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ChromiaA new approach for genome-wide transcrip-tion factor binding site prediction is presented that integrates sequence and chromatin modi-fication data.
Abstract
We present an integrated method called Chromia for the genome-wide identification of functional target loci of 
transcription factors. Designed to capture the characteristic patterns of transcription factor binding motif occurrences 
and the histone profiles associated with regulatory elements such as promoters and enhancers, Chromia significantly 
outperforms other methods in the identification of 13 transcription factor binding sites in mouse embryonic stem cells, 
evaluated by both binding (ChIP-seq) and functional (RNA interference knockdown) experiments.

Background
Transcription factors (TFs) play a central role in regulating
gene expression. Binding of TFs to their target loci is a key
step of activating or repressing a gene. Determination of
transcription factor binding sites (TFBSs) is an important
but challenging problem because the DNA segments recog-
nized by TFs are often short and dispersed in the genome
[1]. In addition, the target loci of a TF vary depending on
tissue, stage of development or physiological condition.
Such condition-dependent regulation makes the problem
even more challenging.

Both experimental and computational technologies have
been developed to identify TFBSs. Chromatin immunopre-
cipitation (ChIP)-chip [2,3] and, more recently, ChIP-seq
have become popular and powerful tools to determine
TFBSs at a genome-wide scale [3-5]. Currently, a major
bottleneck in applying ChIP-chip or ChIP-seq to all TFs
encoded in a genome is the availability of ChIP-quality
antibodies against each TF. Efforts have been made to tag
every individual TF but the success of tagging techniques
has only been shown for a limited number of TFs in mam-
malian genomes.

Many computational methods [6-15] (for a survey, see
[16]) have been developed to identify DNA segments rec-
ognized by TFs. These DNA motifs are often represented
by a position-specific scoring matrix (PSSM) [17] that
reflects the preference of nucleotides at each position.
Because simply matching such DNA motifs in the genome

always generates too many false positives, additional infor-
mation, such as co-localization and conservation of TFBSs,
are often included to improve prediction accuracy. Methods
such as Comet [18], Cluster-Buster [19] and ModuleMiner
[20] use motifs documented in databases - for example,
JASPAR [21] and TRANSFAC [22] - or predicted by de
novo motif finding algorithms, and search for clusters of
TFBSs. Methods like Stubb [23] and EEL [24] also include
motif conservation information in addition to TFBS cluster-
ing. Other methods such as CisModule [25] and EmcMod-
ule [26] conduct de novo motif finding and cis-regulatory
module (CRM) identification simultaneously in an iterative
fashion. Recently developed methods like GibbsModule
[27] can further improve prediction accuracy by combining
motif overrepresentation in the co-expressed genes, motif
conservation and co-localization of TFBSs. Although all
these methods showed promising performance on the test
datasets, they are limited by various factors. For example,
incorporation of conservation information can improve the
prediction accuracy only if genomes with appropriate evo-
lutionary distances are correctly selected and reliable align-
ment of these genomes, which is not a trivial task, can be
generated. In addition, it is still challenging to apply many
of these methods to predicting target loci of a TF at a
genomic scale with acceptable accuracy. More importantly,
none of these computational methods can work in a condi-
tion-dependent manner to distinguish TFBSs from one con-
dition to another.

