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Abstract

The tumor microenvironment (TME), which characterizes the tumor and its surroundings,

plays a critical role in understanding cancer development and progression. Recent

advances in imaging techniques enable researchers to study spatial structure of the TME at

a single-cell level. Investigating spatial patterns and interactions of cell subtypes within the

TME provides useful insights into how cells with different biological purposes behave, which

may consequentially impact a subject’s clinical outcomes. We utilize a class of well-known

spatial summary statistics, the K-function and its variants, to explore inter-cell dependence

as a function of distances between cells. Using techniques from functional data analysis, we

introduce an approach to model the association between these summary spatial functions

and subject-level outcomes, while controlling for other clinical scalar predictors such as age

and disease stage. In particular, we leverage the additive functional Cox regression model

(AFCM) to study the nonlinear impact of spatial interaction between tumor and stromal cells

on overall survival in patients with non-small cell lung cancer, using multiplex immunohis-

tochemistry (mIHC) data. The applicability of our approach is further validated using a pub-

licly available multiplexed ion beam imaging (MIBI) triple-negative breast cancer dataset.

Author summary

Investigating spatial patterns and interactions of cells in the tumor microenvironment

(TME) provides useful insights into cancer development and progression. In this work,

we proposed a novel approach which combined established spatial summary functions

with functional data analysis to flexibly model the cell-cell interactions with overall sur-

vival at different inter-cell distances, in conjunction with other clinical predictors such as

age, disease stage. By applying the proposed framework to multiplex immunohistochemis-

try (mIHC) data of patients with non-small cell lung cancer (NSCLC), we studied the non-

linear impact of spatial interactions between tumor and stromal cells on overall survival.
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The applicability of our proposed method is further validated using a publicly available

multiplexed ion beam imaging (MIBI) triple-negative breast cancer (TNBC) dataset.

This is a PLOS Computational Biology Methods paper.

1 Introduction

The tumor microenvironment (TME), which consists of tumor cells, stromal cells, immune

cells and the extracellular matrix, plays a critical role in understanding cancer development

and progression [1, 2]. The concept of the TME has been around for several centuries; it was

first documented by Virchow in 1863, characterizing the relationship between inflammation

and tumor pathology [3, 4]. Later, the emergence of Paget’s “seed and soil” principle in 1889

further emphasized the relationship between primary tumors and their microenvironment in

influencing tumor evolution [5]. However, many TME studies were not widely recognized in

the field of cancer research until the late 1970s and 1980s [4]. Then, there were a number of

novel discoveries indicating the influences of TME-induced signals on cancer cells and their

progression [6–9]. In particular, an experimental model proposed by Tarin et al. highlighted

the role of microenvironments in metastasis potential of primary tumors in mice [10]. Addi-

tionally, in 1989, Ferrara’s research group discovered vascular endothelial growth factor

(VEGF) and its ability to induce angiogenesis, which then became a driving force for anti-

angiogenic cancer research [11].

The TME is known to be complex and heterogeneous due to the continuous cellular and

molecular adaptations in primary tumor cells that allow for tumor growth and proliferation.

Accurately characterizing such heterogeneity is essential in gaining a better understanding of

cancer and developing more effective treatment strategies. With advancements in technology,

great progress has been made in high parameter imaging of tissues in situ to allow simulta-

neous quantification and visualization of individual cells in tissue sections. More specifically,

multiplex tissue imaging (MTI) [12] methods such as cyclic immunoflourescence (CyCIF)

[13], CO-Dectection by indEXing (CODEX) [14], multiplex immunohistochemistry (mIHC)

[15], imaging mass cytometry (IMC) [16], and multiplex ion beam imaging (MIBI) [17] are

capable of measuring the expression of tens of markers at single-cell resolution while preserv-

ing the spatial distribution of cells. As an example, multiplex immunohistochemistry (mIHC)

detects and visualizes specific antigens in cells of a tissue section by utilizing antibody-antigen

reactions coupled to a flourescent dye or an enzyme [18, 19]. Another instance includes multi-

plexed ion beam imaging (MIBI) [17], which utilizes secondary ion mass spectrometry to

image metal-conjugated antibodies. As such, MIBI enables single-cell analysis of up to 100

parameters without spectral overlap between channels. Altogether, imaging provides an addi-

tional dimension of spatial resolution to the single cell signature profiles, which in turn allows

researchers not only to study cellular composition but also to make inferences about specific

cell-cell interactions.

As individual cells within the TME are genetically and epigenetically varied, they are com-

peting with each other for space and resources (i.e., oxygen, nutrients, etc.) [20]. This is analo-

gous to diverse species in their natural habitats as seen in ecology [21]. Typical ecological

studies often involves examining spatial structures of species in a given habitat. Thus, leverag-

ing analysis tools developed in ecology may be beneficial in studying spatial cell-cell interac-

tions in the tumor ecosystem. For instance, Alfarouk et al. [22] highlighted regional variations

in the distribution of cancer cells in relative proximity to blood vessels. This has an immediate
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analogy to vegetation around waterways in a riparian ecosystem. Statistics characterizing the

distribution of spatial distances are typically used to investigate spatial patterns of cells in the

TME [23]. For example, some quantitative measures exist, such as the Morisita-Horn index

[24], which has been employed by Maley et al. [25] to capture similarity between two local

communities, i.e., tumor and immune cells in breast cancer. In addition, the intratumor lym-

phocyte ratio is another measure used to quantify the degree of infiltration of immune cells

into the tumor [26], which has been shown to have prognostic potential.

In spatial statistics terminology, a collection of cells in the TME can be considered as a

point pattern generated from a point process. If the cells are a realization of a spatial process

assuming complete spatial randomness (CSR), then cells do not have preference for any spatial

location. In other words, cells are randomly scattered in a given region of study, in this case

the TME. Under this assumption, any deviations in spatial patterns from the null model of

CSR could potentially provide some useful insights into how genetically heterogeneous cells

behave. In addition to spatial locations, each point in a pattern can be associated with attri-

butes as referred to as a “mark”, which can be numerical (e.g., expression intensity for a given

protein, cell size, etc.) and/or categorical (e.g., cell types: immune cells, tumor cells, macro-

phages, etc.). Such a point pattern is known as a marked point process. The K-function, a pop-

ular summary statistic proposed by Ripley [23], has been used to capture interpoint

dependence with regard to distances between points in a point pattern. Several transforma-

tions of the K-function have also been introduced to explore not only spatial association of

points but also the variation in the corresponding mark values. Patrick et al. recently utilizes

the K-function as an exploratory analysis tool to identify and summarize complex spatial local-

ization of multiple cell types within the TME, with applications on multiplexed imaging

cytometry data [27]. Similarly, Canete et al. introduced the R package spicyR to relate

changes in spatial localization of different cell types across subjects with disease progression

[28], utilizing a localization score. The score, which is calculated as a integrated difference

between the observed and expected L-function, i.e., the variance stabilized K-function, sum-

marizes the spatial attraction or avoidance between pairs of different cell types. Following a dif-

ferent approach, Barua et al. considers the G-cross function to quantitatively differentiate the

colocalization between tumor cells and infiltrative immune cells versus tumor cells and nonin-

filtrative cells as a function of cell distance [29]. Area under G-cross curves (AUC) is then

incorporated with clinical factors including patient age, smoking history, and disease stage to

find association with patient overall survival through univariate Cox proportional hazard

regression model [30]. However, summarizing each curve into a single value might lose some

information regarding the progression patterns as the inter-cell distance increases.

