
achieved a top-1 error rate of 1.74%.

For the MNIST-RD+BI dataset, the mean and the top-1 error rates of resPsoCnn-PB-GB
were 9.74% and 9.20%, with improvements of 3.87% and 1.45% over sosCNN, respectively.
Furthermore, the mean and the top-1 error rates of resPsoCnn were 9.27% and 8.76%, with
improvements of 4.34% and 1.89% over sosCNN, respectively.

With respect to the Rectangles-I dataset, resPsoCnn-PB-GB achieved the lowest top-1
error rate of 0.89%, with an improvement of 0.68% over sosCNN. resPsoCnn achieved the
lowest mean error rate of 1.47%, with an improvement of 0.9% over sosCNN.

In summary, resPsoCnn-PB-GB, with the proposed encoding strategy, only illustrated
performance enhancement over sosCNN for the MNIST-RD, MNIST-RB, MNIST-RD+BI
and Rectangles-I datasets. resPsoCnn, combining both the proposed encoding and search
strategies, resulted in a further improvement of performance for all the six datasets. More-
over, since resPsoCnn with the proposed search mechanism outperformed resPsoCnn-PB-
GB with the original PSO operation, the results further indicate the effectiveness of the
proposed movement strategy.

4.5. Theoretical Justification

In this research study, firstly, we propose a new encoding scheme capable of rep-
resenting deep CNN architectures comprising residual blocks. Secondly, we propose a
new search strategy that updates the particle position based on the swarm leader and a
non-uniformly selected neighboring solution capable of overcoming stagnation.

In Figure 7, we compare the depths of the best networks produced by resPsoCnn-PB-
GB and resPsoCnn against those of the benchmark models of IPPSO, psoCNN and sosCNN.
The experimental results indicate that resPsoCnn-PB-GB and resPsoCnn are capable of
producing deeper network architectures, as indicated by greater network depths across
all datasets, owing to the introduction of skip connections. On the contrary, the compared
models tend to produce shallower networks, i.e., their devised networks are limited in
terms of the maximum depths due to vanishing gradients. Specifically, the vanishing
gradient problem impacts a model’s ability to learn. In such a situation, backpropagation is
unable to adjust weights as the gradients become 0; therefore, learning stops. Skip connec-
tions minimize the vanishing gradient problem; therefore, they allow resPsoCnn-PB-GB



Sensors 2021, 21, 7936 19 of 23

and resPsoCnn to form deeper networks. Moreover, the empirical results in Tables 5 and 7
indicate the advantage of constructing deeper models pertaining to performance enhance-
ment. This is ascertained by the reduction in the mean error rates across all datasets for
both resPsoCnn-PB-GB and resPsoCnn in respect to the compared methods.

Figure 7. A comparison of model depths between the networks devised by the benchmark models
and our methods, resPsoCnn-PB-GB and resPsoCnn, across all datasets.

Furthermore, the results in Table 7 indicate that resPsoCnn outperformed resPsoCnn-
PB-GB in terms of the mean error rates across all datasets. This confirms the benefits of
combining the proposed encoding scheme and search strategy based on the neighbor-
ing and global best solutions. The empirical results indicate that the proposed search
mechanism improves search diversity and prevents the search from being trapped in local
optima. This is due to the randomness introduced by the non-uniform neighboring solution
selection mechanism explained in Section 3.5.