Recent mapping of histone modifications using ChIP-
chip or ChIP-seq technologies [28,29] provides an opportu-
nity of predicting TFBSs using an alternative approach. It
has been shown that regulatory elements such as promoters
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and enhancers are associated with distinct chromatin signa-
tures [28], and, conversely, such chromatin signatures could
be used to predict the regulatory elements [28,30,31]. In the
present study, we propose an integrated approach that com-
bines sequence information and chromatin signatures to
predict binding sites of individual TFs, rather than genomic
regions of regulatory elements as in the previous studies.
This method is called Chromia (CHROMatin based Inte-
grated Approach). More specifically, we scored genomic
sequences using a PSSM that represents the DNA motif
recognized by a TF. The PSSM score pattern in a genomic
region reflects the preference for binding of a TF. Such
sequence information and ChIP-seq signals of histone mod-
ifications at promoters or enhancers were integrated using a
hidden Markov model (HMM) that was designed to capture
characteristic patterns of these signals. The HMM model
was applied to genome-wide identifications of 13 TFBSs,
including CTCF, E2F1, Esrrb, Klf4, c-Myc, n-Myc, Nanog,
Oct4, Sox2, Smad1, STAT3, Tcfcp2l1, and Zfx, in mouse
embryonic stem (mES) cells. The predictions were assessed
using the ChIP-seq data of the same TFs [32], which
showed that our approach outperformed many of the cur-
rently available methods in terms of both accuracy and effi-
ciency.

Results
Chromatin signatures of promoters and enhancers
Distinct histone signatures have been observed at various
genomic loci, including promoters and enhancers [28,29].
We first investigated the ChIP-Seq signals of eight chroma-
tin marks (H3, H3K4me1, H3K4me2, H3K4me3,
H3K9me3, H3K36me3, H3K20me3, and H3K27me3)
aligned at transcription start sites (TSSs; promoters) in the
mES cells [33] (Figure 1; Figure S1 in Additional file 1).
The histone modification patterns at promoters are similar
to what was previously observed. Namely, active marks,
including mono-, di-, and tri-methylation of Lys4 of H3
(H3K4me1/2/3), showed strong signals; in contrast, the sig-
nals of repressive marks, such as H3K27me3, are much
weaker. As the histone acetyltransferase p300 is commonly
found at enhancer regions [34], we used the p300 binding
sites located distal (>2.5 kb) from any RefSeq TSS [35] as a
mark for enhancers. The eight histone marks at the p300
sites were not aligned as well as those at the promoters,
which could be due to various reasons, such as different
mES cell lines used in the p300 (E14 mouse ES cells) and
histone modification ChIP-seq experiments (V6.5 cells) or
noise in the p300 experiments. Nevertheless, chromatin
marks at the enhancers still showed distinct patterns differ-
ent from those at promoters - strong H3K4me1 and weak
H3K4me3 signals, consistent with the previous observa-
tions [28,29] (Figure 1; Figure S1 in Additional file 1).

We also investigated the occurrences of the binding
motifs of the 13 TFs in both promoters and enhancers (Fig-

ure 1; Figure S1 in Additional file 1). Peaks of PSSM
scores were observed for all the TFs at both promoters and
enhancers. The height of the peaks, which were affected by
the alignment and/or enrichment of the TF binding motifs,
varied for different TFs. Nanog, Oct4, Sox2 and Smad1
showed stronger PSSM score peaks at the enhancers than at
the promoters (Table S1 in Additional file 2). In contrast,
the other nine TFs showed better aligned and stronger peaks
at the promoters than at the enhancers. Interestingly, CTCF,
often serving as an insulator, is in the latter group, which
may be due to its role of delineating alternative transcripts
[36]. The alignment of histone marks and PSSM scores is
consistent with the previous observation that Nanog, Oct4
and Sox2 tend to bind to enhancer regions [32]. Chen et al.
[32] also suggested that both Smad1 and STAT3 binding
sites were associated with Oct4-Sox2-Nanog-specific bind-
ings sites. In contrast to Smad1, we observed that PSSM
scores of STAT3 were much stronger in promoters than in
enhancers, suggesting that STAT3 might not necessarily
prefer binding to enhancers (also see below).