Herein, we introduce an approach, which leverages both spatial statistic summaries as well

as a recently published model, the Additive Functional Cox Model (AFCM) [31], to incorpo-

rate spatial heterogeneity of cells available in histological images as functional covariates in a

regression framework. Such an approach allows for the addition of other clinical variables to

study their impact on patient survival. More precisely, we employ a derivative of the K-func-

tion, the mark connection function (mcf) [32], to qualitatively investigate the spatial patterns

of the “seed” and “soil” factors in the TME such as primary tumor versus stromal cells, primary

tumor versus immune cells, etc. In addition, the correlation in the expression level of each

marker between neighboring cell types can be quantified using Moran’s I statistic [33].

Depending on the research problem, the proposed framework provides the flexibility in

modelling qualitative and/or quantitative spatial information. The remainder of the article is

organized as follows. Section 2 describes in detail summary spatial functions and how to incor-

porate them into the Cox model. Section 3 presents the results on real datasets, and Section 4
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describes the simulation framework. Finally, we provide concluding remarks and discussion

in Section 5.

2 Materials and methods

The main goal of our proposed approach is to model the spatial heterogeneity of cells in histo-

logical images and patient overall survival in a functional data analysis framework, in addition

to other scalar clinical variables. As such, summary functions capturing the spatial architecture

of cells in each image are necessary inputs of our model. We utilize mark connection function

(mcf) [32] and Moran’s I statistic [33] to represent qualitative and quantitative spatial informa-

tion, respectively. We then model the available spatial input functions using the Additive

Functional Cox Model. Details are given below.

2.1 Spatial summary functions

Summary functions for qualitatively marked point patterns. Qualitatively marked pat-

terns consist of different types of points. An example includes cells in a given image with labels

showing different cell types or tissue categories. Some numerical measures are typically

employed to summarize any important feature of a given point pattern such as nearest-neigh-

bor distance, which measures the average distance from a cell of one type to its closest cell of

other type in the same pattern. Furthermore, some spatial functions are also used to further

detect and quantify patterns using the density of points that are r units apart. In particular, the

mark connection function (mcf) [32, 34] is used to reveal interesting relationships between

points belonging to two different types i and j, referred to as cross-type points.

Let gij(r) be the pair correlation function between types i and j and g(r) be the pair correla-

tion function for an unmarked process which disregards any label associated with points in the

pattern. This pair correlation function g(r) is used as an alternative to the K-function and

describes the distribution of interpoint distances equal to r and, for the unmarked process, is

defined by

gðrÞ ¼ K 0ðrÞ=2pr;

where K0(r) is the derivative of the K-function with respect to distance r. Similarly,

gijðrÞ ¼ K 0ijðrÞ=2pr

with K 0ijðrÞ being the derivative of Kij(r). Note that K 0ijðrÞ is the cross-type K-function capturing

the expected number of points of type j lying within r unit distance of a typical point of type i.
Then, we define the mcf as

mcfijðrÞ ¼
Pðpoint of type i in U; point of type j in VÞ

Pðpoint in U; point in VÞ
¼
liljgijðrÞ
l�gðrÞ

; ð1Þ

where λi and λj are intensity functions of types i and j respectively; λ• is the intensity function

of unmarked point process. U and V are two separate subsets of the pattern, referred to as sub-

patterns, which contain points of types i and j, respectively. Here, λi and λj are empirically esti-

mated as the ratio of the number of points of U and V and the image area W. In other words,

λi = n(u)/|W| and λj = n(v)/|W| with n(u) and n(v) the number of observed points in u and v
respectively, and |W| as the area of an observed image. Similarly, the unmarked intensity is

estimated as the sum of individual marked intensity functions in a point process, as λ• = λi +

λj. Higher values of the mark-connection function denote more cooccurrences of points of

types i and j, while the reverse holds for smaller values. Also note that the mark connection
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makes an assumption of isotropy, i.e., the function value between two points only depends on

the distance between the two points and not on the location.

Panels (A) and (B) of Fig 1 illustrate the distributions of tumor and stromal cells in two rep-

resentative subjects, while Fig 1C and 1D display the mcf curves that capture the spatial inter-

actions of the tumor and stroma subpatterns with respect to inter-cell distance. At short

distances (small r values), cells of each type tend to cluster, leading to mcf values below the

complete randomness indicating line at 1. However, as r increases, stromal and tumor cells

start mixing in (Fig 1A), which leads to more cross-type cell interactions. As a result, the corre-

sponding mcf values become slightly larger than 1 toward the end of the curve (Fig 1C).

Summary functions for numerical marks of cross-type pairs of points. While the afore-

mentioned mcf provides a measure of spatial proximity of cross-type points, Moran’s I correla-

tion [33] incorporates additional information by taking into account a continuous value

associated with each subpattern. For example, if the two subpatterns of interest are tumor and

Fig 1. Examples of mark connection functions (mcf). Tumor (turquoise) and stromal (red) cell distributions of two patients’ images: (A) 77

and (B) 94, respectively. Corresponding mcf curves are shown in (C) and (D), respectively. Dashed horizontal lines representing mcf under

complete randomness. Mcf values below 1 indicate strong clustering of cells of same type, while values above 1 suggest higher level of mixing in

of the two cell types.

https://doi.org/10.1371/journal.pcbi.1009486.g001
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stromal cells, Moran’s I allows quantification of subpattern interaction plus additional incor-

poration of a protein functional marker such as MHCII. The Moran’s I correlation of the mth

mark between points of the two subpatterns i and j, which are r units apart, denoted as IijmðrÞ is

calculated as follows

IijmðrÞ ¼
P

s2i

P
t2jðm

i
s � miÞðmj

t � mjÞ
P

sðmi
s � mpoolÞ

2
þ
P

tðm
j
t � mpoolÞ

2
; ð2Þ

where mi
s is the sth element of the mth mark in i subpattern, mj

t is the tth element of the mth

mark in j subpattern. Note that mi and mi are the mean marker intensities of type i and j
points, respectively, while mpool is the overall mean intensity of both types. Fig 2 overlays Mor-

an’s I curves across all subjects, which depicts correlation in MHCII marker intensity between

tumor and stromal cells as a function of distance r for two groups of patients in the lung cancer

dataset, (A) MHCIIhi and (B) MHCIIlo [35]. Similar patterns can be observed across the two

panels. Specifically, tumor cells and their immediate neighboring stromal cells are negatively

correlated in MHCII expression when they are less than 10 μm apart. As the cross-type cell dis-

tance increases, the correlation rises at different rates, and eventually drops close to 0. A more

detailed discussion is included in Section 3.1.