Table 8 illustrates the structures of the best models generated by resPsoCnn-PB-GB,
while Table 9 presents the topologies of the best models devised by resPsoCnn. TB indicates
a transitional block, while RB indicates a residual block, as shown in Figure 3. FC denotes
the final fully connected layer (i.e., the linear layer) of the model, as indicated in Figure 2.
The networks constructed by resPsoCnn are more diversified in the selected pooling
layers. As indicated in Table 8, all pooling types selected by resPsoCnn-PB-GB are average
pooling with the exception of MNIST-RD, which selects no pooling for the first group. In
contrast, as illustrated in Table 9, resPsoCnn selects max-pooling in the second groups for
MNIST-RB and MNIST-BI and no pooling for any groups for Rectangles-I. This indicates
that resPsoCnn has better search diversity by selecting from the global and neighboring



Sensors 2021, 21, 7936 20 of 23

best solutions with respect to block and group configuration generation. It shows better
capabilities in escaping from local optimum traps in relation to the pooling layer selection.
Moreover, the improvement in search exploration has, in turn, resulted in the reduction in
error rates yielded by resPsoCnn in comparison with resPsoCnn-PB-GB, as indicated in
Table 7.

Table 8. The identified best models for all benchmark datasets using resPsoCnn-PB-GB. TB indicates a transitional block
which contains a single 1 × 1 convolutional layer and RB indicates a ResNet block which contains two convolutions, as
indicated in Figure 3. FC indicates a fully connected layer.

Dataset Structure

MNIST [3,52] TB(cin = 1 cout = 177) + RB(177 × 4 × 4) + RB(177 × 4 × 4) + RB(177 × 6 × 6) + AveragePool + TB(cin = 177 cout = 175) + RB(175
× 6 × 6) + RB(175 × 6 × 6) + RB(175 × 5 × 5) + RB(175 × 3 × 3) + AveragePool + FC

MNIST-RD [53,54]
TB(cin = 1 cout = 161) + RB(161 × 5 × 5) + RB(161 × 7 × 7) + RB(161 × 6 × 6) + RB(161 × 6 × 6) + RB(161 × 4 × 4) + RB(161 ×
5 × 5) + RB(161 × 7 × 7) + TB(cin = 161 cout = 115) + RB(115 × 5 × 5) + RB(115 × 7 × 7) + RB(115 × 5 × 5) + RB(115 × 6 × 6) +
RB(115 × 3 × 3) + RB(115 × 7 × 7) + RB(115 × 4 × 4) + AveragePool + FC

MNIST-RB [53,54] TB(cin = 1 cout = 153) + RB(153 × 4 × 4) + RB(153 × 6 × 6) + + RB(153 × 4 × 4) + RB(153 × 3 × 3) AveragePool + TB(cin = 153
cout = 183) + RB(183 × 4 × 4) + RB(183 × 6 × 6) + RB(183 × 7 × 7) + AveragePool + FC

MNIST-BI [53,54]
TB(cin = 1 cout = 136) + RB(136 × 4 × 4) + RB(136 × 3 × 3) + RB(136 × 5 × 5) + RB(136 × 3 × 3) + AveragePool + TB(cin = 136
cout = 136) + RB(136 × 6 × 6) + RB(136 × 5 × 5) + RB(136 × 5 × 5) + RB(136 × 3 × 3) + RB(136 × 3 × 3) + RB(136 × 3 × 3) +
AveragePool + FC

MNIST-RD+BI [53,54] TB(cin = 1 cout = 150) + RB(231 × 5 × 5) + RB(231 × 5 × 5) + RB(231 × 7 × 7) + RB(231 × 3 × 3) + AveragePool + TB(cin = 150
cout = 98) + RB(120 × 4 × 4) + RB(120 × 6 × 6) + RB(120 × 6 × 6) + RB(120 × 5 × 5) + AveragePool + FC

RECTANGLES-I [53,54] TB(cin = 1 cout = 195) + RB(195 × 3 × 3) + RB(195 × 6 × 6) + RB(195 × 3 × 3) + AveragePool + TB(cin = 195 cout = 85) + RB(85 ×
7 × 7) + RB(85 × 5 × 5) + RB(85 × 3 × 3) + AveragePool + FC

Table 9. The identified best models for all benchmark datasets using resPsoCnn. TB indicates a transitional block which
contains a single 1 × 1 convolutional layer and RB indicates a ResNet block which contains two convolutions, as indicated
in Figure 3. FC indicates a fully connected layer.