Histone modification patterns aligned at TFBSs
Given the binding data of the 13 TFs, we investigated
whether any histone patterns are associated with a specific
TF. We aligned the ChIP-seq signals of the eight histone
marks centered at the top 500 binding peaks of the 13 TFs
(Figure 2; Figure S2 in Additional file 1). We observed that
the individual histone modifications at the TF binding sites
varied significantly, but the average signal did show appar-
ent patterns, particularly on H3K4me1/2/3: H3K4me1/2
presented a distinct bimodal profile in all TFBSs;
H3K4me3 showed a strong peak in the binding sites of
E2F1, c-Myc, n-Myc and Zfx, intermediate peaks for Esrrb,
Klf4, STAT3 and Tcfcp2l1, and weak signals for CTCF,
Nanog, Oct4, Smad1 and Sox2. H3K36me3 showed rela-
tively strong signals for E2F1, c-Myc, n-Myc and Zfx (Fig-
ure S3 in Additional file 2). The repressive marks
H3K9me3, H3K20me3 and H3K27me3 showed an overall
low signal but individual sites fluctuate significantly.

Previous studies have shown distinct chromatin signa-
tures of promoters and enhancers [28]: strong H3K4me1
and H3K4me3 in promoters compared to strong H3K4me1
and weak H3K4me3 in enhancers. The above analysis sug-
gested the binding preferences of the TFs: E2F1, c-Myc, n-
Myc and Zfx prefer promoters; Nanog, Oct4, Smad1 and
Sox2 tend to bind to enhancers; and Esrrb, Klf4, Tcfcp2l1
and STAT3 have no preference. The genomic distributions
of TF binding peaks determined in the ChIP-seq experi-
ments indeed confirmed this prediction (Figure 2; Tables S1
and S2 in Additional file 2). Consistently, the binding peaks
of c-Myc, n-Myc, Zfx, Klf4 and E2F1 contained a higher
percentage of motifs in promoters than in enhancers(Table
S1 in Additional file 2). Notably, of all the TF binding
peaks in promoters, those of Oct4 contain the lowest per-
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centage of its motif, which suggests many of the binding
peaks in the promoters may result from indirect TF-pro-
moter interactions. We also examined the TF binding peaks
in the p300 binding regions that were distal to any anno-
tated TSS (2,831 out of 3,684 p300 peaks) and presumably
marked a portion of enhancers. The overlap between the
binding peaks of the 13 TFs and p300 was smaller in
enhancers, which was partially due to the incomplete repre-
sentation of enhancers using the p300 binding sites. Never-
theless, the binding preference of the 13 TFs was consistent
with the promoter analysis. Such binding location bias
might also result in the observation that TFs other than
Nanog, Oct4, Sox2, and Smad1 showed a higher percentage
of motif occurrence in promoters than in enhancers (Table
S1 in Additional file 2).

We next checked whether the binding strength of the TFs
correlated with the histone modification patterns (Figure 2;

Figure S2 in Additional file 1). We ranked the ChIP-seq
peaks in each TF binding experiment based on the peak
height. When examining the chromatin data for the top 500
and the bottom 500 TF binding peaks separately, we
observed different signal strengths in histone marks (Figure
3). We also calculated the correlation of each histone mark
and the TF binding strength using the top 500 and the bot-
tom 500 binding peaks. (Table S3 in Additional file 2). We
observed that, for example, the stronger the binding of
E2F1 and c-Myc/n-Myc, the stronger the two promoter
marks H3K4me3 and H3K36me3. Such a correlation was
not unexpected and it might just reflect how preferable the
TF binding sites were and/or how active the promoters
were. The anti-correlation between Oct4 binding and
H3K4me3 could also belong to this category because Oct4
preferred binding to enhancers and H3K4me3 usually
showed weak or no signal at enhancers. We also observed

Figure 1 Histone modification signals aligned at TSSs (promoters) and distal p300 binding sites (enhancers). Scaled signals of 100 promoter 
and enhancer regions with strong histone modification (sequencing read counts higher than an arbitrary cutoff) and the highest PSSM scores of Oct4 
are plotted (see Materials and methods for how these regions were selected and Figure S1 in Additional file 1 for plots of other TFs). Individual histone 
marks are shown in a heatmap (upper panels) and the averaged signal is shown in the lower panels. TSSs are ordered by gene expression and the 
p300 binding sites are ordered using ChIP tag counts. Both are in descending order from the top to the bottom.
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that Zfx and E2f1, two promoter binders, were surprisingly
anti-correlated with H3K4me1, although both were corre-
lated with H3K4me2 and H3K4me3.