2.2 Model

The aforementioned functions can be considered as summarized features capturing spatial

interaction between individual cells for each subject. In order to investigate the association

between cell-level spatial effect and patient survival, we leverage a previously published model,

the Additive Functional Cox Model (AFCM) [31]. This model allows us to incorporate each

subject’s spatial summary function as functional covariates in addition to other scalar clinical

variables such as age, sex, and disease stage. In particular, we model the log hazard function for

each ith subject i = 1, . . ., N with Ti and Ci respectively denoting the corresponding survival

time and censoring time, which are assumed to be conditionally independent given covariates

Fig 2. Moran’s I correlation between tumor and stromal cells using MHCII in NSCLC. (A) MHCIIhi group. (B) MHCIIlo group. Patients with more

than 5% tumor cells positively expressed with MHCII were classified into MHCIIhi group. Negative Moran’s I values indicate an inverse relationship in

MHCII expression between tumor and stromal cells. Moran’s I values above 0 suggest a direct relationship in MHCII expression between tumor and

stromal cells. Dashed red vertical line in each panel corresponds to distance r = 10 μm.

https://doi.org/10.1371/journal.pcbi.1009486.g002
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in the model. Note that due to right-censoring, we only observe Yi = min(Ti, Ci). For i = 1, . . .,

n, let δi = I(Ti� Ci) serve as a censoring indicator. For each ith subject, we observe p scalar

clinical variables as Zi = {Zi1, Zi2, . . ., Zip} and functional covariates Xi ¼ fXiðsÞgs2S which is a

continuous and integrable curve defined on a compact interval. We assume that X is observed

on a grid of points. In our setting, Xi will be a spatial summary for subject i, such as a mark

connection function or Moran’s I function. Following Cui et al. [31], we jointly model the

effect of cell-level spatial interactions with clinical variables on a subject’s risk of mortality as

follows

logli½t;Zi;Xi� ¼ logl0ðtÞ þ ZT
i βþ

Z

S
Ffs;XiðsÞgds; ð3Þ

where log λi[t; Zi, Xi] is the log hazard at time t, given scalar covariates Zi and functional covar-

iates X(s)i, i = 1, . . ., n. In Eq (3), log λ0(t) is the log baseline hazard function, and the parame-

ter vector β represents a multiplicative change in log hazard ratios for a one-unit increase in

Zi. We also have F, an unspecified smooth function to be estimated. As described in McLean

et al. [36], F(.) can be modelled as a tensor product of two penalized spline bases:

Fðs; xÞ ¼
XKs

j¼1

XKx

k¼1

yj;kBjðsÞBkðxÞ; ð4Þ

where Bj(s) and Bk(x) are splines defined on functional domain s and functional covariate

domain x, respectively. θj,k for j = 1, . . ., Ks; k = 1, . . ., Kx are spline coefficients. Following the

same approach as Cui et al. [31], we apply cubic regression splines for both domains s and x.

Combining Eqs (3) and (4), the model can be rewritten as:

logli½t;Zi;Xi� ¼ logl0ðtÞ þ ZT
i βþ

Z

S
Ffs;XiðsÞgds

¼ logl0ðtÞ þ ZT
i βþ

XKs

j¼1

XKx

k¼1

yj;k

Z

S
BjðsÞBkfXiðsÞgds

¼ logl0ðtÞ þ ZT
i βþ VT

i θ

¼ logl0ðtÞ þWT
i γ:

ð5Þ

where, γT = (βT, θT), with θ is a vector of entries θj,k; WT
i ¼ ðZ

T
i ;V

T
i Þ, with VT

i is a vector of

entries
R

SBjðsÞBkfXiðsÞgds, j = 1, 2, . . ., Ks, k = 1, 2, . . ., Kx. The parameters γ are estimated by

maximizing the penalized partial log-likelihood with the smoothing parameter imposed on β.

The penalized partial log-likelihood is defined as follows

lpðγjlÞ ¼ lðγÞ � lJðθÞ

¼
XN

i¼1

di WT
i γ � log

X

Yj�Yi

expðWT
i γÞ

8
<

:

9
=

;
� lJðθÞ

ð6Þ

where the penalty term can be expressed as a quadratic term lJðθÞ ¼ 1

2
lγTDγ with D is a sym-

metric, non-negative definite penalty matrix. For a given smoothing parameter λ, the regres-

sion coefficients are estimated as:

γ̂ðlÞ ¼ argmin
γ
� lpðγjlÞ
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using Newton-Raphson procedure, provided the gradient vector G ¼ @l=@γ and Hessian

matrix H ¼ @l2=@γ@γT . Following Wood et al. [37], the selection of the smoothing parameter

λ is done by optimizing the log Laplace approximate marginal likelihood, which can be

expressed as

VðlÞ ¼ lpðγÞ þ log jDlj
þ
�

1

2
log jHj þ

Mp

2
logð2pÞ

where, Dλ = λD and |Dλ|+ is the product of positive eigenvalues of Dλ. Mp is the number of

zero eigenvalues of Dλ. The process involves optimizing V with respect to log λ. More details

can be found in [37].

2.3 Datasets

We used non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC) data-

sets collected using multiplex immunohistochemistry (mIHC) and multiplexed ion beam

imaging (MIBI) platforms, respectively, to evaluate the applicability of our proposed model.

Non-small cell lung cancer (NSCLC). Tissue slides collected from 153 patients with non-

small cell lung cancer were sequentially stained with antibodies specific for CD19, CD8, CD3,

CD14, major histocompatibility complex II (MHCII), cytokeratin, and DAPI; then the slides

were imaged on the Vectra 3.0 microscope (Akoya Biosystems). The acquired images were

then processed using Akoya’s inForm tissue analysis software to obtain a data matrix with

rows corresponding to individual cells and columns corresponding to x- and y-coordinates of

each cell on the image, individual marker expression, and cell phenotypes. Each individual had

three to five images corresponding to small regions of the tissue sample. Due to the sparsity

issue of some images, we decided to select the image with the maximum number of cells to

represent each subject. More details can be found in Johnson et al. [35].

Triple-negative breast cancer (TNBC). TNBC biopsies were compiled into a tissue

microarray (TMA) slides and stained with 36 antibodies targeting regulators of immune acti-

vation such as PD1, PD-L1, etc. The slides were imaged using the multiplexed ion beam imag-

ing (MIBI) mass spectrometer. Cell segmentation was performed by adapting a convolutional

neural network (CNN) approach, i.e., DeepCell [38] for nuclear segmentation to MIBI data.

