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In order to understand the link between substantia nigra pars compacta (SNc) cell

loss and Parkinson’s disease (PD) symptoms, we developed a multiscale computational

model that can replicate the symptoms at the behavioural level by incorporating the

key cellular and molecular mechanisms underlying PD pathology. There is a modelling

tradition that links dopamine to reward and uses reinforcement learning (RL) concepts to

model the basal ganglia. In our model, we replace the abstract representations of reward

with the realistic variable of extracellular DA released by a network of SNc cells and

incorporate it in the RL-based behavioural model, which simulates the arm reaching task.

Our results successfully replicated the impact of SNc cell loss and levodopa (L-DOPA)

medication on reaching performance. It also shows the side effects of medication, such

as wearing off and peak dosage dyskinesias. The model demonstrates how differential

dopaminergic axonal degeneration in basal ganglia results in various cardinal symptoms

of PD. It was able to predict the optimum L-DOPAmedication dosage for varying degrees

of cell loss. The proposed model has a potential clinical application where drug dosage

can be optimised as per patient characteristics.

Keywords: levodopa, dopamine, basal ganglia, reinforcement learning, behavioural model, substantia nigra pars

compacta, Parkinson’s disease

INTRODUCTION

Parkinson’s disease is the second most prominent neurodegenerative disease after Alzheimer’s
(Gonzalez-Rodriguez et al., 2020; Marino et al., 2020; Muddapu and Chakravarthy, 2021). The
onset of the disease is characterised by shaky movements, the rigidity of joints, unregulated
movements, and even loss of smell (Morley and Duda, 2010; Fullard et al., 2017; Armstrong and
Okun, 2020; Balestrino and Schapira, 2020; Goldman and Guerra, 2020; Marino et al., 2020). The
major cause of Parkinson’s disease (PD) is the death of dopaminergic neurons in substantia nigra
pars compacta (SNc) (Michel et al., 2016; Surmeier, 2018; Muddapu et al., 2020a). Dopamine
(DA) deficiency due to SNc cell loss manifest as the cardinal PD symptoms that include tremor,
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rigidity, bradykinesia, and postural imbalance (Bereczki,
2010; Poewe et al., 2017; Balestrino and Schapira, 2020).
Epidemiological data from the United States alone indicates
that there has been an exponential growth of people suffering
from PD over the last few decades (Dorsey et al., 2018; Marras
et al., 2018). However, the exact cause of this cell death is still
not known. Various lines of investigation, experimental and
computational, are in progress and hopefully, we will be able
to narrow down the roots of this disease (Pissadaki and Bolam,
2013; Pacelli et al., 2015; Fu et al., 2018; Giguère et al., 2019;
Muddapu et al., 2019, 2020a,b; Anilkumar et al., 2020; Gonzalez-
Rodriguez et al., 2020; Muddapu and Chakravarthy, 2021).
Understanding the cause and effect relationship between the
underlying pathology and symptoms of any neurological disease
has fundamental challenges since the roots of the disease are at
the molecular and cellular level while the symptoms are seen at
the behavioural level (Bakshi et al., 2019). Hence it is important
to have a multi-scale model that spans molecular mechanisms to
behavioural outputs. With this motivation in mind, we present
a computational model that relates DA deficiency in PD to
motor symptoms in ON and OFF conditions of medication. As
an example of drug action, we simulate the effect of levodopa
(L-DOPA) drug administration in our model.

The major ingredients of this computational modelling
approach include a behavioural simulation of reaching task
that replicates normal and parkinsonian movements, the basal
ganglia cortico-motor circuitry that will drive the movements,
a dopaminergic subsystem that modulates the control circuitry
of the basal ganglia (BG), and pharmacological intervention of
L-DOPA medication.

Behavioural Simulation and the
Cortico-Basal Ganglia Circuitry
Reaching movements is considered as one of the signatures
of planned coordinated movement. Insights into the modelling
approaches to these coordinated movements of the arm using
the control feedback approach were inspired from previous
modelling studies (Fitts, 1954; Morasso, 1981; Knill and Pouget,
2004; Körding and Wolpert, 2004; Todorov, 2004; Shadmehr
and Krakauer, 2008). These studies didn’t represent the neural
correlates underlying the functionality. Later, neural correlates
behind coordinated movements of arm (Doya, 1999; Nakahara
et al., 2001; Hikosaka et al., 2002) and a reinforcement
learning-based two-link armmodel with kinetic parameters were
developed (Izawa et al., 2004). In this study, we are trying the
bridge the molecular level representation of dopamine to the
behavioural level representation of motor movements.

Basal Ganglia and Motor Learning
The interactions between the cortex and BG play a very important
role in motor learning. It is through these interactions that
the decision is made between two competing signals—one
favouring the direction of movement and the other suppressing
the movement. In order to facilitate this process, an action
selection mechanism happens in BG subcortical structure, globus
pallidus interna (GPi). The action selectionmechanism of BG has
been explored by various research groups (Gurney et al., 2001;

Humphries et al., 2006; Bogacz and Gurney, 2007). Before the
action selection takes place at GPi, the signal is forwarded to
the GPi through distinct parallel projections from the striatum
facilitated by DA receptor type 1 (D1) and DA receptor type 2
(D2) of medium spiny neurons (MSNs) that are modulated using
the dopaminergic input from the SNc (Moustafa et al., 2016;
Chakravarthy andMoustafa, 2018). In this study, we explored the
role of DA in BG functioning and motor learning.

Dopamine and BG Pathways
Dopaminergic input from the SNc neurons modulates the DA
receptors present in the striatal neurons, the input nuclei of
the BG differentially. The striatum consists of the D1 and
D2 expressing MSNs that project via two different pathways.
D1-MSN neurons project along the direct pathway, D2-MSNs
project along the indirect pathway. The direct pathway projects
directly to the output nuclei, GPi and substantia nigra pars
reticulata (SNr), whereas the indirect pathway projects to the
output nucleus, GPi, via globus pallidus externa (GPe), and
subthalamic nucleus (STN). DA release from SNc neurons
maintains the balance between activation of direct and indirect
pathways. In order to understand the effect of DA deficiency
as in PD conditions or the mechanism of DA replenishment
by administration of L-DOPA, we need to understand DA
synthesis, uptake, and release, which was explored in this study
(Chakravarthy andMoustafa, 2018; Muddapu and Chakravarthy,
2021).

Dopamine Deficiency and L-DOPA
Medication
Dopamine (DA) deficiency due to SNc cell loss manifest
as the cardinal PD symptoms that include tremor, rigidity,
bradykinesia, and postural imbalance (Bereczki, 2010; Poewe
et al., 2017; Balestrino and Schapira, 2020). L-DOPA is one of the
first-line treatment methodologies for PD. The effect of L-DOPA
medication on DA turnover processes in SNc terminal (Best et al.,
2009; Reed et al., 2012) and its effects on neural systems of BGwas
modelled (Baston et al., 2016). However, the effect of L-DOPA
medication at the behavioural level has not been explored. In
this study, we explored the effect of DA deficiency and L-DOPA
intervention on behavioural output.

In this paper, we present a multiscale model of the cortico-
BG system to simulate arm reaching movements under normal,
parkinsonian, and L-DOPAmedication conditions. At the lowest
level, the intracellular molecular pathways of SNc cells are
modelled so as to capture dopamine synthesis, uptake, and
release. At the next level, the BG circuitry is modelled using rate-
coded neurons which are cast within the reinforcement learning
framework with striatum acting as the neural correlate for critic
and the direct and indirect pathways facilitating exploitation
and exploration, respectively. At the highest level, arm reaching
movements are modelled by a two-link arm model driven by a
sensory-motor cortical loop.

This article is organised into multiple sections. Section
Materials and methods describes the model architecture,
equations, and methods. Here we discuss various functional
loops that constitute the model and how they are interconnected.
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This section also covers the integration of pharmacological
intervention. In section Results we showcase the results from the
model starting with training the model, simulating the behaviour
of a control subject, replicating the PD ON condition and some
of the cardinal symptoms, assessing the performance in terms of
reaching time, and verifying the effect of L-DOPA therapeutic
intervention. The model results also gave an indicator of how
to optimise the drug dosage. Section Discussion discusses the
simulation results in detail and presents the potential future
scope and based on that the conclusion derived is given in
section Conclusions.

MATERIALS AND METHODS

The proposed multiscale cortico-basal ganglia (MCBG) model
was able to simulate the arm reaching in normal and
Parkinsonian conditions which include some of the cardinal
symptoms of PD (Figure 1). In addition, the effect of L-DOPA
medication on arm reaching in PD condition was simulated
(Supplementary Figure 1).

The proposed model can be broadly described in three
parts. (i) Outer loop—motor-sensory loop, (ii) Inner loop—
cortico-basal ganglia loop, and (iii) Central loop—nigrostriatal
loop (Figure 2). The outer loop consists of the motor cortex
(MC), motor neurons (MNs), arm, proprioceptive cortex (PC),
and prefrontal cortex (PFC). The inner loop consists of MC,
thalamus, and BG nuclei comprised of the striatum, GPi, GPe,
and STN. The central loop consists of striatum and SNc, which
plays an important role in simulating PD conditions, where
nigrostriatal and nigrosubthalamic pathways are affected by SNc
cell loss. For L-DOPA medication, a pharmacokinetic module
was formulated where input will be L-DOPA dosage given to
the PD patient and output will be the amount of DA released
in the striatum during the medication. The subsequent sections
describe the dynamics involved in each of these three loops.