Chromia: CHROMatin based Integrated Approach
Chromia integrates continuous (histone modifications) and
discrete data (DNA sequence) in its model. It converts the
discrete sequence data to continuous PSSM score signals.
The binned histone modification and PSSM score are used
as an input to the HMMs. Chromia uses three HMMs with a
left-right structure and mixture of Gaussians to model pro-
moter, enhancer, and background regions, respectively
(Figure 4). RefSeq TSSs (promoter) and p300 binding sites
(enhancer) with strong histone modification signals and
PSSM scores for the TF(s) of interest (foreground) and the
entire chromosome 1 (background) were selected to train
the three HMMs, respectively. The trained HMMs were
then used to identify genome-wide TFBSs. Using a sliding
window, we calculated two log-odd scores (promoter
against background and enhancer against background) for
every bin in the entire genome. The peaks of the log-odd

score were considered as putative TFBSs. The maximum
log-odd peak was selected if multiple predictions were
made within a given distance. As the histone sequencing
reads were grouped to 100-bp bins, we were able to identify
TF binding loci at a 100-bp resolution (see Materials and
methods for details).

Leave-one-chromosome-out cross-validation
The availability of the ChIP-seq experiments for the 13 TFs
[32] in the mES cells provided an opportunity to assess the
value of predicting TFBSs using chromatin signatures. We
used the PSSM scores and the histone modification data
aligned at TSS and p300 binding sites to train HMMs to
capture characteristic patterns of these signals at promoters
and enhancers. By scoring genomic loci using these HMMs
(compared to a background HMM), we then made predic-
tions of the binding sites of the TF(s) (see Materials and
methods for details). We first evaluated the performance of
Chromia using a leave-one-chromosome-out cross-valida-
tion, in which one chromosome was held out for testing and
the remaining chromosomes were for training. This cross-

Figure 2 Histone modification signals centered at the top 500 ChIP-seq binding peaks of Oct4 (heatmap in upper panels and the average 
shown as a black line in the lower panels). The red line in the lower panels is the averaged histone modification signals centered at the bottom 500 
Oct4 binding peaks. The histone modification signals centered at other TF binding peaks are shown in Figure S2 in Additional file 1.
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validation was performed for all chromosomes. Based on
the preference of binding to promoters or enhancers (see
above analyses), we conducted this cross-validation on rep-
resentative TFs, E2f1 for promoter predictions and the
combined binding sites of Oct4, Sox2, and Nanog for
enhancer predictions. For a fair comparison with other
methods that required input of human-mouse sequence
alignment, we removed ChIP-seq binding peaks residing in
mouse genomic regions that were not aligned to the human
genome in the UCSC genome browser. This way, 12,177
E2f1 and 16,377 Oct4-Sox2-Nanog ChIP-seq binding
peaks were retrieved. A total of 90,000 regions with a
length of 4,000 bp were randomly selected from the entire
genome as negatives. Regions without alignment between
human and mouse genomes and with weak histone modifi-
cation signals (read count <10) were removed. As a result,
79,535 random regions in the entire genome were kept as
negatives.

We compared the performance of our method with sev-
eral TFBS identification methods with publicly accessible
software, including EEL [24], Cluster-Buster [19], Stubb
[23] and MCAST [37]. Methods requiring inhibitive run-

ning time on the entire genome were not included in this
comparison. Figure 5 shows the ROC curves for the leave-
one-chromosome-out cross-validation using Chromia and
several other computational methods. Table S4 in Addi-
tional file 2 compares the area under the receiver operator
characteristic (ROC) curve (AUC) and the speed of all the
tested methods. Obviously, Chromia outperformed all the
other methods, demonstrating the effectiveness of our
method. Interestingly, we observed that Chromia combined
with Phastcon score [38] did not improve the performance.