Details of the method were described in Keren et al. [39]. Images from 41 patients were pro-

cessed using the R package raster to extract pixel coordinates. Panels (A) and (B) of S2 Fig

show two representative pixel-level images for two randomly chosen patients. Since each cell

consists of multiple pixels, the average pixel-level x- and y-coordinates were used to represent

cell locations on each image. Panels (C) and (D) of S2 Fig illustrate cell-level images for

patients 1 and 2, respectively, with dot size proportional to cell size and color-coded for each

cell type (e.g., immune, endothelial, mesenchymal-like, tumor, etc.). With the cell information

in the tumor and stroma regions of the TME not available, we focused on capturing the distri-

bution of tumor and immune cells across images using mcf curves in this dataset. Additionally,

two patients in the cohort did not have clinical information available regarding survival out-

comes; and one patient’s imaging data was corrupted with a high level of noise. As a result,

only data of 38 patients were included in the model.

3 Application results

3.1 NSCLC

Fig 3A illustrates the locations of stromal and tumor cells in XY-coordinates for a representa-

tive image. A summary mcf using Eq (1) was calculated to characterize the spatial relationship

between primary tumor cells and tumor-associated stromal cells as a function of distance
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between cells. Since cell distance r depended on the density of observed cells in a given image,

we chose the image with the maximum number of cells to compute a reference range of dis-

tances. Fig 3B shows mcf curves for all subjects as a function of the distance between cells,

measured in microns (μm). These mcf curves were used as functional covariates along with

scalar clinical predictors such as total number of cells, disease stage, and age in model (5) to

obtain the estimated hazard of mortality for each subject. Fig 4A highlights 30 mcf curves cor-

responding to 15 patients with shortest survival time (red) and 15 patients with longest

observed censored time (black) to aid the interpretation of the fitted functional model. Fig 4C

depicts the estimated functional surfaces F̂ with values decreased from red to blue, corre-

sponding to a decrease in hazard of mortality, while holding the remaining scalar variables

constant. In particular, if there was strong clusterings of tumor cells in the neighborhood of 25

—75 μm, the overall survival improved, based on the negative estimate of the log hazard ratio.

However, at distances beyond 75 μm, the more tumor cells clustered, the higher the risk of

mortality, while the increased infiltration level of tumor-associated stromal cells reduced the

hazard of death. Even though the mcf curves were calculated for cells in tumor and stroma tis-

sue regions, more than 98% of cells in stroma region were immune cells including CD4+,

CD14+, CD19+, and CD8+ T cells. Interestingly, this was in agreement with the conclusion

from Johnson et al. that the increased spatial proximity of cancer cells to immune cells linked

to better subject survival [35]. Section S.1.1 of S1 Text reported the summary output of the cor-

responding model. The p-value of 0.44 indicated no significant nonlinear association between

the spatial interactions of tumor and stromal cells with overall survival. However, note that

given a relatively large number of parameters to be estimated, our sample size might not pro-

vide enough power to detect such association. As a result, the qualitative interpretation of the

model using the surface plots is still worthwhile.

Johnson et al. dichotomized lung cancer samples into high and low MHCII. In particular,

specimens with more than 5% of lung cancer cells positive for MHCII were grouped into

MHCIIhi while the remaining samples were classified into MHCIIlo group. The authors stated

that the levels of immune infiltration increased in the MHCIIhi TME, leading to a significantly

improved overall survival. Motivated by this discovery, we explored the distributions of

MHCII in cells from tumor and stroma regions separately. As illustrated in panel (A) of S1

Fig 3. NSCLC dataset. (A) Representative image illustrating locations of stromal (red) and tumor cells (turquoise). (B) Mark connection functions (mcf)

for the tumor—stromal cell distributions for all subjects. Dashed horizontal line represents mcf under complete randomness. Mcf values below 1 indicate

strong clustering of cells of same type, while values above 1 suggest higher level of mixing in of the two cell types.

https://doi.org/10.1371/journal.pcbi.1009486.g003
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Fig, we observed that in MHCIIhi samples, the distribution of MHCII intensity across cells in

stroma region was right-skewed while that marker expression of tumor cells were more sym-

metrically distributed and centered at a higher intensity. On the other hand, two distributions

of MHCII in tumor and stromal cells had similar right-skewed shape for MHCIIlo samples

(panel (B) of S1 Fig). This inspired us to explore the correlation in MHCII between the two

cell types as a function of cross-type cell distances via Moran’s I metric according to Eq (2). Fig

2A and 2B illustrate the estimated Moran’s I correlation curves for patients in MHCIIhi and

MHCIIlo groups, respectively, as a function of distance between cross-type cells. There was

slightly more variability between correlation curves of the subjects in the MHCIIhi group as

compared to that in MHCIIlo group. The two groups shared a common trend of negative asso-

ciation in MHCII expression between tumor cells and their immediate neighboring stromal

cells (r� 10 μm). Note that in the 2D images captured by slicing 3D tissue samples, biological

overlapping could potentially occur, however our 2D samples were sliced as thin as possible

(� 4 μm per section) to minimize this potential overlap. Additionally, by investigating the

diameters of tumor and stromal cells in the dataset, we noticed that the median diameter was

about 7.2 μm. Altogether, it was possible to observe pairs of cross-type cells in the neighbor-

hood less than 10 μm. Moreover, the tumor and stromal cells in such small radius span tended

to have an inverse relationship in MHCII expression, i.e., tumor cells with low MHCII were

likely to be adjacent to high MHCII stromal cells, leading to negative Moran’s I correlation

(Fig 2). As the neighborhood radius expanded, the correlation increased at various rates.

Instead of categorizing subjects into MHCIIhi and MHCIIlo groups before fitting the Cox pro-

portional model, we explored the direct impact of correlation of MHCII expression across

tumor and stromal cells as a function of cross-type cell distance on survival outcome. Specifi-

cally, each Moran’s I correlation curve served as a functional covariate in model (5). Fig 4B

highlights 30 correlation curves corresponding to 15 patients with shortest survival times (red)

and 15 patients with longest observed censored times (black) to aid the interpretation of the

fitted functional model. Fig 4D depicts the estimated surface F̂ with values decreased from red

to blue, in correspondent with a decrease in hazard of mortality, holding the remaining scalar

variables fixed. If stromal and tumor cells in the neighborhood radius between 25 and 75 μm

were positively correlated in MHCII expression, the risk of mortality increased. However, as

the positive relationship in MHCII continued past 100 μm, the estimated hazard of mortality

decreased, linking to a better survival outcome.

3.2 TNBC

Keren et al. [39] classified subjects into “compartmentalized” and “mixed” using a mixing

score, which was defined as a ratio of immune-tumor interactions to the total number of

immune interactions. Fig 5A and 5B depict two representative images of the two categories.

Taking a different approach, we utilized the mcf between tumor and immune cell distributions

within each image to capture the tumor-immune interactions as a function of cell distance,

measured in microns (μm). Fig 5C illustrates the progression of such interactions as the dis-

tance between cells increased, colored in black and red corresponding to “compartmentalized”

and “mixed” categories, respectively. Particularly, when tumor and immune cells mixed in

(e.g., Fig 5A), more interactions between tumor and immune cells were observed as the neigh-

borhood radius expanded. As a result, the corresponding mcf curves increased at a faster rate,

as compared to the ones associated with the compartmentalized cell distribution.