Outer Loop—Sensory-Motor Loop
The functional pathway of the outer loop is shown in Figure 2A.
The outer loop consists of a two-link arm model driven by
MNs. MNs receive motor commands from MC. The end effector
position of the arm is sensed by PC and it forwards the signal
to MC, which receives signals from PFC and BG. MC issues the
motor commands based on the integration of incoming signals.

Arm Model
The kinetic model of the two-joint arm simulates the movement
of the arm in two-dimensional space (Izawa et al., 2004;
Zadravec and Matjačić, 2013; Supplementary Figure 2). Each
joint (shoulder and elbow) is controlled by an agonist (Ag)
and antagonist (An) muscle pair where the shoulder joint is
controlled by anterior deltoid (shoulder flexor,M1) and posterior
deltoid (shoulder extensor, M2) and elbow joint is controlled by
brachialis (elbow flexor,M3) and triceps brachii (elbow extensor,
M4) (Jagodnik and van den Bogert, 2010). The activations to these
muscle groups (φMN) are transformed into joint angles for both
shoulder and the elbow as follows,

θ
JA
S (t) =

(

φMN
SAg

(t)− φMN
SAn

(t)
) π

2
+
π

2
(1)

θ
JA
E (t) =

(

φMN
EAg

(t)− φMN
EAn

(t)
) π

2
+
π

2
(2)

where, θ JAS and θ JAE are the joint angles of shoulder and elbowwith
respect to the x-axis (Supplementary Figure 1) and shoulder-
length

(

lS
)

, respectively, in two-dimensional space, φMN
SAg

is the

muscle activation of shoulder agonist muscle, φMN
SAn

is the muscle

activation of shoulder antagonist muscle, φMN
EAg

is the muscle

activation of elbow agonist muscle, and φMN
EAn

is the muscle
activation of the elbow antagonist muscle.

The coverage of the arm in two-dimensional space is
controlled by these joint angles. The joint angles are used to
calculate the muscle lengths for both shoulder and elbow as
given below.
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where, µS
Ag , µ

S
An, µ

E
Ag , and µ

E
An are the agonist and antagonist

muscle lengths of shoulder and elbow, respectively, aS is the
distance between the shoulder join centre andM1 orM2 moment
lever, bS is the distance between the shoulder joint centre andM1

orM2 moment lever, aE is the distance between elbow joint centre
and M3 or M4 moment lever, and bE is the distance between
elbow joint centre andM3 orM4 moment lever.

Using these muscle lengths in the form of a four-dimensional

vector
(

ML = [µS
Ag µ

S
An µ

E
Ag µ

E
An]
)

, a sensory (proprioceptive)

map of the arm was generated. The end effector position of
the arm

(

Xarm =
[

xarm1 xarm2

])

in the two-dimensional space is
calculated as,
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where, θ JAS and θ JAE are the joint angles of shoulder and elbowwith
respect to the x-axis (Supplementary Figure 1) and shoulder-
length

(

lS
)

, respectively, in two-dimensional space, lS is the
distance between the shoulder joint centre (S) and elbow joint
centre (E), lE is the distance between the elbow joint centre (E)
and end effector (H), aS is the distance between the shoulder joint
centre and M1 or M2 moment lever, µS

Ag , µ
S
An, µ

E
Ag , and µ

E
An are

the agonist (M1 orM3) and antagonist (M2 orM4) muscle lengths
of shoulder and elbow, respectively.
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FIGURE 1 | The model architecture of multiscale cortico-basal ganglia model for arm reaching. SNc, substantia nigra pars compacta; GPe, globus pallidus externa;

GPi, globus pallidus interna; STN, subthalamic nucleus; Thal, thalamus; MC, motor cortex; MN, motor neuron; PC, proprioceptive cortex; PFC, the prefrontal cortex.

X targ, the target position; Xarm, the current arm position; φMN, the motor neuron activations; ML, muscle lengths; Igaba, inhibitory GABAergic current; DAe, extracellular
dopamine; G (t), the MC output; G (t+ 1), the BG-derived activity of thalamus.

Proprioceptive Cortex
The proprioceptive cortex (PC) is modelled as a self-organising
map (SOM) (Kohonen, 2001) of size NPC x NPC where the
sensory map of the arm was generated. Using muscle length
vector (ML (t)) from the arm model (Equation 9) as a feature
vector, PC SOM was trained. The activation of a single node (i, j)
in the PC SOM is given as,

UPC
ij (t) = exp

(

−
∥

∥ML (t)−WPC,ij
∥

∥

2

σ 2
PC

)

(10)

where,WPC,i is the weight of the connection between the muscle
length vector and ith the neuron of the two-dimensional PC
network, ML is the muscle length vector and σPC is the width of
the Gaussian response of PC SOM.

The Prefrontal Cortex
The prefrontal cortex (PFC) encodes the goal position where, in
real-time, the goal information is formed using the visual sensory
feedback, which is passed on to the frontal areas. In our current
model, we fix the goal or target position and denote it by Xtarg .
The motor command initially is driven by the PFC as the PFC
specifies the goal to be reached. Similar to the PC, the PFC SOM
is trained using the target position vector as a feature vector.
The input features of the PFC are the spatial locations where
the arm can possibly reach in the two-dimensional space. The
target locations that produce the activation in the PFC network
is given as.

UPFC
ij (t) = exp

(

−
∥

∥Xtarg (t)−WPFC,ij
∥

∥

2

σPFC2

)

(11)

where, WPFC,ij are the weight of the connection between the

target position vector and (i, j)th the neuron of the two-
dimensional PFC network, Xtarg is the target position and σPFC
is the width of the Gaussian response of PFC SOM.

Motor Cortex
Motor cortex (MC) is modelled as a combination of SOM and
continuous attractor neural network (CANN) (Trappenberg,
2005) of size NMC x NMC. This type of architecture of MC is
used to account for two distinct characteristics of cortical areas
viz., low dimensional representation of input space and dynamics
based on the connectivity in these cortical regions. A dynamic
model like CANN is employed to facilitate the integration of
multiple afferent inputs received from the PC, the BG, and PFC.
The output activity of the MC CANN (GMC) is defined by,

GMC (t) =
g2MC

1+
(

2π
N2
MC

)

bMC
∑

g2MC

(12)

where, gMC is the internal state of MC CANN, NMC is the size of
MC network, bMC is the constant term.

The internal state of the MC CANN
(

gMC

)

is given by,

τMC
dgMC

dt
= −gMC +WC

MC ⊗ GMC + IMC (13)
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FIGURE 2 | Different structural and functional loops of the proposed multiscale cortico-basal ganglia model. (A) Outer loop, sensory-motor loop; (B) Inner loop,

cortico-basal ganglia loop; (C) Central loop, nigrostriatal loop. SNc, substantia nigra pars compacta; GPe, globus pallidus externa; GPi, globus pallidus interna; STN,

subthalamic nucleus; STR, striatum; Thal, thalamus; MC, motor cortex; MN, motor neuron; PC, proprioceptive cortex; PFC, the prefrontal cortex. X targ, the target

position; Xarm, the current arm position; φMN, the motor neuron activations; ML, muscle lengths; Igaba, inhibitory GABAergic current; DAe, extracellular dopamine; G (t),
the MC output; G (t+ 1), the BG-derived activity of thalamus; VSNc, the voltage membrane of SNc neuron; Jm,Ca, the calcium flux of SNc neuron as a function of VSNc;
Jsynt, the dopamine synthesis flux as a function of calcium; Prel , the probability release of dopamine extracellularly as a function of calcium.

where, CMC is the weight kernel representing lateral connectivity
in MC CANN, which determines the local excitation/global
inhibition dynamics, GMC is the output activity of MC CANN,
IMC is the total input coming into MC CANN from PC, PFC, and
BG and⊗ represents the convolutional operation.

Lateral Connections in MC
The lateral connectivity in the MC CANN is characterised by
short-range (local) excitation and long-range (global) inhibition
whose dynamics are defined by the weight kernel

(

WC
MC

)

is
given by,

WC
MC,i,j = AC

lat exp

(

−
∥

∥(iMC − ih)+
(

jMC − jh
)
∥

∥

2

2
(

σC
lat

)2

)

− KC (14)

where,
[

iMC, jMC

]

are the location of the nodes in MC,
[

ih, jh
]

corresponds to the central node, AC
lat

is the strength of the

excitatory connections, KC is the global inhibition constant and
σC
lat

is the radius of the excitatory connections.

Total Inputs Into MC
The total input (IMC) coming into MC CANN from PC
(information about the current position of the arm), PFC
(information about target position), and BG (error feedback
signal) is given by,

IMC (t) = APCGPC (t)+ APFCGPFC (t)+ ABGGBG (t) (15)

where, APC, APFC, ABG are the respective gains of PC, PFC, and
BG, GPC, GPFC, GBG are the output activities of PC-derived SOM
part of MC, PFC-derived activation part of MC, and BG-derived
network activity of thalamus.