Dataset Structure

MNIST [3,52]
TB(cin = 1 cout = 176) + RB(176 × 4 × 4) + RB(176 × 5 × 5) + RB(176 × 5 × 5) + RB(176 × 4 × 4) + RB(176 × 5 × 5) + RB(176
× 3 × 3) + AveragePool + TB(cin = 176 cout = 198) + RB(198 × 5 × 5) + RB(198 × 6 × 6) + RB(198 × 4 × 4) + RB(198 × 4 × 4) +
AveragePool + FC

MNIST-RD [53,54]
TB(cin = 1 cout = 184) + RB(184 × 4 × 4) + RB(184 × 4 × 4) + RB(184 × 5 × 5) + RB(184 × 4 × 4) + RB(184 × 3 × 3) + RB(184
× 3 × 3) + AveragePool + TB(cin = 184 cout = 146) + RB(146 × 4 × 4) + RB(146 × 4 × 4) + RB(146 × 5 × 5) + RB(146 × 3 × 3) +
AveragePool + FC

MNIST-RB [53,54] TB(cin = 1 cout = 216) + RB(216 × 5 × 5) + RB(216 × 6 × 6) + AveragePool + TB(cin = 216 cout = 158) + RB(158 × 7 × 7) + RB(158
× 4 × 4) + Ma × Pool + FC

MNIST-BI [53,54]
TB(cin = 1 cout = 188) + RB(188 × 4 × 4) + RB(188 × 5 × 5) + RB(188 × 5 × 5) + RB(188 × 4 × 4) + RB(188 × 4 × 4) + RB(188 × 3
× 3) + RB(188 × 3 × 3) + AveragePool + TB(cin = 188 cout = 177) + RB(177 × 5 × 5) + RB(177 × 3 × 3) + RB(177 × 3 × 3) + RB(177
× 3 × 3) + Ma × Pool + FC

MNIST-RD+BI [53,54]
TB(cin = 1 cout = 231) + RB(231 × 4 × 4) + RB(231 × 5 × 5) + RB(231 × 5 × 5) + RB(231 × 4 × 4) + RB(231 × 3 × 3) + RB(231 × 4
× 4) + AveragePool + TB(cin = 231 cout = 120) + RB(120 × 5 × 5) + RB(120 × 5 × 5) + RB(120 × 3 × 3) + RB(120 × 4 × 4) + RB(120
× 4 × 4) + RB(120 × 3 × 3) + RB(120 × 3 × 3) + AveragePool + FC

RECTANGLES-I [53,54]
TB(cin = 1 cout = 71) + RB(71 × 4 × 4) + RB(71 × 3 × 3) + RB(71 × 7 × 7) + RB(71 × 6 × 6) + RB(71 × 6 × 6) + RB(71 × 6 × 6) +
TB(cin = 71 cout = 21) + RB(21 × 5 × 5) + RB(21 × 4 × 4) + RB(21 × 6 × 6) + RB(21 × 6 × 6) + RB(21 × 7 × 7) + RB(21 × 4 × 4) +
FC

5. Conclusions

In this research study, we propose an automatic approach for optimizing architectures
of CNNs. We make attempts to overcome two weaknesses in the existing studies. Firstly,
existing CNN architecture generation techniques do not consider skip connections. The
importance of skip connections is that they help overcome vanishing gradient problems.
Without skip connections, the networks devised by existing studies are limited in terms of
model depths. Secondly, existing studies conduct optimization of residual networks but
reduce search space by eliminating fine-grained network setting choices. Specifically, they
purely focus on optimizing the model depth and width, while using fixed kernel sizes and
pooling types. This may limit the diversity of the generated networks. In addition, existing
studies are more inclined to adopt a search process guided by the original PSO operation,
making them vulnerable to local optimum traps.