Due to the small sample size, we only included patient age as a scalar predictor, in addition

to the functional covariates provided by mcf values (Fig 5C). The estimated functional surface

F̂ with values decreased from red to blue, corresponding to a drop from high to low hazard of
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mortality, while holding the scalar variable constant was shown in Fig 6C. In particular, if

there were more immune cells surrounding tumor cells across all distances, which resulted in

the mcf curves approaching the dashed horizontal line of 1 at a faster rate, the estimated log

hazard ratio increased. On the contrary, when tumor and immune cells separated in their own

compartments, corresponding to the mcf values less than 1, the hazard of death decreased.

Pan et al. [40] investigated the prognostic role of P53 in TNBC by applying Kaplan-Meier

analyses on P53 positive and negative groups of patients. In particular, a sample was defined as

P53 positive if any cancer cells was positively expressed. The authors concluded that P53 posi-

tivity associated with negative prognostic significance in breast cancer patients. Inspired by the

findings, we investigated the distributions of P53 expression in tumor and immune cells sepa-

rately for each patient. We observed that in P53 positive patients, the distribution of P53 inten-

sity in immune cells was extremely right-skewed while that marker expression of tumor cells

Fig 4. Estimated surface from AFCM using NSCLC dataset. (A) Mcf curves corresponding to “low” survival (i.e., shortest survival

times) and “high” survival (i.e., longest observed censored times) patients in red and black, respectively. Note that mcf values below 1

indicate strong clustering of cells of same type, while values above 1 suggest higher level of mixing in of the two cell types. (B) Moran’s I

correlation using MHCII expression corresponding to “low” survival (i.e., shortest survival time) and “high” survival (i.e., longest observed

censored time) patients in red and black, respectively. Moran’s I values above 0 indicate a direct relationship in MHCII expression

between tumor and stromal cells. Negative Moran’s I values suggest an inverse association in MHCII expression between tumor and

stromal cells. (C) Estimated surface from AFCM using mcf curves as functional covariates with values decreasing from positive (red) to

negative (blue). (D) Estimated surface from AFCM using Moran’s I correlation in MHCII as functional covariates with values decreased

from positive (red) to negative (blue). Positive F̂ corresponds to increased risk of mortality while negative F̂ associates with reduced

hazard of death.

https://doi.org/10.1371/journal.pcbi.1009486.g004
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were distributed more symmetrically and centered at a much higher intensity, as shown in

panel (A) of S3 Fig. On the other hand, the P53 expression distributions were right-skewed,

similarly between tumor and immune cells in P53 negative patients (panel (B) of S3 Fig). In

other words, tumor and immune cells in P53 negative samples were more likely to be corre-

lated while it might not be the case for P53 positive samples. This motivated us to explore the

correlation in P53 between the two cell types as a function of cross-type cell distance (Fig 6B)

without necessarily dichotomizing samples into “P53 positive” vs “P53 negative” groups, via

Moran’s I metric (Eq 2). In a few patients, immune and tumor cells lying within 100 μm neigh-

borhood radius, were positively correlated. As cell distance became larger, the correlation

dropped close to 0. Though the correlation was rather weak, it was still worth studying the

impact of the relationship between tumor and immune cells with respect to the P53 expression

on patient survival using the proposed approach. In particular, the correlation curves served as

functional covariates in the AFCM model in (5) in conjunction with age as a scalar predictor.

The estimated functional surface F̂ shown in Fig 6D had the values decreased from red to blue,

in correspondence with a decrease in hazard of mortality, while holding the scalar variable

fixed. Interestingly, positive correlation in P53 expression between immune and tumor cells

across distances associated with a decline in estimated risk of mortality.

Section S.3 of S1 Text includes an additional analysis using a Vectra dataset of 114 ovarian

cancer patients [41]. We followed the same approach to investigate the impact of spatial distri-

bution of cells in tumor and stroma regions of the TME on patient overall survival. Further-

more, the correlation in Ki67 marker expression between tumor and stromal cells in close

proximity was included in the model in (5) to study the prognostic value of Ki67 in ovarian

cancer patients.

4 Simulation study

4.1 Setup

We performed simulation studies to evaluate the finite-sample properties of the proposed

methodology. We considered a scenario with one functional covariate Xi and one scalar

Fig 5. “Mixed” vs. “Compartmentalized” cell distributions in TNBC dataset. (A) Cell-level image of patient 11 with “mixed” cell distribution. (B)

Cell-level image of patient 5 with “compartmentalized” cell distribution. (C) Mark connection functions (mcf) in correspondence with “mixed” and

“compartmentalized” tumor—immune cell distributions, colored by red and black, respectively. Dashed horizontal line represents mcf under complete

randomness. Mcf values below 1 indicate strong clustering of cells of same type, while values above 1 suggest higher level of mixing in of the two cell

types.

https://doi.org/10.1371/journal.pcbi.1009486.g005
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covariate Zi for simplicity. Model (3) can be rewritten as:

logliðt;Zi;XiÞ ¼ logl0ðtÞ þ Zibþ

Z

S
Ffs;XiðsÞgds

logliðt;Zi;XiÞ ¼ logl0ðtÞ þ Zi

ð7Þ

Both scalar and functional terms were simulated directly from the lung cancer dataset to

mimic real-world parameter settings. More specifically, the scalar predictor Z�i was simulated

from the normal distribution with mean and standard deviation obtained empirically from the

distribution of age. Additionally, the functional covariates Xi(s) were simulated empirically by

applying FPCA [42] to the estimated mcf curves. Following Cui et al. [31], we simulated the

Fig 6. TNBC dataset. (A) Mark connection functions (mcf) for the tumor—immune cell distributions for all subjects in TNBC

dataset. Dashed horizontal line represents mcf under complete randomness. Mcf values below 1 indicate strong clustering of cells of

same type, while values above 1 suggest higher level of mixing in of the two cell types. (B) Moran’s I correlation between tumor and

immune cells across subjects using P53 marker expression. Moran’s I values above 0 indicate a direct relationship in P53 expression

between tumor and immune cells. Negative Moran’s I values suggest an inverse association in P53 expression between tumor and

immune cells. (C) Estimated surface from AFCM using mcf curves as functional covariates, with values decreasing from positive (red)

to negative (blue). Positive F̂ corresponds to increased risk of mortality while negative F̂ associates with reduced hazard of death. The

more immune cells surrounding tumor cells across all distances (i.e., mcf values> 1), the higher risk of mortality (i.e., F̂ > 0). (D)

Estimated surface from AFCM using Moran’s correlation in P53 expression between tumor and immune cells, with values of F̂
decreasing from positive (red) to negative (blue). Weak positive correlation in P53 expression between tumor and immune cells across

all distances associates with a declined in risk of mortality with F̂ < 0.