PC activity is used to generate low-level feature maps in MC
using the SOM algorithm. The activation of the (i, j)thnode in the
SOM part of the MC

(

GPC,ij
)

is given as,
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GPC,ij (t) = exp

(

−
∥

∥UPC (t)−WMC,ij
∥

∥

2

σ 2
MC

)

(16)

where, UC is the output activity of PC SOM network, WMC,i is
the weight of the connection between the PC SOM network and
ith neuron of the two-dimensional MC SOM network, and σMC is
the width of the Gaussian response of MC SOM.

The input from PFC to MC (GPFC) is the product of weight
matrix (WPFC→MC) and the output activity of PFC SOM is
given by,

GPFC (t) = WPFC→MC∗U
PFC (t) (17)

where, UPFC is the output activity of the PFC SOM network,
WPFC→MC is the weight matrix between PFC and MC.

In an earlier line of modelling studies, we have shown that the
classical Go-NoGo interpretation of the functional anatomy of
the BG must be expanded to Go-Explore-NoGo, in view of the
putative role of the Indirect Pathway in exploration (Sridharan
et al., 2006; Chakravarthy and Balasubramani, 2014). This series
of models had resulted in the so-called Go-Explore-NoGo policy,
which refers to a stochastic hill-climbing performed on the value
function computed inside the BG (Magdoom et al., 2011). When
the arm reaches the target (ǫ < 0.1), the connections between
the PFC and MC are trained by,

WPFC→MC = ηPFC→MC

(

GMC
targ (t)− GMC

PFC (t)
)

UPFC (t) (18)

where, ηPFC→MC is the learning rate between PFC and MC, GMC
targ

is the MC activation required for the arm to reach the target, and
GMC
PFC (GPFC) is the MC activation due to PFC.

Motor Neurons
The output activity of MC CANN projects to the MN layer which
consists of four MNs that drives four muscles of the arm whose
activation is given by,

φMN
= AMNWMC→MNGMC (t) (19)

where, AMN is the gain of MN, WMC→MN is the weight matrix
betweenMCCANN andMN layer, andGMC is the output activity
of MC CANN.

To close the sensory-motor loop, we perform a comparison
with the initial activation to the MN layer that was used to
produce desired activation φMN

D (t). The weights between the
MN and MC are trained in a supervised manner by comparing
the network-derived MN activation φMN (t) to the desired
activation φMN

D (t). This gives a loop that is consistent in mapping
the external arm space to the neuronal space and vice. The
connection between MC and MN is trained by,

1WMC→MN = ηMC→MN

(

φMN
D (t)− φMN (t)

)

GMC (t) (20)

where, ηMC→MN is the learning rate between MC and MN, φMN
D

is the desired MN activation required for the arm to reach the
target and φMN is the network-derived MN activation due to
MC, and GMC is the output activity of MC CANN. The training
schema for the outer loop (sensory-motor loop) is described in
Supplementary Information.

Inner Loop—Cortico-Basal Ganglia Loop
The functional pathway of the inner loop is shown in Figure 2B.
The inner loop consists of MC, BG, and thalamus. MC receives
information from BG via the thalamus. MC sends information
to BG based on the integration of incoming signals received
from PFC (target goal position, Xtarg), PC (current end-effector
position of the arm, Xarm) and BG (via thalamus, error feedback
signal, GBG).

Basal Ganglia
Basal ganglia (BG) consists of the striatum, GPe, GPi, STN, and
SNc. The output signal from BG provides the necessary control
for the arm to reach the target by modulating the MC activity.
The output of the MC is as given in Equation 12.

Value Computation and Stochastic Hill Climbing
The signal from the PC contains information about the current
end-effector position of the arm (Xarm) whereas the signal from
PFC contains the target goal position

(

Xtarg
)

. These two signals
are combined in the BG to form a value function, Varm (t), that
represents the error between the desired and the actual positions
of the hand as,

Varm (t) = exp

(

−
∥

∥Xtarg − Xarm
∥

∥

2

σ 2
V

)

(21)

where, Xtarg is the target goal position, Xarm is the current end-
effector position of the arm, σV is the spatial range over which the
value function is sensitive for that particular target.

The output of the BG performs a stochastic hill-climbing
over the value function (Chakravarthy and Moustafa, 2018;
Narayanamurthy et al., 2019) and drives the MC to facilitate
the arm in reaching the target. The value difference (δV) which
is computed by comparing the current and previous values is
given as,

δV = Varm (t)− Varm (t − 1) (22)

where, Varm (t) is the current value and Varm (t − 1) is the
previous value.

Based on this value difference signal (δV), the striatum will
send the inhibitory GABAergic current

(

Igaba
)

to the SNc neurons
while the SNc neurons will in turn release dopamine into the
extracellular space (DAe), which is absorbed by the striatum.
DAe is transformed into δSNcV . δSNcV modulates the selection of
direct and indirect pathways in the BG. The dynamics between
the striatum and the SNc are described in greater detail in the
subsequent section, “The Central Loop.”

Action Selection
Striatum: The resultant δSNcV acts as a modulatory signal on D1R-
MSNs and D2R-MSNs of the striatum, which processes the input
signal, 1GMC (t), and send outputs yD1 & yD2 via direct and
indirect pathways, respectively.
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yD1 = λD1WCTX→D11GMC (23)

yD2 = λD2WCTX→D21GMC (24)

λD1 =
1

1+ exp
(

−aD1
(

δSNcV − θD1
)) (25)

λD2 =
1

1+ exp
(

−aD2
(

δSNcV − θD2
)) (26)

where, λD1 and λD2 represent the effect of dopamine (value
difference) on the D1 and D2 MSNs, respectively, WCTX→D1

and WCTX→D2 represent connections between cortex and D1
MSNs and cortex andD2MSNs, respectively,1GMC is the output
activity of MC, δSNcV is the SNc-derived value difference, θD1 and
θD2 are the thresholds of the D1 and D2 MSNs, respectively,
aD1 and aD2 are the sigmoidal gains of the D1 and D2 MSNs,
respectively. Since aD1 = −aD2, the activation of direct and
indirect pathways depends on the δSNcV such that when δSNcV
is positive (negative) the direct (indirect) pathway is selected.
Note that the λD1 and λD2 parameters in Equations (25–26)
are dependent only on δSNcV (“tonic dopamine”) and not on its
temporal derivative (“phasic dopamine”).

STN-GPe subsystem: In the indirect pathway, D2 MSNs of the
striatum project to the GPe, where yD2 influences GPe neural
dynamics, which in turn influences STN neural dynamics. STN-
GPe forms a loop with inhibitory projections from GPe to STN
and excitatory projections from STN to GPe. Such excitatory-
inhibitory pairs of neuronal pools have been shown to exhibit
limit cycle oscillations (Gillies et al., 2002) which was modelled as
coupled Van der Pol oscillator (Kawahara, 1980). The dynamics
of the STN-GPe system is defined as,

τGPe
dxGPe

dt
= −xGPe

+εg
∑∑

WglatxGPe

+wsgySTN + yD2 (27)

τSTN
dxSTN

dt
= −xSTN

+εs
∑∑

WslatySTN − wgsxGPe (28)

ySTN = tanh (λSTNxSTN) (29)

where, xGPe and xTN are the internal states of GPe and STN
neurons, respectively, ySTN is the output of STN neuron, εg and εs
are the strengths of lateral connections in GPe and STNnetworks,
respectively, Wglat and Wslat are weight kernels representing
lateral connectivity in GPe and STN networks, respectively, yD2
is the output of D2 MSN, τGPe and τSTN are the time constants of
GPe and STN, respectively, wsg is the connection strength from
STN to GPe, wgs is the connection strength from GPe to STN,
and λSTN is the parameter which controls the slope of the sigmoid
in STN.

Lateral Connections in STN-GPe: The lateral connectivity in
STN or GPe network is modelled as Gaussian neighbourhood

(Muddapu et al., 2019) which is defined by the weight kernel
(

Wglat/slat

)

as,

W
glat/slat

i,j,k,l = exp






−

d2
i,j,k,l

(

σ
g/s

lat

)2






(30)

d2i,j,k,l =
(

ig/s − kg/s
)2

+
(

jg/s − lg/s
)2

(31)

where, d2
i,j,k,l is the distance of neuron

(

i, j
)

from a centre

neuron
(

k, l
)

, σ
g/s

lat
is the spread of the lateral connections for

GPe or STN network. The detailed analysis of the STN-GPe
subsystem is described in section STN-GPe Dynamics of the
Supplementary Material.

GPi: The signals arriving from D1 MSN
(

yD1
)

and STN
(

ySTN
)

via direct and indirect pathways, respectively, combines in GPi
which is defined as,

yGPi = AD1yD1 − AD2ySTN (32)

where, yD1 is the output of D1 MSN via direct pathway, ySTN is
the output of STN via indirect pathway, AD1 and AD2 are the
gains of direct and indirect pathways, respectively.