Sensors 2021, 21, 7936 21 of 23

Therefore, to address the above drawbacks, we propose (1) a novel residual group-
based encoding strategy capable of representing network configurations with residual
connections to better tackle vanishing gradient problems and (2) a search mechanism
guided by neighboring and global best solutions to escalate social communication to avoid
stagnation.

With respect to the proposed residual group-based encoding strategy, Figure 7 indi-
cates that our models are capable of generating deeper architectures than those yielded
by related studies, such as IPPSO, psoCNN and sosCNN, all of which do not exploit
residual connections. In addition, our devised networks show better capabilities in tackling
vanishing gradients owing to the adoption of skip connections. As an example, resPsoCnn-
PB-GB, with the proposed encoding strategy, only showed performance improvement
over sosCNN for the MNIST-RD, MNIST-RB, MNIST-RD+BI and Rectangles-I datasets, as
indicated in Table 7.

With respect to the proposed movement strategy, the empirical results in Table 5
indicate that our search process guided by the neighboring and global best solutions
resulted in more accurate networks, in comparison with those yielded by the related studies
(e.g., IPPSO, psoCNN and sosCNN), across all six datasets. In addition, as illustrated
in Table 7, since resPsoCnn, with the proposed movement mechanism, outperformed
resPsoCnn-PB-GB with the original PSO operation in terms of mean accuracy rates, the
results further indicate the effectiveness of the proposed search strategy.

Furthermore, when combining our movement and encoding strategies, we observed a
further performance improvement in comparison with those of related studies, as shown
in Table 5. In particular, resPsoCnn achieved the most significant improvement of 4.43%
over the best baseline method, sosCNN, on the MNIST-RD+BI dataset.

In future work, we will explore adding dense connections and optimizing the connec-
tion types, i.e., selecting between skip and dense connections, for the generation of new
model structures. Moreover, in order to ensure a fair comparison with related studies, we
do not apply data augmentation techniques in this research work. For future experiments,
we will explore data augmentation as it is a useful technique for avoiding the overfitting of
deeper networks and it provides better generalization capabilities to enhance performance.
Besides that, we aim to employ an adaptive weighting factor, β, to adaptively control
the strength of new velocity on position updating. An exponential moving average of
the most recent velocities will also be considered for new velocity generation to smooth
the particle movement. Finally, we aim to evaluate the proposed model for generating
deep architectures with respect to other complex computer vision tasks [55], such as object
detection, semantic segmentation, video description and visual question generation.

Author Contributions: Conceptualization, T.L. and L.Z.; methodology, T.L. and L.Z.; software, T.L.;
validation, T.L.; formal analysis, T.L., L.Z. and C.P.L.; investigation, T.L. and L.Z.; resources, T.L.,
L.Z. and K.R.; data curation, T.L., L.Z. and C.P.L.; writing—original draft preparation, T.L. and L.Z.;
writing—review and editing, L.Z., K.R. and C.P.L.; visualization, T.L.; supervision, L.Z., K.R. and
C.P.L.; project administration, L.Z. and K.R.; funding acquisition, L.Z., T.L. and K.R. All authors have
read and agreed to the submitted version of the manuscript.

Funding: This work was supported by the European Regional Development Fund—Industrial
Intensive Innovation Programme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data sets employed in this study are publicly available at the
following sites, http://yann.lecun.com/exdb/mnist/ and http://www.iro.umontreal.ca/~lisa/
icml2007data/.

Acknowledgments: We appreciate the support and resources provided by Northumbria University
and Ocucon Ltd. (Newcastle upon Tyne, UK).

Conflicts of Interest: The authors declare no conflict of interest.

http://yann.lecun.com/exdb/mnist/
http://www.iro.umontreal.ca/~lisa/icml2007data/
http://www.iro.umontreal.ca/~lisa/icml2007data/


Sensors 2021, 21, 7936 22 of 23

References
1. Luo, W.; Li, Y.; Urtasun, R.; Zemel, R. Understanding the effective receptive field in deep convolutional neural networks. In

Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December
2016; pp. 4905–4913.

2. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. In British Machine Vision Conference (BMVC); BMVA Press: Durham, UK,
2016; Volume 87, pp. 1–12. [CrossRef]

3. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

5. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

6. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]

7. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755.

8. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf (accessed on 15 November 2021).

9. Zeng, M.; Xiao, N. Effective Combination of DenseNet and BiLSTM for Keyword Spotting. IEEE Access 2019, 7, 10767–10775.
[CrossRef]

10. Ayyachamy, S.; Alex, V.; Khened, M.; Krishnamurthi, G. Medical image retrieval using Resnet-18. In Medical Imaging 2019:
Imaging Informatics for Healthcare, Research, and Applications; Chen, P.H., Bak, P.R., Eds.; International Society for Optics and
Photonics, SPIE: Washington, DC, USA, 2019; Volume 10954, pp. 233–241.

11. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
12. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning convolutional neural networks for resource efficient inference.

arXiv 2016, arXiv:1611.06440.
13. Rezende, E.; Ruppert, G.; Carvalho, T.; Ramos, F.; De Geus, P. Malicious software classification using transfer learning of resnet-50

deep neural network. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 1011–1014.

14. Miao, F.; Yao, L.; Zhao, X. Evolving convolutional neural networks by symbiotic organisms search algorithm for image
classification. Appl. Soft Comput. 2021, 109, 107537. [CrossRef]

15. Junior, F.E.F.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol.
Comput. 2019, 49, 62–74. [CrossRef]

16. Xie, L.; Yuille, A. Genetic CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 1388–1397. [CrossRef]

17. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

18. Caruana, R.; Lawrence, S.; Giles, C.L. Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. In
Proceedings of the 13th International Conference on Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2001;
pp. 402–408.

19. Fielding, B.; Zhang, L. Evolving Deep DenseBlock Architecture Ensembles for Image Classification. Electronics 2020, 9, 1880.
[CrossRef]

20. Wang, B.; Xue, B.; Zhang, M. Particle Swarm optimisation for Evolving Deep Neural Networks for Image Classification by
Evolving and Stacking Transferable Blocks. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC),
Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]

21. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. Evolving deep convolutional neural networks by variable-length particle swarm optimization
for image classification. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13
July 2018; pp. 1–8.

22. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. Evolving Deep Neural Networks by Multi-Objective Particle Swarm Optimization for Image
Classification. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’19, Prague, Czech Republic,
13–17 July 2019; pp. 490–498. [CrossRef]

23. Dutta, T.; Dey, S.; Bhattacharyya, S.; Mukhopadhyay, S. Quantum fractional order darwinian particle swarm optimization for
hyperspectral multi-level image thresholding. Appl. Soft Comput. 2021, 2021, 107976. [CrossRef]

24. Szwarcman, D.; Civitarese, D.; Vellasco, M. Quantum-Inspired Neural Architecture Search. In Proceedings of the 2019
International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [CrossRef]

25. Zhang, L.; Lim, C.P.; Yu, Y. Intelligent human action recognition using an ensemble model of evolving deep networks with
swarm-based optimization. Knowl.-Based Syst. 2021, 220, 106918. [CrossRef]

26. Liu, X.; Zhang, C.; Cai, Z.; Yang, J.; Zhou, Z.; Gong, X. Continuous Particle Swarm Optimization-Based Deep Learning
Architecture Search for Hyperspectral Image Classification. Remote Sens. 2021, 13, 1082. [CrossRef]

http://dx.doi.org/10.5244/C.30.87
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ACCESS.2019.2891838
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1016/j.asoc.2021.107537
http://dx.doi.org/10.1016/j.swevo.2019.05.010
http://dx.doi.org/10.1109/ICCV.2017.154
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.3390/electronics9111880
http://dx.doi.org/10.1109/CEC48606.2020.9185541
http://dx.doi.org/10.1145/3321707.3321735
http://dx.doi.org/10.1016/j.asoc.2021.107976
http://dx.doi.org/10.1109/IJCNN.2019.8852453
http://dx.doi.org/10.1016/j.knosys.2021.106918
http://dx.doi.org/10.3390/rs13061082


Sensors 2021, 21, 7936 23 of 23

27. Juang, C.F.; Chang, Y.C.; Chung, I.F. Optimization of recurrent neural networks using evolutionary group-based particle swarm
optimization for hexapod robot gait generation. Hybrid Metaheuristics Res. Appl. 2018, 84, 227.