https://doi.org/10.1371/journal.pcbi.1009486.g006
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functional covariates as X�i ðsÞ ¼ m̂ðsÞ þ
PM

j¼1

ffiffiffiffi

l̂ j

q

eij�̂ jðsÞ with M being the number of princi-

pal components. In the definition of X�i ðsÞ, eij were random Gaussian noise with mean 0 and

variance one. The mean function m̂ðsÞ, eigenvalues l̂ j, and eigenfunctions �̂ jðsÞ were com-

puted by applying FPCA on the estimated mcf curves using the package refund in R [43]. By

specifying the scalar coefficient β = 1 and the functional form F(s, x) = x3s, the simulated linear

predictor was generated as Z�i ¼ Z�i þ
P

s2S X
�3
i ðsÞs. With the prespecified functional form F,

we scaled the functional domain S, which represented the distance between cells, to [0, 1]. The

functional covariate values X were kept in the range [0, 1.2]. Doing so prevented the simulated

linear predictor from being dominated by either term. From the fitted model in Section 3.1,

we obtained the estimated cumulative baseline hazard
R t

0
l0ðxÞdx, which was then used to gen-

erate a survival function for each individual, such that ~SiðtÞ ¼ expf� eZ�i
R t

0
l0ðxÞdxg. The esti-

mated survival times T�i were generated from the survival function; and the censoring times C�i
were simulated based on the empirical distribution of the observed censoring times.

4.2 Predictive performance

Four datasets of different sizes (N = 1000, 500, 200, and 100, respectively) were simulated fol-

lowing the procedure in Section 4.1. Each dataset was partitioned into training (75%) and test-

ing (25%) sets. Three models were fit using the training set: (1) AFCM model with both scalar

and functional terms, (2) AFCM model with only functional term, and (3) regular Cox propor-

tional hazard model with only scalar term. The predicted linear predictor Ẑi
ðuÞ, u = 1, 2, 3 was

obtained from the testing set for the uth model. At each sample size, mean squared errors

MSE(u) was computed as the average of squared differences between the predicted Ẑi
ðuÞ and the

“true” linear predictor Z�i such that MSEðuÞ ¼ N � 1
t

PNt
i¼1
ðẐi
ðuÞ � Z�i Þ

2
, with Nt denoting the

number of subjects in the testing set.

We repeated the simulation for 100 iterations and recorded the average MSE for each of the

three models across four sample sizes N = 1000, 500, 200, 100 in Table 1. Fig 7 displays the dis-

tribution of MSEs for the three models at each sample size, respectively. As expected, the aver-

age MSEs and corresponding standard deviations increased as the sample size decreased from

1000 to 100. More precisely, as shown in Fig 7, the upper quartile MSE of the model (1) was

less than the 25th percentile of MSEs of the remaining two models (2) and (3), across all four

sample sizes. The discrepancy between these quantiles became more apparent as the sample

size increased. However, regardless of the sample size, model (1), which included both func-

tional and scalar terms, performed substantially better than the other two models (2) and (3).

5 Conclusions and discussion

Interactions between cells within the TME play a crucial role in understanding cancer develop-

ment and progression. With advances in imaging technology, the additional dimension of spa-

tial resolution is achievable in addition to the single cell profiles. Conventional approaches

summarize the spatial information between cells into a single quantitative value (e.g., Mori-

sita-Horn index, intratumor lymphocyte ratio, etc.) before fitting a Cox proportional hazard

model to quantify the association between cell profiles and survival outcome. Though easy to

implement, these scalar summaries are unable to embed cell interactions as a function of spa-

tial proximity in models that test associations with clinical outcomes. Alternatively, we con-

sider cells with corresponding cell locations and features within the TME as marked point

patterns. Then, the relative spatial organization of primary tumor cells and a variety of tumor-

associated stromal cells as well as immune cells can be described through spatial summary
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functions such as the mark connection function (for qualitative marks) or Moran’s I correla-

tion (for quantitative marks). We propose an approach to incorporate the resulting spatial

functions as functional covariates into an additive function Cox model to investigate the

impact of spatial structure of cells in the TME on overall survival in addition to some clinical

predictors (e.g., age, disease stage, total cell counts, etc.). We demonstrate the applicability of

the proposed method by analyzing multiplex imaging datasets from three separate cancer

applications collected under two different (Vectra and MIBI) imaging platforms: NSCLC,

Table 1. Mean squared errors (MSE) across three different models. Different sample sizes are 1000, 500, 200, and 100, respectively. Corresponding standard deviations

are recorded in parentheses.

Model N = 1000 N = 500 N = 200 N = 100

(1) Both 0.64 (0.49) 0.90 (1.09) 0.73 (0.80) 1.00 (1.13)

(2) Functional covariate 1.86 (0.66) 2.11 (1.21) 1.88 (0.95) 2.16 (1.48)

(3) Scalar covariate 2.99 (1.29) 3.28 (2.02) 2.73 (1.88) 2.79 (2.26)

https://doi.org/10.1371/journal.pcbi.1009486.t001

Fig 7. Mean squared errors (MSE) across three models. Distribution of the MSEs for each of the three models: AFCM model with

both scalar and functional terms (red), AFCM model with only functional term (green), regular Cox model with only scalar term (blue)

at different sample sizes (A) N = 1000, (B) N = 500, (C) N = 200, (D) N = 100. The lower the MSE, the better the predictive

performance.

https://doi.org/10.1371/journal.pcbi.1009486.g007
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ovarian cancer, and TNBC. In particular, we can flexibly use mark connection functions (mcf)

as a means to capture the level of stromal infiltration in the lung cancer dataset or immune

infiltration in the TNBC dataset with respect to cell distance. In addition to the mcfs, continu-

ous marker expression across cell types (e.g., tumor, immune, stromal, etc.) can be calculated

using Moran’s I statistics. Thus, qualitative and/or quantitative spatial summary functions can

be included in the AFCM, depending on the research question of interest. Furthermore, the

advantage of integrating the spatial structure of cells in the TME and patient-level clinical

information is demonstrated in the simulation study at different sample sizes.

Though the additive model framework provides us flexibility to the model nonlinear rela-

tionship between spatial cell distribution and overall survival, there exist a few limitations.

Such complex model requires a relatively large number of parameters to be estimated, which

compromises our power to detect significant results provided our limited sample size, as we

discuss in Sections 3.1 and 3.2. Recall that the study by Cui et al. [31] demonstrating the appli-

cation of AFCM in quantifying the association between physical activity and survival data

included 2816 participants. Additionally, as with other nonlinear models, the interpretation of

results might not always be easy for all applications. We try to draw the connection between

our conclusions and Johnson et al.’s that increased immune—tumor cell interactions beyond

100 μm reduces risk of mortality (Section 3.1). For inter-cell distances in the span of 25–75 μm

radius, on the other hand, our results indicate a different implication that the more tumor cells

cluster, the lower the hazard of death. Note that we have specifically chosen mark connection

functions (mcf) and Moran’s I correlation as representative metrics to summarize qualitative

and quantitative spatial information, respectively, in this paper. Other summary functions

could be employed to capture various levels of spatial information, depending on the applica-

tions. For instance, with the interest in the level of immune infiltration, Barua et al. [29] uti-

lized the G-cross function to quantify the distribution of the nearest immune cells relative to

tumor cells within any given inter-cell distance. In such instance, the observed G-cross func-

tion could then be used in place of the mcf as functional covariates in the proposed approach.