Thalamus
The combined inputs

(

yGPi
)

at GPi from direct
(

yD1
)

and indirect
(

ySTN
)

pathways are then passed on to the thalamus. To integrate
and philtre the information from the GPi output, the thalamus
was modelled as a CANN which is defined as,

Gthal (t) =
g2
thal

1+

(

2π
N2
thal

)

bthal
∑

g2
thal

(33)

where, gthal is the internal state of thalamus CANN, Nthal is the
size of thalamus network, bthal is the constant term.

The internal state of the thalamus CANN
(

gthal
)

is given by,

τthal
dgthal

dt
= −gthal +WC

thal ⊗ Gthal + IBG (34)

IBG = yGPi (35)

GBG = Gthal (36)

where,WC
thal

is the weight kernel representing lateral connectivity
in thalamus CANN, which determines the local excitation/global
inhibition dynamics, Gthal is the output activity of thalamus
CANN, IBG is the total input coming into thalamus CANN
from BG, yGPi is the output of GPi, GBG is the BG-derived
network activity of the thalamus, and ⊗ represents the
convolution operation.

Central Loop—Nigro-Striatal Loop
The functional pathway of the central loop is as represented
in Figure 2C. The central loop consists of the striatum (the
input nucleus of BG) and SNc. SNc projects to the striatum via
dopaminergic axons (DAe) and striatum in turn projects to SNc
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via inhibitory GABAergic axons
(

Igaba
)

. Based on the sensory
feedback signal received from the PC (Xarm) and the target
information from the PFC

(

Xtarg
)

, the striatum performs value
computation (Varm). Based on the values from current (Varm (t))
and previous (Varm (t − 1)) instants, the value difference (error,
δV ) is computed. Based on the value difference (δV), appropriate
amount of GABAergic current

(

Igaba
)

is sent to SNc, which in
turn releases dopamine into the striatum (DAe) accordingly.

SNc

SNc Neuron (Soma)
The detailed single-compartmental biophysical model of the SNc
neuron is adopted fromMuddapu and Chakravarthy (2021). The
model incorporates all the essential molecular level mechanisms
such as ion channels, active pumps, ion exchangers, dopamine
turnover processes, etc.

Based on the value difference signal (δV), the inhibitory
GABAergic current

(

Igaba
)

, flows from the striatum to SNc.
Igaba along with excitatory glutamatergic current

(

Inmda/ampa

)

contributes to the overall synaptic input current flux
(

Jsyn
)

to
the SNc neurons. Jsyn regulates the membrane voltage of the SNc
along with the sodium, calcium, and potassium fluxes as given by,

d (VSNc)

dt
=

F∗volcyt

Csnc∗ARpmu
∗
[

Jm,Na + 2∗Jm,Ca + Jm,K + Jsyn
]

(37)

Jsyn = −
1

F∗volcyt
∗
(

Igaba + Inmda/ampa

)

(38)

Igaba = F (δV) (39)

where, F is the Faraday’s constant, Csnc is the SNc membrane
capacitance, volcyt is the cytosolic volume, ARpmu is the cytosolic
area, Jm,Na is the sodium membrane ion flux, Jm,Ca is the calcium
membrane ion flux, Jm,K is the potassiummembrane ion flux, Jsyn
is the overall input current flux, δV is the value difference, Igaba
is the inhibitory GABAergic current flux, and Inmda/ampa is the
excitatory glutamatergic (NMDA/AMPA) current flux.

The membrane voltage of SNc (VSNc) regulates the calcium
membrane ionic flux which results in calcium oscillations inside
SNc neuron. The calciummembrane ionic flux (Jm,Ca) is given by,

Jm,Ca = −
1

zCa∗F∗volcyt
∗
(

ICaL + 2∗Ipmca − 2∗INaCaX
)

(40)

where, F is the Faraday’s constant, zCa is the valence of calcium
ion, volcyt is the cytosolic volume, ICaL is the L-type calcium
channel current, Ipmca is the ATP-dependent calcium pump
current, and INaCaX is the sodium-potassium exchanger current.

The intracellular calcium oscillation or dynamics ([Cai]) is
defined as,

d [Cai]

dt
= Jm,Ca − Jcalb − 4∗Jcam (41)

where, Jm,Ca is the flux of calcium ion channels, Jcalb is the
calcium buffering flux by calbindin, and Jcam is the calcium
buffering flux by calmodulin. A detailed description of the SNc

neuron is provided in section Biophysical Model of SNc of the
Supplementary Material.

SNc Terminal
The three-compartmental biochemicalmodel of the SNc terminal
is adopted from Muddapu and Chakravarthy (2021). The SNc
terminal model incorporates all the necessary molecular-level
mechanisms of the dopamine turnover process such as synthesis,
packing, release, and reuptake.

Calcium-Dependent Dopamine Release: Dopamine (DA)
synthesis and release by SNc terminal depend on calcium
oscillations. The flux of dopamine release (Jrel) from the SNc
terminal is given by,

Jrel = ψ∗nRRP∗Prel ([Cai]) (42)

where, [Cai] is the intracellular calcium concentration in the
SNc terminal, Prel is the release probability as a function of
intracellular calcium concentration, nRRP is the average number
of readily releasable vesicles, and ψ is the average release flux per
vesicle within a single synapse.

Calcium-Dependent Dopamine Synthesis: The flux of calcium-
dependent dopamine synthesis is defined as,

Vsynt (Cai) = Vsynt∗
[Cai]4

K4
synt + [Cai]4

(43)

where, Ksynt is the calcium sensitivity, Vsynt is the maximal
velocity for L-DOPA synthesis, and [Cai] is the intracellular
calcium concentration.

The flux of synthesised L-DOPA, Jsynt , whose velocity is the
function of intracellular calcium concentration and L-DOPA
synthesis is regulated by the substrate (TYR) itself, extracellular
DA (via autoreceptors) and intracellular DA concentrations, is
given by,

Jsynt =
Vsynt

1+ KTYR
[TYR]∗

(

1+ [DAc]
Ki,cda

+
[DAe]
Ki,eda

) (44)

where, Vsynt is the velocity of synthesising L-DOPA, [TYR]
is the tyrosine concentration in terminal bouton, KTYR is
the tyrosine concentration at which half-maximal velocity was
attained, Ki,cda is the inhibition constant on KTYR due to
cytosolic DA concentration, Ki,eda is the inhibition constant
on KTYR due to extracellular DA concentration, [DAc] is the
cytoplasmic DA concentration, and [DAe] is the extracellular
DA concentration. A detailed description of the SNc terminal is
provided in section Biochemical Model of SNc Terminal of the
Supplementary Material.

Extracellular Dopamine: The three major mechanisms that
determine the dynamics of extracellular DA ([DAe]) in the
extracellular compartment (ECS) given by,
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d([DAe])

dt
= Jrel − JDAT − Joeda (45)

δSNcV = F (DAe) (46)

where, Jrel represents the flux of calcium-dependent DA release
from the DA terminal, JDAT represents the unidirectional flux of
DA translocated from the ECS into the intracellular compartment
(cytosol) via DA plasma membrane transporter (DAT), Jo

eda
represents the outward flux of DA degradation, which clears
DA from ECS, and δSNcV is the SNc-derived value difference. A
detailed description of the SNc terminal is provided in section
Biophysical Model of SNc of the Supplementary Material.

The cortical input to the striatum is modulated by the δSNcV
derived from the network of SNc neurons. When δSNcV is high,
the direct pathway will be selected, else the indirect pathway
is selected.

Time Scales of Various Loops
The time scales of various loops in the model are as given in
Table 1. The STN-GPe loop runs with a timestep (dt) of 0.02ms.
Once the STN-GPe loop runs for 2,500 iterations, one timestep
of the cortico-BG loop is run. Simultaneously, the SNc-STR loop
which provides the modulatory signal for the selection of the
Go-NoGo pathway in the striatum is run. For each timestep of
the cortico-BG loop, STN-GPe and SNc-STR loops run 2,500
and 2,000 iterations, respectively. The total simulation time for
the arm reaching task (cortico-BG loop) is 5 s and if the arm
doesn’t reach the target in the stipulated timeframe of 5 s, the
trial is considered non-reachable. At the spatial level, the details
of different loops are given in Figure 2.

Simulating Parkinsonian Conditions
To simulate the Parkinsonian condition in the present model,
the number of neurons in the SNc population (network)
was reduced. In order to kill the SNc neuron, we clamped
their membrane voltage (VSNc) to resting membrane voltage
(−80mV). As the number of SNc neurons die the total amount of
dopamine (DAe) that is made available to the striatum decreases.
This influences the selection of the indirect pathway in the
BG system over the direct pathway resulting in pathological
conditions. In the present model, two types of PD conditions
were simulated: in the first type, SNc cell loss affects striatum
alone (PD1) and in the second type, SNc cell loss affects both
striatum and STN (PD2).