28. Tan, T.Y.; Zhang, L.; Lim, C.P. Intelligent skin cancer diagnosis using improved particle swarm optimization and deep learning
models. Appl. Soft Comput. 2019, 84, 105725. [CrossRef]

29. Zhang, L.; Lim, C.P. Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble
models. Appl. Soft Comput. 2020, 92, 106328. [CrossRef]

30. Tan, T.Y.; Zhang, L.; Lim, C.P. Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networks.
Knowl.-Based Syst. 2020, 187, 104807. [CrossRef]

31. Zhang, L.; Zhao, L. High-quality face image generation using particle swarm optimization-based generative adversarial networks.
Future Gener. Comput. Syst. 2021, 122, 98–104. [CrossRef]

32. Cheng, M.Y.; Prayogo, D. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Comput. Struct. 2014,
139, 98–112. [CrossRef]

33. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.
34. Wang, G.G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [CrossRef]
35. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Monarch Butterfly Optimization Based Convolutional Neural Network

Design. Mathematics 2020, 8, 936. [CrossRef]
36. Strumberger, I.; Tuba, E.; Bacanin, N.; Beko, M.; Tuba, M. Modified and Hybridized Monarch Butterfly Algorithms for Multi-

Objective Optimization. In Hybrid Intelligent Systems; Madureira, A.M., Abraham, A., Gandhi, N., Varela, M.L., Eds.; Springer:
Cham, Switzerland, 2020; pp. 449–458.

37. Bacanin, N.; Tuba, M. Artificial Bee Colony (ABC) Algorithm for Constrained Optimization Improved with Genetic Operators.
Stud. Inform. Control 2012, 21, 137–146. [CrossRef]

38. Yang, X. Firefly Algorithm, Nature Inspired Metaheuristic Algorithms; Luniver Press: Beckington, UK, 2010.
39. Chen, D.; Li, X.; Li, S. A Novel Convolutional Neural Network Model Based on Beetle Antennae Search Optimization Algorithm

for Computerized Tomography Diagnosis. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–12. [CrossRef]
40. Wang, J.; Chen, H. BSAS: Beetle swarm antennae search algorithm for optimization problems. arXiv 2018, arXiv:1807.10470.
41. Lee, C.H.; Lai, W.Y.; Lin, Y.C. A TSK-type fuzzy neural network (TFNN) systems for dynamic systems identification. In

Proceedings of the 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Maui, HI, USA,
9–12 December 2003; Volume 4, pp. 4002–4007.

42. Li, M.; Hsu, W.; Xie, X.; Cong, J.; Gao, W. SACNN: Self-attention convolutional neural network for low-dose CT denoising with
self-supervised perceptual loss network. IEEE Trans. Med. Imaging 2020, 39, 2289–2301. [CrossRef]

43. Tirumala, S.S. Evolving deep neural networks using coevolutionary algorithms with multi-population strategy. Neural Comput.
Appl. 2020, 32, 13051–13064. [CrossRef]

44. Calisto, M.G.B.; Lai-Yuen, S.K. Self-adaptive 2D-3D ensemble of fully convolutional networks for medical image segmentation.
In Medical Imaging 2020: Image Processing; Išgum, I., Landman, B.A., Eds.; International Society for Optics and Photonics, SPIE:
Washington, DC, USA, 2020; Volume 11313, pp. 459–469.

45. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

46. Litjens, G.; Toth, R.; van de Ven, W.; Hoeks, C.; Kerkstra, S.; van Ginneken, B.; Vincent, G.; Guillard, G.; Birbeck, N.; Zhang, J.;
et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Med. Image Anal. 2014, 18, 359–373.
[CrossRef] [PubMed]

47. Ortego, P.; Diez-Olivan, A.; Del Ser, J.; Veiga, F.; Penalva, M.; Sierra, B. Evolutionary LSTM-FCN networks for pattern classification
in industrial processes. Swarm Evol. Comput. 2020, 54, 100650. [CrossRef]

48. Xie, H.; Zhang, L.; Lim, C.P. Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer. IEEE
Access 2020, 8, 161519–161541. [CrossRef]

49. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]

50. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In International Conference on Learning Representations; Banff
National Park: Banff, AB, Canada, 2014.

51. Lawrence, T.; Zhang, L.; Lim, C.P.; Phillips, E.J. Particle Swarm Optimization for Automatically Evolving Convolutional Neural
Networks for Image Classification. IEEE Access 2021, 9, 14369–14386. [CrossRef]

52. LeCun, Y.; Cortes, C.; Burges, C. The MNIST Database. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed
on 21 November 2021).

53. Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; Bengio, Y. An Empirical Evaluation of Deep Architectures on Problems with
Many Factors of Variation. In Proceedings of the 24th International Conference on MACHINE Learning, ICML’07, Corvalis, OR,
USA, 20–24 June 2007; pp. 473–480. [CrossRef]

54. Larochelle, H.; Erhan, D.; Courville, A. icml2007data. 2007. Available online: http://www.iro.umontreal.ca/~lisa/icml2007data/
(accessed on 21 November 2021).

55. Kinghorn, P.; Zhang, L.; Shao, L. A region-based image caption generator with refined descriptions. Neurocomputing 2018,
272, 416–424. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2019.105725
http://dx.doi.org/10.1016/j.asoc.2020.106328
http://dx.doi.org/10.1016/j.knosys.2019.06.015
http://dx.doi.org/10.1016/j.future.2021.03.022
http://dx.doi.org/10.1016/j.compstruc.2014.03.007
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.3390/math8060936
http://dx.doi.org/10.24846/v21i2y201203
http://dx.doi.org/10.1109/TNNLS.2021.3105384
http://dx.doi.org/10.1109/TMI.2020.2968472
http://dx.doi.org/10.1007/s00521-020-04749-2
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1016/j.media.2013.12.002
http://www.ncbi.nlm.nih.gov/pubmed/24418598
http://dx.doi.org/10.1016/j.swevo.2020.100650
http://dx.doi.org/10.1109/ACCESS.2020.3021527
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1109/ACCESS.2021.3052489
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1145/1273496.1273556
http://www.iro.umontreal.ca/~lisa/icml2007data/
http://dx.doi.org/10.1016/j.neucom.2017.07.014

	Introduction
	Research Problems
	Contributions

	Related Studies
	Deep Architecture Generation Using PSO Methods
	Deep Architecture Generation Using Other Search Methods

	The Proposed PSO-Based Deep Architecture Generation 
	Encoding Strategy and Initialization
	Decoding Strategy
	The Optimization Strategy
	Particle Difference Calculation
	Particle Difference Calculation between Groups with Respect to the Number of Channels cout
	Particle Difference Calculation between Groups with Respect to the Number of Blocks
	Particle Difference Calculation with Respect to the Block Kernel Size k
	Particle Difference Calculation with Respect to the Pooling Type ptype

	Velocity Calculation
	Position Updating
	Fitness Evaluation

	Experimental Studies
	Datasets
	Parameter Settings
	Benchmark Models
	Results
	Performance Comparison with Existing Studies
	Evaluation of the Proposed Encoding and Search Strategies

	Theoretical Justification

	Conclusions
	References