Motivated by our available datasets, we specifically focus on studying the TME and how

spatial heterogeneity of cells within the TME impacts patient overall survival in this article.

However, the proposed framework could certainly be extended to other analyses in two direc-

tions. First, the spatial architecture of cells being investigated is not necessarily restricted to the

TME. Second, other types of response variables other than survival outcomes could be mod-

elled, with necessary modifications made to the model parameterization and estimation proce-

dure indeed. We take the study of human endocrine pancreas and immune system in type 1

diabetes (T1D) using images of pancreatic tissue sections collected from imaging mass cytome-

try (IMC) platform by Wang et al. [44] as an example. With abundance and localization of pro-

teins at single-cell resolution available, the spatial interaction of immune and pancreatic

epithelial cells in pancreatic islets could be captured by the mark connection functions (mcf).

Furthermore, with the donors in the dataset being categorized into “controls” (i.e., no history

of diabetes) and “T1D” groups, one could use a logistic regression model with the resulting

mcfs between immune and pancreatic epithelial cells served as functional covariates, to make

inferences on how the islet spatial architecture differs between the two groups and to gain

insights into the progression of T1D. By switching to such outcomes from the exponential

family, our proposed model would essentially become a functional generalized additive model,

which McLean et al. [36] and Muller et al. [45] have discussed in detail.

We have presented promising results associating image summary spatial statistics with sub-

jects’ survival, however, our approach relies on the isotropic assumption, which only takes into

account the relative distance between any two cells while disregarding their relative coordina-

tions in a given image. Additionally, due to limited sample size, interactions between markers
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have not yet been considered in the model. Further modifications are needed to overcome

such limitations. Based on locations and associated marker expression intensities of all the

cells within an image, multivariate kernel density function may be used to capture the distribu-

tion of marker interactions jointly [46]. More precisely, by specifying a search radius band-

width (e.g., 30 μm), a joint density representing marker interaction at a given location in an

image is estimated using only cells within the radius such that closer cells are weighted more

than distant cells. Simultaneously, the number of cells per unit area defined by the bandwidth

serves as a multiplier of the cell density values. Such density functions are used as a means to

reflect spatially varying marker interactions across images. Due to the nature of density func-

tions, which are non-negative and integrate to one, they cannot be treated as unconstrained

functional predictors as in Section 2.2. Intermediate steps to transform the kernel density func-

tions are necessary. A recent approach introduced by Petersen et al. [47] could be used to map

regular density functions into a new space through functional transformations including log

quantile density and log hazard transformations. Finally, the transformed density functions

are incorporated in the model as functional covariates in addition to clinical predictors as

before to investigate the association between spatial heterogeneity in marker interactions and

subject outcomes. This work is currently under investigation.

After this paper had been submitted, we discovered a study by Wilson et al. [48], which dis-

cussed issues with imaging data collected from tissue microarrays (TMA). In particular, the

authors highlighted the plausibility of the tissue slides being folded or torn during the slicing

process, leading to some sections of the image with no cells present(e.g., panel (C) of S4 Fig).

To overcome such challenge, Wilson et al. [48] introduced a framework (with the accompa-

nying R package SpatialTIME [49]) that utilized the K-function in a permutation-based

setting to account for such drawbacks. Inspired by the study, it would be interesting to extend

our proposed framework to include the permutation-based summary function. More specifi-

cally, we would randomly permutate the cell labels to obtain the empirical distribution of the

mcfs. Then, the mean mcf instead of the observed counterpart would then be used as func-

tional covariate in the additive functional Cox model (AFCM) to investigate the association

between spatial heterogeneity of cells and patient overall survival.

Similar to other spatial analyses, our proposed approach relies on the cell-segmented data.

In other words, if cells are not segmented correctly from raw images, the resulting spatial dis-

tribution of cells might not accurately reflect the underlying tissue architecture. Accordingly,

results of any downstream analyses associating spatial summary information with a clinical

outcome of interest would certainly be impacted. As we briefly discuss in Section 2.3, Johnson

et al. [35] utilized the state-of-the-art commercial software, inForm, for cell and nucleus seg-

mentation for the NSCLC dataset, while Keren et al. [39] adapted a convolutional neural net-

work approach, DeepCell [38], to extract segmented data in the TNBC dataset. While it is

possible that errors could potentially occur with either segmentation approach, this has not

thoroughly been investigated and is beyond the scope of our current analysis.

Supporting information

S1 Text. A complete analysis for the ovarian cancer dataset.

(PDF)

S1 Fig. MHCII expression in NSCLC. Distribution of MHCII expression in tumor (tur-

quoise) vs. stromal (red) cells in (A) A representative MHCIIhi sample. (B) A representative

MHCIIlo sample.

(TIF)
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S2 Fig. Representative TNBC tissue samples. Top Row: Pixel-level images of (A) Patient 1

and (B) Patient 2; color-coded from cell segmentation process to be associated with cell-level

data. Bottom Row: Corresponding cell-level images for (C) Patient 1 and (D) Patient 2. Each

color represents a cell classification group. Dot size is proportional to cell size.

(TIF)

S3 Fig. P53 expression in TNBC. Distribution of P53 expression in tumor (turquoise) vs.

immune cells (red) in: (A) A representative P53 positive sample. (B) A representative P53 neg-

ative sample. (C) Corresponding Moran’s I correlation using P53 expression in P53 positive

(red) and P53 negative (black) samples. Moran’s I values above 0 indicate a direct relationship

in P53 expression between tumor and immune cells. Negative Moran’s I values suggest an

inverse association in P53 expression between tumor and immune cells.

(TIF)

S4 Fig. Representative images in the ovarian cancer dataset. Example images of four repre-

sentative patients (A) Patient 1, (B) Patient 51, (C) Patient 75, and (D) Patient 103, with red

and turquoise points denoting stromal and tumor cells, respectively.

(TIF)

S5 Fig. Ovarian cancer dataset. (A) Mcf curves for all patients. Note that mcf values below 1

indicate strong clustering of cells of same type, while values above 1 suggest higher level of

mixing in of the two cell types. (B) Moran’s I correlation between tumor and stromal cells

across subjects using Ki67 marker expression. Moran’s I values above 0 indicate a direct rela-

tionship in Ki67 expression between tumor and stromal cells. Negative Moran’s I values sug-

gest an inverse association in Ki67 expression between tumor and stromal cells.