In normal conditions, the SNc-derived value difference
(

δSNcV

)

will be similar to the actual value difference computed (δV).
In case of PD1, the SNc-derived value difference

(

δSNcV

)

will be
lesser than the actual value difference computed (δV). In the case
of PD2, along with δSNcV < δV , δSNcV impacts the STN lateral
connections, thereby influencing the complexity of the STN-GPe
subsystem. The STN-GPe subsystem is an integral component
of the indirect pathway and is believed to play a major role in
exploratory behaviour (Sridharan et al., 2006; Chakravarthy and
Balasubramani, 2014).

In normal condition:

δSNcV = F (DAe)

DAe = SNc
(

Igaba, PSNc
)

; PSNc = 100%

Igaba = F (δV)

εs = F
(

δSNcV

)

(47)

In PD1 condition:

δSNcV = F (DAe)

DAe = SNc
(

Igaba, PSNc
)

; PSNc < 100%

Igaba = F (δV)

εs = F (δV) (48)

In PD2 condition:

δSNcV = F (DAe)

DAe = SNc
(

Igaba, PSNc
)

; PSNc < 100%

Igaba = F (δV)

εs = F
(

δSNcV

)

(49)

where, δSNcV is the SNc-derived value difference, δV is the value
difference computed, DAe is the extracellular dopamine, Igaba
is the inhibitory GABAergic current from the striatum, PSNc is
the percentage of SNc neurons, and εs is the lateral connection
strength in the STN network.

Levodopa Medication
When a drug is administered to a patient, the medication action
is broadly classified into two major branches: pharmacokinetics
(what the body does to the drug) and pharmacodynamics (what
the drug does to the body) (Shanbhag and Shenoy, 2020).

Pharmacokinetics
Pharmacokinetics deals with the absorption, distribution,
metabolism, and excretion of drugs. In the present study, we have
adapted a two-compartment pharmacokinetic model of levodopa
(L-DOPA) (Baston et al., 2016), which consists of central
and peripheral compartments (Figure 3). Orally consumed L-
DOPA is absorbed in the intestine and reaches the bloodstream.
The bloodstream carries the drug all over the body. Proteins
break down L-DOPA and around three-fourth of the drug
is deactivated before it even reaches the brain. The central
compartment where L-DOPA is administered and plasma L-
DOPA concentration was measured which is defined as,

VCC
d [LDOPACC]

dt
= k01LD0 + k21 [LDOPAPC]

−
(

k12 + k1e
)

[LDOPACC] (50)

where, VCC is the volume of the central compartment,
[LDOPACC] is the L-DOPA concentration in the central
compartment, LD0 is the L-DOPA dose (in milligramme),
[LDOPAPC] is the L-DOPA concentration in peripheral
compartment, k01 is the infusion rate of LD0 into the central
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FIGURE 3 | Schematic diagram of pharmacokinetics and pharmacodynamics of levodopa medication. BBB, blood-brain barrier; LDOPA, intracellular levodopa;

LDOPACC, levodopa in the central compartment; LDOPAPC, levodopa in the peripheral compartment; VCC, the volume of the central compartment; VPC, the volume of

the peripheral compartment; TYRe, extracellular tyrosine; TRPe, extracellular tryptophan; k21, rate constant from peripheral to central compartments, k12, rate constant

from central to peripheral compartments, k1e, total clearance rate constant from the central compartment, k01, the infusion rate of LD0 into the central compartment,

LD0, levodopa dose; Jaat, the flux of exogenous L-DOPA transported into the terminal through aromatic L-amino acid transporter; ECS, extracellular space; DAc,
cytosolic dopamine; DAv, vesicular dopamine; DAe, extracellular dopamine; TYR, tyrosine; TRYPOOL, tyrosine pool; HVA, homovanillic acid; bh2, dihydrobiopterin;

bh4, tetrahydrobiopterin; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide adenine dinucleotide phosphate hydrogen; TH, tyrosine

hydroxylase; DDR, dihydropteridine reductase; AADC, aromatic amino acid decarboxylase; VMAT, vesicular monoamine transporter; DAT, dopamine transporter;

AUTO, dopamine autoreceptors; MAO, monoamine oxidase; COMT, catecholamine methyltransferase.

compartment, k21 is the rate constant from peripheral to central
compartments, k12 is the rate constant from central to peripheral
compartments, and k1e is the total clearance rate constant from
the central compartment.

The interaction between plasma L-DOPA and other body
fluids, which occurs in the peripheral compartment, is defined as,

VPC
d [LDOPAPC]

dt
= k12 [LDOPACC]− k21 [LDOPAPC] (51)

where, VPC is the volume of the peripheral compartment,
[LDOPACC] is the L-DOPA concentration in the central
compartment, [LDOPAPC] is the L-DOPA concentration in
peripheral compartment, k21 is the rate constant from peripheral
to central compartments, and k12 is the rate constant from central
to peripheral compartments.

Pharmacodynamics
Pharmacodynamics deals with molecular, biochemical, and
physiological effects of drugs, including drug mechanism

of action, receptor binding (including receptor sensitivity),
postsynaptic receptor effects, and chemical interactions. In
the present study, we have adapted a three-compartment
dopaminergic terminal model (Reed et al., 2012) which consists
of extracellular, vesicular, and cytoplasmic compartments.

When L-DOPA medication is administered, the flux of
exogenous L-DOPA ([LDOPACC]) transported into the terminal
through aromatic L-amino acid transporter (AAT) while
competing with other aromatic amino acids [such as tyrosine
(TYR) and tryptophan (TRP)] (Reed et al., 2012) is given by,

Jaat = Vaat

∗
[LDOPACC]

(

Kldopae∗

(

1+
(

[TYRe]
Ktyre

)

+

(

[TRPe]
Ktrpe

))

+ [LDOPACC]
)

(52)

where,Kldopae is the extracellular L-DOPA concentration at which

half-maximal velocity was attained, Vaat is the maximal velocity
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with which extracellular L-DOPA was transported into the
cytosol, [LDOPACC] is the extracellular (central compartment)
L-DOPA concentration, [TYRe] is the extracellular TYR
concentration, [TRPe] is the extracellular TRP concentration,
Ktyre is the affinity constant for [TYRe], Ktrpe is the affinity
constant for [TRPe ].

The L-DOPA concentration ([LDOPA]) dynamics inside the
terminal is given by,

d([LDOPA])

dt
= Jaat − Jldopa + Jsynt (53)

where, Jaat represents the flux of exogenous L-DOPA
([LDOPACC]) transported into the cytosol, Jldopa represents
the conversion flux of exogenous L-DOPA ([LDOPACC]) into
dopamine, and Jsynt represents the flux of synthesised L-DOPA
from tyrosine. A detailed description of the dopaminergic
terminal is provided in section Biochemical model of
dopaminergic terminal of the Supplementary Material.

Timescales in the Model
Reaching movements, like several other behavioural events,
involve dynamics at multiple timescales: the neuronal activity
which is generally in milliseconds, and the actual movement
which unfolds over the order of seconds. In the present model,
the outer (sensory-motor) loop is assumed to run slightly slower
than the inner (cortico-basal ganglia) and central (nigrostriatal)
loops. As the dynamics of the STN–GPe loop in the indirect
pathway needs some time to settle, we run this loop for 2, 500
iterations (dt = 0.02 ms), before sending the output to the MC
(MC runs for 100 iterations with dt = 50 ms). Thus, a single
update of theMC activity happens after every 50ms during which
the BG dynamics run. Similarly, since the dynamics of the SNc
neuron needs some time to settle, we run the SNc neuron for
2, 000 iterations (dt = 0.025 ms), before sending the output to
the BG. Thus, a single update of the MC activity happens after
every 50 ms during which the SNc dynamics run. All the results
presented are at the timescale of the MC.

In the present model, the SNc neurons run in milliseconds
timescale whereas the pharmacokinetic-pharmacodynamic
model of L-DOPA medication runs in hourly timescale. In order
to show the drug effect, we sample various points across the
L-DOPA medication curve (Supplementary Figure 7.1) and
simulated the MCBG model for the arm reaching task for each
sampled point.

RESULTS

Here, we showcase the performance of the model by simulating
the PD condition and read out their effects on behavioural
outcomes (Figures 4, 5). Furthermore, demonstrates the effect
of differential dopaminergic axonal loss manifest into some of
the cardinal symptoms of PD (Figures 6, 7). Next, assessing
the performance in terms of reaching time and verifying the
effect of L-DOPA therapeutic intervention (Figures 8, 9). Finally,
describing the model results which gave an indicator of how
to optimise the drug dosage across the course of the disease
progression (Figures 10–12).