Chromia uses HMMs to capture the special pattern of all
eight histone marks and the PSSM scores in an integrated
manner. To show the advantage of this approach, we also
evaluated the performance of a baseline method that used
the product of the PSSM score and a single histone mark
read count (H3K4me3 for promoters and H3K4me1 for
enhancer) to predict TFBSs. In order to make a rigorous
comparison, we used binding sites of other TFs as negatives
instead of using random sequences. Again, Chromia
showed far better performance on all the TFs, except for
CTCF, illustrating the advantage of using HMMs for TFBS
prediction (Figure 6; Figures S4 and S5 and Table S5 in

Figure 3 Difference in histone mark signals associated with the binding strength of the 13 TFs. We calculated the Euclidean distance between 
the averages of the histone mark signals (read count) centered at the top 500 and the bottom 500 TF binding peaks shown in the lower panels of 
Figure 2.
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Additional file 2). For CTCF, neither Chromia nor the base-
line method performed well, which is not unexpected as
CTCF binding peaks do not match well with histone modi-
fication patterns (Figure 2; Figure S2 in Additional file 1).
Overall, this comparison shows that using only one marker
in the baseline method is not enough to build a good classi-
fier. We also tried H3K4me2 alone or a combination of
H3K4me1 and H3K4me2, and the performance of the base-
line method did not change much. The superior perfor-
mance of Chromia over the baseline method further
emphasized the usefulness of an integrated model based on
HMMs to capture spatial patterns of multiple chromatin
marks.

Genome-wide prediction of TFBSs using Chromia
In reality, what one cares about most is to predict TFBSs in
the entire genome and reduce false positives among a given
number of predictions. To evaluate how useful Chromia is
to identify TFBSs at a genomic scale, we predicted the
TFBSs for the 13 TFs in the mouse genome. We selected
the top 2,000 predicted sites in promoters or enhancers and
evaluated the prediction accuracy using the binding peaks
of the TFs determined in the ChIP-seq experiments [32].
We considered a prediction as a true positive (TP) if there

was a TF binding peak within a pre-defined distance |W|
(we compare |W| = 1,000 bp in Table 1 and Additional file 2
(Table S6) and 500 bp in Additional file 2 (Table S7)); oth-
erwise, the prediction was a false positive (FP). It is worth
noting that the ChIP-seq experiments could be noisy even
though we used them as the gold standard in accessing our
predictions and the resolution of the binding sites is limited
by the length of the DNA segments obtained in the ChIP-
seq experiments, which is often around 500 bp. In addition,
the TF binding peaks might be due to indirect interactions
because no motif recognized by the TF could be found in
many of these peaks.

We calculated positive predicative values (PPV = TP/(TP
+ FP)) of the predictions using various model configura-
tions (Table 1; Table S6 in Additional file 2). E2f1, c-Myc,
n-Myc and Zfx, which prefer promoters, achieved a PPV
value greater than 60% for the promoter predictions. In
contrast, the PPV values of enhancer predictions for these
TFs were much worse. This observation is not surprising
because these TFs tend to bind to promoters as shown
above. When selecting the same number of predictions for
both promoters and enhancers, the PPV for enhancers was
expected to be lower than that for promoters. Another pos-
sible reason for low PPVs in enhancers was that the p300