(TIF)

S6 Fig. Estimated surfaces from AFCM using ovarian cancer dataset. (A) Estimated surface

from AFCM using mcf curves as functional covariates, with values of F̂ decreasing from posi-

tive (red) to negative (blue). (B) Estimated surface from AFCM using Moran’s I correlation in

Ki67 expression between tumor and stromal cells, with values of F̂ decreasing from positive

(red) to negative (blue). Positive F̂ corresponds to increased risk of mortality while negative F̂
associates with reduced hazard of death.

(TIF)
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37. Wood SN, Pya N, Säfken B. Smoothing parameter and model selection for general smooth models.

Journal of the American Statistical Association. 2016; 111(516):1548–1563. https://doi.org/10.1080/

01621459.2016.1180986

PLOS COMPUTATIONAL BIOLOGY SPF

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009486 June 15, 2022 20 / 21

https://doi.org/10.1016/j.celrep.2017.03.037
http://www.ncbi.nlm.nih.gov/pubmed/28380359
https://doi.org/10.1038/nmeth.2869
http://www.ncbi.nlm.nih.gov/pubmed/24584193
https://doi.org/10.1038/nm.3488
http://www.ncbi.nlm.nih.gov/pubmed/24584119
https://doi.org/10.12688/f1000research.19037.1
http://www.ncbi.nlm.nih.gov/pubmed/31824652
https://doi.org/10.4103/0975-7406.100281
https://doi.org/10.4103/0975-7406.100281
http://www.ncbi.nlm.nih.gov/pubmed/23066277
https://doi.org/10.1038/nrc2013
http://www.ncbi.nlm.nih.gov/pubmed/17109012
https://doi.org/10.1016/j.canlet.2015.11.018
http://www.ncbi.nlm.nih.gov/pubmed/26592351
https://doi.org/10.1111/eva.12015
http://www.ncbi.nlm.nih.gov/pubmed/23396634
https://doi.org/10.1186/s13058-015-0638-4
https://doi.org/10.1186/s13058-015-0638-4
http://www.ncbi.nlm.nih.gov/pubmed/26395345
https://doi.org/10.1098/rsif.2014.1153
https://doi.org/10.1098/rsif.2014.1153
http://www.ncbi.nlm.nih.gov/pubmed/25505134
https://doi.org/10.1016/j.lungcan.2018.01.022
http://www.ncbi.nlm.nih.gov/pubmed/29409671
https://doi.org/10.1016/j.jtho.2021.05.004
https://doi.org/10.1016/j.jtho.2021.05.004
https://doi.org/10.1080/10618600.2012.729985
https://doi.org/10.1080/10618600.2012.729985
http://www.ncbi.nlm.nih.gov/pubmed/24729671
https://doi.org/10.1080/01621459.2016.1180986
https://doi.org/10.1080/01621459.2016.1180986
https://doi.org/10.1371/journal.pcbi.1009486


38. Van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, et al. Deep learning automates

the quantitative analysis of individual cells in live-cell imaging experiments. PLoS computational biology.

2016; 12(11):e1005177. https://doi.org/10.1371/journal.pcbi.1005177 PMID: 27814364

39. Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, et al. A structured tumor-immune micro-

environment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018; 174

(6):1373–1387. https://doi.org/10.1016/j.cell.2018.08.039 PMID: 30193111

40. Pan Y, Yuan Y, Liu G, Wei Y. P53 and Ki-67 as prognostic markers in triple-negative breast cancer

patients. PLoS One. 2017; 12(2):e0172324. https://doi.org/10.1371/journal.pone.0172324 PMID:

28235003

41. Jordan KR, Sikora MJ, Slansky JE, Minic A, Richer JK, Moroney MR, et al. The capacity of the ovarian

cancer tumor microenvironment to integrate inflammation signaling conveys a shorter disease-free

interval. Clinical Cancer Research. 2020; 26(23):6362–6373. https://doi.org/10.1158/1078-0432.CCR-

20-1762 PMID: 32928797

42. Silverman B, Ramsay J. Functional data analysis. In: International Encyclopedia of the Social and

Behavioral Sciences. Amsterdam: Elsevier; 2001.

43. Goldsmith J, Scheipl F, Huang L, Wrobel J, Gellar J, Harezlak J, et al. refund: Regression with Func-

tional Data. R package version 0.1-17. URL: https://CRAN.R-project.org/package=refund. 2019;.

44. Wang YJ, Traum D, Schug J, Gao L, Liu C, Atkinson MA, et al. Multiplexed in situ imaging mass cytome-

try analysis of the human endocrine pancreas and immune system in type 1 diabetes. Cell metabolism.

2019; 29(3):769–783. https://doi.org/10.1016/j.cmet.2019.01.003 PMID: 30713110

45. Müller HG, Wu Y, Yao F. Continuously additive models for nonlinear functional regression. Biometrika.

2013; 100(3):607–622. https://doi.org/10.1093/biomet/ast004

46. Simonoff JS. Smoothing methods in statistics. Springer Science & Business Media; 2012.

47. Petersen A, Müller HG. Functional data analysis for density functions by transformation to a Hilbert

space. The Annals of Statistics. 2016; 44(1):183–218. https://doi.org/10.1214/15-AOS1363

48. Wilson CM, Thapa R, Creed J, Nguyen J, Segura CM, Schildkraut J, et al. Statistical framework for

studying the spatial architecture of the tumor immune microenvironment. medRxiv. 2021;.

49. Creed JH, Wilson CM, Soupir AC, Colin-Leitzinger CM, Kimmel GJ, Ospina OE, et al. spatialTIME and

iTIME: R package and Shiny application for visualization and analysis of immunofluorescence data. Bio-

informatics. 2021; 37(23):4584–4586. https://doi.org/10.1093/bioinformatics/btab757 PMID: 34734969

PLOS COMPUTATIONAL BIOLOGY SPF

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009486 June 15, 2022 21 / 21

https://doi.org/10.1371/journal.pcbi.1005177
http://www.ncbi.nlm.nih.gov/pubmed/27814364
https://doi.org/10.1016/j.cell.2018.08.039
http://www.ncbi.nlm.nih.gov/pubmed/30193111
https://doi.org/10.1371/journal.pone.0172324
http://www.ncbi.nlm.nih.gov/pubmed/28235003
https://doi.org/10.1158/1078-0432.CCR-20-1762
https://doi.org/10.1158/1078-0432.CCR-20-1762
http://www.ncbi.nlm.nih.gov/pubmed/32928797
https://CRAN.R-project.org/package=refund
https://doi.org/10.1016/j.cmet.2019.01.003
http://www.ncbi.nlm.nih.gov/pubmed/30713110
https://doi.org/10.1093/biomet/ast004
https://doi.org/10.1214/15-AOS1363
https://doi.org/10.1093/bioinformatics/btab757
http://www.ncbi.nlm.nih.gov/pubmed/34734969
https://doi.org/10.1371/journal.pcbi.1009486