Testing Phase
The performance of the MCBG model was tested, the model
results were compared to that of the CBG model (Muralidharan
et al., 2018) and the experimental data (Majsak et al., 1998)
for both control and PD conditions. In the MCBG model, PD
conditions simulated were subdivided into two categories: in
PD1, the SNc cell loss impacts only striatum whereas in PD2, the
SNc cell loss impacts both striatum and STN. The MCBG and
CBGmodels were tested and the performance was evaluated with
respect to movement time, peak velocity, time-to-peak velocity,
and average velocity along with the experimental results. In the
control case, the MCBGmodel reaches the target in 0.46 ± 0.02 s
compared to the CBG model and the experimental subject which
reaches the target in 0.56 ± 0.1 s and 0.3432 ± 0.04 s, respectively
(Figure 4A, dark blue bar). The MCBG model obtained a peak
velocity of 2.23 ± 0.05 ms−1 compared to the CBG model and
experimental subject which obtained peak velocity of 1.88 ±

0.15 ms−1 and 2.15 ± 0.27 ms−1, respectively, during the arm
reaching toward the target in case of control (Figure 4C, dark
blue bar). The time taken to reach the peak velocity in the case
of control was 0.21 ± 0.02 s for the MCBG model, 0.29 ± 0.09 s
for the CBGmodel, and 0.19 ±0.02 s for the experimental subject
(Figure 4B, dark blue bar). Finally, the average velocities for
MCBG and CBG models were found to be 1.49 ± 0.05ms−1 and
1.26 ± 0.15ms−1, respectively, in the case of control (Figure 4D,
dark blue bar).

In the case of PD, the experimental subject recorded an
average movement time of 0.52 ± 0.63 s, respectively (Figure 4A,
cyan bar), while the CBG model reaches the target in 1.17 ±

0.63 s (Figure 4A, cyan bar) whereas the MCBG model took
1.88 ± 1.42 s and 1.6 ± 1.35 s for PD1 (Figure 4A, cyan bar)
and PD2 (Figure 4A, yellow bar), respectively. The experimental
subject recorded a peak velocity of 1.35± 0.18ms−1 (Figure 4C,
cyan bar) compared to the CBG model which obtained a peak
velocity of 1.74 ± 0.13 ms−1 (Figure 4C, cyan bar) whereas
the MCBG model obtained peak velocities of 1.18 ± 0.35 ms−1

(Figure 4C, cyan bar) and 0.98 ± 0.31 ms−1 (Figure 4C, yellow
bar), respectively, during the arm trajectory toward the target.
The time taken to reach the peak velocity in the PD case was
0.27 ± 0.03 s for the experimental subject (Figure 4B, cyan
bar), 0.35 ± 0.07 s for CBG model (Figure 4B, cyan bar) and
0.56 ± 0.28 s, and 0.79 ± 0.35 s in PD1 (Figure 4B, cyan bar)
and PD2 (Figure 4B, yellow bar) cases, respectively, for MCBG
model. Finally, the average velocity for the CBGmodel was found
to be 0.77 ± 0.21 ms−1 in PD (Figure 4D, cyan bar), and
the average velocities for the MCBG model were found to be
0.68 ± 0.27 ms−1 and 0.59 ± 0.23ms−1 in PD1 (Figure 4D,
cyan bar) and PD2 (Figure 4D, yellow bar), respectively.

Simulating Parkinsonian Conditions
To simulate PD conditions in the model, SNc cells were killed
and their effects on basal ganglia were considered in two aspects.
In the first scenario, only the striatum is affected by SNc cell
loss (PD1—cell loss affecting nigrostriatal pathway only) and
in the second scenario, both striatum and STN are affected by
SNc cell loss (PD2—cell loss affecting both nigrostriatal and
nigrosubthalamic pathways).
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FIGURE 4 | Comparison of performance of the proposed model (during the testing phase) with CBG model (Muralidharan et al., 2018) and experimental data adapted

from (Majsak et al., 1998). (A) Movement time, (B) Time-to-peak velocity, and (C) Peak velocity, (D) Average velocity. EXP, experiment; CBG, cortico-basal ganglia

model; MCBG, multiscale cortico-basal ganglia model; PD1, only striatum affected; PD2, both striatum and subthalamic nucleus affected; sec, second; m/sec, meter

per second.

Effect of SNc Cell Loss on MCBG Behavioural

Outcome
To assess the performance metrics with respect to dopaminergic
cell loss affecting striatum and both striatum and STN, a
comparison study was done with respect to the movement time,
peak velocity, time required to peak velocity, and average velocity
(Figure 5). In both cases (PD1 and PD2), the time required to
reach the target (Figure 5A) and time-to-reach the peak velocity
(Figure 5B) increases with an increase in SNc cell loss. In the
PD1 case, the peak velocity increases with an increase in SNc
cell loss when compared to the PD2 case where the peak velocity
decreases with an increase in SNc cell loss (Figure 5C). The
reason behind this discrepancy in both cases will be explored
in the next sections where one leads to tremor-like behaviour
and the other leads to rigidity-like behaviour. In both cases, the
average velocity across the trajectory decreases with an increase
in SNc cell loss (Figure 5D).

Differential Dopaminergic Axonal Degeneration

Manifests Into Various PD Motor Symptoms
Both the PD scenarios (PD1 and PD2) simulated in the model
can be attributed to differential degeneration of dopaminergic
projections to various targets in the basal ganglia, and how

degeneration manifests into various motor symptoms of PD.
In the control case, the arm reaches the target in 0.55 s
(Figure 6Ai) with the peak velocity of 1.91 ms−1 (Figure 6Aii).
The population activity of STN exhibits desynchronous activity
during the arm movement which is indicated in the STN
spectrogram (Figure 6Aiii) and synchrony (average value =

0.03) (Figure 6Aiv) (synchrony measure is described in section
Network analysis of the Supplementary Material). Dopamine
released by SNc neurons in the striatum during the arm reaching
peaked at ∼ 264 nM which was in the range of 150–400 nM
(Schultz, 1998; Figure 6Av).

In 25% PD1, the arm reaches the target in 1.5 s (Figure 6Bi)
with a reduced peak velocity of 0.71 ms−1, exhibiting
bradykinesia-like behaviour in the arm (Figure 6Bii). Population
activity of STN exhibits greater synchrony compared to control
case during the arm movement which is also indicated in STN
spectrogram (Figure 6Biii) and synchrony with an average value
of 0.11 (Figure 6Biv). Dopamine released by SNc neurons in the
striatum during the arm reaching peaked at ∼ 148 nM which
was lesser than in the control case (Figure 6Bv).

In 25% PD2, the arm reaches the target in 1.2 s (Figure 6Ci)
with the peak velocity of 0.71 ms−1, exhibiting bradykinesia-
like behaviour in the arm (Figure 6Cii). Population activity
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FIGURE 5 | Performance of arm reaching for various PD conditions across different percentages of SNc cell loss. (A) Movement time, (B) Time-to-peak velocity, (C)

Peak velocity, and (D) Average velocity. SNc, substantia nigra pars compacta; PD1, SNc cell loss affecting striatum only; PD2, SNc cell loss affecting both striatum

and subthalamic nucleus; sec, second; m.sec−1, metre per second.

FIGURE 6 | Differential dopaminergic axonal degeneration manifesting in terms of various PD motor symptoms. (A) Control, (B) 25% PD1, (C) 25% PD2, (D) 50%

PD1, (E) 50% PD2, (F) 75% PD1, and (G) 75% PD2, (i) Distance to target, (ii) Velocity of the arm, (iii) Spectrogram of STN population, (iv) Synchrony in STN

population, (v) Dopamine released by SNc extracellularly. SNc, substantia nigra pars compacta; STN, subthalamic nucleus; STR, striatum; DA, dopamine; PD,

Parkinson’s disease; sec, second; m/sec, meter per second; Hz, hertz; nM, nanomolar.
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FIGURE 7 | RMS acceleration with respect to the percentage loss of SNc cells. (A) RMS acceleration when SNc cell loss affecting STR. (B) RMS acceleration when

SNc cell loss affecting STR & STN. SNc, substantia nigra pars compacta; STN, subthalamic nucleus; STR, striatum; PD1, SNc cell loss affecting STR; PD2, SNc cell

loss affecting STR & STN; RMS, root mean squared; m/sec2, metre per second squared.

FIGURE 8 | Performance of the model (150mg L-DOPA and 62% SNc cell loss) compared with experimental study (∼140mg L-DOPA) (Nomoto et al., 2018) for

various PD conditions. (A) Movement time of PD1 MCBG model was compared with UPDRS Part III score of experimental group-2 after L-DOPA administration.

(B) Movement time of PD2 MCBG model was compared with UPDRS Part III score of experimental group-1 after L-DOPA administration. MCBG, multiscale

cortico-basal ganglia model; L-DOPA, levodopa; PD, Parkinson’s disease; PD1, when SNc cell loss affecting STR alone; PD2, when SNc cell loss affecting both STR

& STN; SNc, substantia nigra pars compacta; STR, striatum; STN, subthalamic nucleus; UPDRS, Unified Parkinson’s disease rating scale; Expt, experiment; mg,

milligramme; sec, second; hr, hour.

of STN exhibits desynchronous activity, same as control case
during the arm movement which is indicated in the STN
spectrogram (Figure 6Ciii) and synchrony with an average value
of > 0.01 (Figure 6Civ). Dopamine released by SNc neurons in
the striatum during the arm reaching peaked at∼ 154 nM which
was lesser than the control case (Figure 6Cv).

In 50% PD1, the arm reaches the target in 2.7 s (Figure 6Di)
with the peak velocity of 0.84 ms−1 showing tremor-like
behaviour in the arm (Figure 6Dii). Population activity
of STN exhibits low synchronous activity during the arm
movement which indicates in STN spectrogram (Figure 6Diii)
and synchrony with an average value of 0.17 (Figure 6Div).
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FIGURE 9 | Average time to reach the target for 150mg L-DOPA medication for various PD conditions. Average movement time for SNc cell loss of 25% (A,B), 37%

(C,D), 50% (E,F), 62% (G,H), and 75% (I,J) when SNc cell loss affecting STR (PD1) and STR & STN (PD2) during L-DOPA medication (administrated at the second

hour, indicated by red arrow). The performance of the model during L-DOPA medication is categorised into three regions based on movement time. Green

region—when the arm reaches the target within 2 s; Yellow region—when the arm reaches the target between 2 and 4 s; Red region—when the arm reaches the

target beyond 4 s. PD1, SNc cell loss affecting STR; PD2, SNc cell loss affecting STR & STN; SNc, substantia nigra pars compacta; STN, subthalamic nucleus; STR,

striatum; L-DOPA, levodopa; sec, second; hr, hour.

Dopamine released by SNc neurons in the striatum during the
arm reaching peaked at ∼ 101 nM which was lesser than the
control case (Figure 6Dv). In 50% PD2, the arm reaches the
target in 4.7 s (Figure 6Ei) with the peak velocity of 0.84 ms−1

as a result of cogwheel-like behaviour in the arm (Figure 6Eii).
The population activity of STN exhibits high synchronous
activity during the arm movement which indicates in the STN
spectrogram (Figure 6Eiii) and synchrony with an average value
of 0.55 (Figure 6Eiv). Dopamine released by SNc neurons in the
striatum during the arm reaching peaked at ∼ 90 nM which was
lesser than the control case (Figure 6Ev).

In 75% PD1, the arm did not reach the target within 5 s
(Figure 6Fi) with the peak velocity of 1.54 ms−1 displaying
a tremor-like behaviour in the arm (Figure 6Fii). Population
activity of STN exhibits low synchronous activity during the arm
movement which indicates in STN spectrogram with increased
power in 5 − 25 Hz region (Figure 6Fiii) and synchrony with
an average value of 0.15 (Figure 6Fiv). Dopamine released by
SNc neurons in the striatum during the arm reaching peaked at
∼ 51 nM which was lesser than the control case (Figure 6Fv). In
75% PD2, the arm did not reach the target within 5 s (Figure 6Gi)
with zero peak velocity as a result of the rigidity-like state
of the arm (Figure 6Gii). Population activity of STN exhibits
high synchronous activity during the arm movement which is
indicated in STN spectrogramwith increased power in 15−50Hz
region (Figure 6Giii) and synchrony with an average value of

> 0.99 (Figure 6Giv). Dopamine released by SNc neurons in the
striatum during the arm reaching peaked at∼ 13 nM, which was
lesser than in the control case (Figure 6Gv).

Quantifying Tremor-Like and Rigidity-Like Motor

Symptoms
To quantify between tremor-like and rigidity-like motor
symptoms of PD, root mean square (RMS) acceleration was
computed across movement trajectory for various PD conditions
where RMS acceleration can be used as an indicator of random
non-deterministic movements (Figure 7). In the PD1 scenario,
the RMS acceleration increases with an increase in SNc cell
loss which indicates irregular changes in the velocity of arm
movement (Figure 7A). This irregular velocity profile in PD1 is
a result of tremor-like motor behaviour. In the PD2 scenario,
the RMS acceleration increases with an increase in SNc cell loss
to 50%, and beyond 50% RMS acceleration decreases with an
increase in SNc cell loss (Figure 7B). The tremor-like motor
behaviour is indicated by the RMS acceleration increases until
50% SNc cell loss and from there on, we can see a sudden
decrease, which marks the onset of rigidity.

Effect of Levodopa Medication
In order to show the L-DOPA medication effect on the MCBG
model, we simulated different scenarios where various L-DOPA
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FIGURE 10 | Model performance for different L-DOPA dosage across various

percentage SNc cell loss where SNc cell loss affects STR–PD1. CL, cell loss;

LD or L-DOPA, levodopa; SNc, substantia nigra pars compacta; STR, striatum.

FIGURE 11 | Model performance for different L-DOPA dosage across various

percentage SNc cell loss where SNc cell loss affects STR & STN–PD2. CL, cell

loss; LD or L-DOPA, levodopa; SNc, substantia nigra pars compacta; STR,

striatum.

dosages were administrated across various PD conditions and
movement time was monitored.

Comparison of MCBG Model With Experimental

Results
The L-DOPA therapeutic effect was monitored by recording the
performance in terms of the average movement time across the
time course of the dosage for the next 10 h. The performance
of the model was also recorded 2 h prior to the administration
of the drug. The MCBG model results were compared with
experimental studies where PD patients were evaluated based
on UPDRS Part III score (Nomoto et al., 2018; Figure 8). The
experimental PD subjects were categorised into two groups based
on the UPDRS part III score (motor evaluation) where the group
1 PD subjects have a mean UPDRS III score of 28 (13–51) and
the group 2 PD have a mean UPDRS III score of 30.3 (22–41)
(Nomoto et al., 2018). An average L-DOPA dosage of 141mg
was given to both the experimental groups. The MCBG model
was simulated with 62% SNc cell loss and 150mg of L-DOPA
administered at the second hour of the simulation.

The PD1 MCBG model performance in terms of movement
time (Figure 8A, blue curve) matched with experimental group
2 result in terms of UPDRS III score (Figure 8A, orange curve).
Similarly, PD2MCBGmodel performance in terms of movement
time (Figure 8B, blue curve) matched with experimental group 1
result in terms of UPDRS III score (Figure 8B, orange curve).

Effect of L-DOPA Medication With Disease

Progression
The effect of L-DOPA (150mg) medication on the model
performance was studied across different percentages (25, 37,
50, 62, and 75%) of SNc cell loss for both PD1 and PD2
scenarios. The L-DOPAmedication was given at the second hour
in the simulation. The simulated results show that as SNc cell
loss increases, the model performance deteriorates, and also the
therapeutic effect decreases as the disease progresses in both PD1
and PD2 scenarios (Figure 9). The maximum therapeutic effect
of L-DOPA was seen for 50% and 62% SNc cell loss in both PD1
and PD2 scenarios (Figures 9E–H). In 75% SNc cell loss, the
model performance was poor in case of PD1 when compared to
PD2 (Figures 9I,J). The model performance was categorised into
three regions based on the following criteria: If the arm reaches
the target within 2 s, then that region was marked in green colour
which indicates the normal movement. If the arm reaches the
target between 2 and 4 s then that region was marked in yellow
colour, indicating slow movement or bradykinesia. If the arm
reaches the target beyond 4 s, then that region was marked in
red colour which indicates very slow movement or akinesia. The
simulated results show that as the SNc cell loss increases the
movement time curve shift from green to the yellow region when
medication was ON and the movement time curve shift from
yellow to the red region when medication was OFF (Figure 9).

Effect of L-DOPA Dosage and SNc Cell Loss on

Therapeutic Window
As discussed in the previous section, the model performance was
categorised into three regions: green (normal movement), yellow
(slow movement, bradykinesia), and red (very slow movement,
akinesia). The therapeutic window is computed by taking the
time difference between the points when the performance
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FIGURE 12 | Effect of L-DOPA dosage on the therapeutic window for various PD conditions. (A) Therapeutic window across different L-DOPA dosage for various

percentages of SNc cell loss when SNc cell loss affecting STR. (B) Therapeutic window across different L-DOPA dosage for various percentages of SNc cell loss

when SNc cell loss affecting STR & STN. PD1, SNc cell loss affecting STR; PD2, SNc cell loss affecting STR & STN; SNc, substantia nigra pars compacta; STN,

subthalamic nucleus; STR, striatum; L-DOPA, levodopa; mg, milligramme; hr, hour.

improved after taking medication and entered into the green
shaded region until it started wearing off and crosses back to
the yellow shaded region (where the effects of L-DOPA start
wearing off).

In the case of 25%, SNc cell loss (PD1), as the L-DOPA dosage
increases the therapeutic window (green region) decreases
(Figure 10, first column). But at higher percentage loss of cells
(37, 50, 62, and 75% SNc cell loss), as the L-DOPA dosage
increases the therapeutic window (green region) increased
(Figure 10). However, in the case of PD2 for all percentages of
SNc cell loss, as the L-DOPA dosage increases the therapeutic
window (green region) increased (Figure 11).

DISCUSSION

MCBG Model
The proposed model tries to present a biologically realistic
model of the effect of L-DOPA on PD symptoms, specifically
in terms of movement parameters. In our modelling approach,
a large-scale cortico-basal ganglia model forms the backbone of
our network. The two-link arm model that is interfaced to the
MNs simulates the movement of the hand and the feedback
related to the hand position and distance from the target is
processed by the PC and passed on to MC. MC uses the
corrective signals from the BG to initiate the next action. The
BG dynamics are highly influenced by the dopaminergic input
from the SNc and by incorporating a detailed biophysical model
of the SNc into the network model, we were able to show the
effect of loss of dopaminergic cells on the movement parameters.
Going forward we aim to relate the pathological behaviour with
respect to the dynamics at the molecular level happening inside
the SNc.

TABLE 1 | Timescales of various loops in the model.

Loops Timescales

Timestep, dt

(ms)

Total

iterations

Total (ms)

1 STN-GPe loop 0.02ms 2,500 50 ms

2 SNc-Striatum loop 0.025ms 2,000 50 ms

3 Cortico-BG loop 50ms 100 5 s

Differential Projections and PD Symptoms
The proposed model was able to explain a wide range of
pathological behaviours associated with PD by controlling the
release of dopamine into the extracellular space and reducing the
complexity of the STN-GPe network. We modelled differential
projections from the SNc to the Striatum as well as from
SNc to STN. By reducing the supply of dopamine through
the SNc to Striatum projections, the slowness of movement
or bradykinesia could be simulated, and in combination with
modulating the complexity of the STN-GPe network through the
SNc to STN projections, symptoms like tremor and rigidity were
simulated. The complexity of the STN-GPe network was varied
by controlling the dopaminergic projections of the SNc neurons
toward the STN, thereby affecting the lateral connections within
the STN subsystem. By progressively reducing the number of
dopaminergic cells in SNc, we could replicate some of the
cardinal symptoms of PD–bradykinesia, tremor, and rigidity.

L-DOPA Medication Effect
Once the PD condition and the associated symptoms were
simulated, we integrated a pharmacokinetic-pharmacodynamic

Frontiers in Computational Neuroscience | www.frontiersin.org 17 January 2022 | Volume 15 | Article 756881

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Nair et al. Multiscale Cortico-Basal Ganglia Model

TABLE 2 | Comparison of previous computational models for simulating PD behaviour.

Model PD

condition

Behavioural

output

Cardinal symptoms

simulation

Detailed

behavioural model

Biological plausibility

of DA release

Medication

effect

Magdoom et al. (2011) Yes Arm reaching Bradykinesia, tremor, rigidity No No No

Baston et al. (2016) Yes Finger tap Bradykinesia No Yes Yes

Muralidharan et al. (2018) Yes Arm reaching Bradykinesia, tremor, rigidity Yes No No

MCBG Yes Arm reaching Bradykinesia, tremor, rigidity Yes Yes Yes

(PK-PD) model of L-DOPA medication (Baston et al., 2016;
Véronneau-Veilleux et al., 2020), which showed improved
results in reaching performance. L-DOPA medication is one of
the first-line treatment methodologies for Parkinson’s disease
(Suzuki et al., 2020). Our model incorporates the medication
effect by interfacing the SNc with the PK-PD model of L-
DOPA drug administration. Depending on the dosage of the
drug administered, L-DOPA is absorbed into the blood. After
interacting with other bodily fluids, a portion of the L-
DOPA crosses the BBB and gets absorbed by the dopaminergic
terminals. Our results show that consumption of L-DOPA
improves the PD symptoms to a great extent. Using our model,
we could also see that the extent of improvement on the PD
condition depend on the dosage (Figure 12).

A higher level of serum L-DOPA results in dyskinesias and
a low-level result in wearing off. Hence, an optimum dosage of
medication has to be selected. In order to optimise the drug
dosage, we performed our tests with various dosages of L-DOPA
medication. We could see that as the percentage of SNc cell loss
increases, a higher dosage of L-DOPA was required to sustain
the medication effect. With the increase in the percentage of
SNc cell loss, the therapeutic effect keeps decreasing. Hence our
study focused on the variation of therapeutic effect with respect
to the varying percentage SNc cell loss and L-DOPA dosage.
The results observed are promising enough to suggest optimal
tuning strategies of drug dosage for PD patients (Figure 12). The
performance characteristics with respect to the variation in cell
loss and the dosage help us to tune the optimum dosage in terms
of the quantity and the frequency of dosage.

Side-Effects of L-DOPA Medication
From the simulation results, we can explain the L-DOPA
wearing-off mechanism to a great extent. Our hypothesis is
that the natural progression of the disease characterised by the
increase in loss of SNc cells is one of the mechanisms that
contribute to L-DOPA wearing off. There could be other factors
as well that can accelerate this wearing-off phenomenon. Another
hypothesis is that the loss of dopaminergic terminals will lead to
synchronised activity in STN which in turn causes overexcitation
of SNc neurons resulting in a phenomenon called excitotoxicity
in SNc (Muddapu et al., 2019; Muddapu and Chakravarthy,
2020). Thus, fewer dopaminergic terminals and higher L-DOPA
dosage result in an accelerated loss of the dopaminergic terminals
leading to a faster wearing-off. There might be other contributing
factors as well that may advance the shortening of the therapeutic
window. There is the potential scope of carrying out a detailed

study on the various causes of the L-DOPA wearing off and
we believe our model serves as a good platform to conduct
such comprehensive research. As shown in our results indicated
in Figure 12, we also observe a decrease in performance and
reduction in the size of the therapeutic window with an increase
in LDOPA dosage beyond a certain value. For example, we
can observe the plots of Figure 12A, for 37% cell loss, and
Figure 12B, for both 37 and 50% cell loss that if LDOPA dosage
is increased beyond 250mg, the therapeutic window reduces.
This reduction in performance can be attributed to Dyskinesias.
Hence this model simulation also helps us to optimise the drug
dosage with respect to the severity of the disease and the dosage
of medication.

The comparison of previous computational models of BG
were shown in the Table 2. We can see that the proposed model
covers almost all aspects including simulating the PD condition
and Behavioural outcomes. It is able to simulate all the cardinal
symptoms of TD except the postural imbalance. It is more
biologically plausible as a detailed model of SNc for DA release is
used and it can simulate the medication effect. Compared to the
other models mentioned the current model proposed is having
better coverage.

Future Scope
We could reliably replicate some of the cardinal symptoms of PD
using our MCBGmodel. Along with simulating the PD ON/OFF
mechanisms, our model could also successfully demonstrate the
medication effect of L-DOPA. With the L-DOPA PK-PD model
integration with the MCBG model, we could also explain the
side effects of L-DOPA medication such as dyskinesias and
wearing off. Hence this model has the scope to be developed
into a test bench for PD. The current diagnostics and treatment
methodologies for PD are based on direct observation and
therefore suffer from subjectivity (Nair et al., 2022) andwe believe
that our model can be developed further to provide a more
quantitative approach to diagnose PD symptoms and optimise
therapeutic interventions.

Understanding Causes of Wearing off Mechanism

and Dyskinesias
We hypothesise that the natural progression of the disease and
the excitotoxicity could be potential factors that result in L-DOPA
wearing off. An increase in cytosolic DAwill lead to excitotoxicity
as unregulated cytosolic DA leads to neurodegeneration (Chen
et al., 2008). In this line, the pharmacological model can be
extended by incorporating the administration of other drugs that
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block the vesicular transporter (Pregeljc et al., 2020). In addition
to dopamine-induced excitotoxicity, L-DOPA-induced toxicity
can also cause neurodegeneration (Fahn, 2005; Lipski et al., 2011;
Witt and Fahn, 2016; Muddapu et al., 2020b). However, there
could be other contributing factors too and this model can serve
as a starting step to explore research in a similar direction.
As highlighted in the discussion section, a more detailed study
of the L-DOPA wearing-off mechanism can be carried out to
understand the mechanism and devise alternate or improved
medication regimes. Another line of extension is to explore the
phenomenon of different types of dyskinesias such as peak dosage
and diphasic dyskinesias (Kim Y. E. et al., 2019).

Incorporating DBS to Address Dyskinesias
We also want to extend the model to show the effect of deep
brain stimulation (DBS) on motor deficiencies in PD condition
and explore the comorbidity effects of both L-DOPA and DBS
on PD motor symptoms (Muthuraman et al., 2018; Muddapu
et al., 2019; Muddapu and Chakravarthy, 2020; Mueller et al.,
2020). One of the limitations of our model is that our model
does not consider the influence of the hyperdirect pathway,
which involves direct cortical connections to the STN (Nambu
et al., 2002; Cai et al., 2019). Also, the model does not take into
consideration the influence of cholinergic interneurons in the
striatum (Crossley et al., 2016; Kim T. et al., 2019). These can
be considered as further enhancements to the current model.
Currently, our model is focusing on the motor deficiencies in the
PD pathology. It would be interesting to model PD non-motor
symptoms (Goldman and Postuma, 2014; Goldman and Guerra,
2020).

CONCLUSION

A comprehensive test bench for demonstrating the effect of drug
action on symptoms can be a powerful tool in the therapeutic
toolkit of neurodegenerative diseases such as Parkinson’s disease.
Our model is the first step toward this bigger goal. In
the current study, we were able to successfully simulate the
relationship between drug dosage, cell loss, and PD ON and
OFF conditions. We could also demonstrate some of the cardinal
symptoms of PD. We also integrated a PK-PD model of L-
DOPA medication, which enabled us to simulate the medication
effects of the L-DOPA. We also simulated various combinations
of L-DOPA medication and percentage of SNc cell loss which
enabled us to understand the general trends in drug effects.

These modelling results have the potential to optimise the
medication in terms of the amount of dosage and the frequency
of dosage.
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