Figure 4 The framework of Chromia. (1) Data preparation. Chromia takes binned signals of PSSM scores and eight histone marks in the entire ge-
nome as input. (2) Training data. Regions centered at TSS and p300 binding sites were selected to train HMMs for promoters and enhancers, respec-
tively. The entire chromosome 1 was used to train the background model. (3) Model training. Three HMMs with a left-right structure and a mixture of 
Gaussians were trained for promoters, enhancers and background, respectively. (4) Whole genome scanning. Two log-odd scores were calculated for 
each bin in the entire genome using the trained HMMs. (5) TFBS predictions. Log-odd scores of adjacent bins were averaged to smooth the curve. 
Bins with a log-odd score greater than other binding sites within ± 2,000 bp were predicted to contain the TFBSs. See Materials and methods for de-
tails.
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binding sites only represented a portion of enhancers and
the training histone data might not fully capture the chro-
matin signature associated with TFBSs in enhancers. Simi-
larly, Nanog, Oct4, Smad1 and Sox2 prefer enhancers and
showed higher PPVs in enhancers than in promoters. CTCF
did not achieve a high PPV in either promoters (16.0%) or
enhancers (9.8%), which might be due to lack of a defini-
tive histone pattern associated with this insulator protein.
Esrrb, Klf4, STAT3 and Tcfcp2l1 had comparable PPVs in
promoters and enhancers, which is consistent with the
above analyses that the binding sites of these TFs are a mix-
ture of promoter and enhancer locations. As expected, there
was a slight decrease of PPVs if we used a more stringent
criteria of |W| = 500 bp (Table S7 in Additional file 2). We
also observed that more predictions were made in promot-
ers than in enhancers if using the same log-odd score cutoff
(Table S8 and Figure S6 in Additional file 2), which sug-
gested a better trained HMM for promoters.

The PPVs of Smad1 and STAT3 were low in both pro-
moters and enhancers. The numbers of binding peaks of

Smad1 and STAT3 determined by Chen et al. [32] were
1,126 and 2,546, respectively, which are much smaller than
those of the other TFs (from 3,422 for n-Myc to 39,609 for
CTCF). We suspect that the ChIP-seq peaks of these two
TFs might be a result of indirect binding or noise in the
experiments.

We then analyzed how sensitive our model is to the
choice of PSSMs (Table S6 in Additional file 2). Instead of
using the PSSMs found by MEME in the ChIP-seq binding
peaks in the HMMs, we used the motifs documented in the
TRANSFAC database [22] for Oct4 (access ID M01124),
Sox2 (M01125), Nanog (M01123), Myc (M00055), E2f1
(M00939), Smad1 (M00701) and STAT3 (M00224). The
motifs of the other TFs were not available in this database.
Similar performance was observed for all but the E2f1
enhancer prediction.

Next, we investigated whether including conservation
information (Phastcon score) [38] could improve the pre-
diction accuracy (Table S6 in Additional file 2). Surpris-
ingly, we found that including conservation in promoter

Figure 5 ROC curves for TFBS identification methods in the leave-one-chromosome-out cross-validations. Sensitivity = TP/(TP + FN) and 
Specificity = TN/(TN + FP).
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Figure 6 ROC curves for TFBS identification using Chromia and the baseline method in the leave-one-chromosome-out cross-validation. 
The baseline method used one histone mark read count (H3K3me3 for promoters and H3K4me1 for enhancers) multiplied by the PSSM score to rank 
all the sites.
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Table 1: Assessment of the genome-wide TFBS predictions when |W| = 1,000 bp

Chromia TP (PPV)

TF Promoters Enhancers

CTCF 319 (16.0%) 195 (9.8%)

E2f1 1,920 (96.0%) 618 (30.9%)

Esrrb 585 (29.2%) 491 (24.6%)

Klf4 917 (45.9%) 351 (17.5%)

Nanog 138 (6.9%) 376 (18.8%)

Myc (n-Myc + c-Myc) 1,436 (71.8%) 167 (8.3%)

Oct4 240 (12.0%) 208 (10.4%)

Oct4-Sox2-Nanog 384 (19.2%) 431 (21.6%)

Smad1 6 (0.3%) 95 (4.8%)

Sox2 63 (3.1%) 235 (11.8%)

STAT3 99 (5.0%) 82 (4.1%)

Tcfcp2l1 716 (35.8%) 595 (29.8%)

Zfx 1,320 (66.0%) 219 (10.9%)

A prediction was considered to be a true positive (TP) if it was within |W| = 1,000 bp of a TF binding peak. The total number of predictions is 
2,000.
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predictions often deteriorated the performance. In contrast,
conservation helped improve prediction accuracy in pre-
dicting TFBSs in enhancers for six TFs, including CTCF,
E2f1, Klf4, c-Myc, n-Myc, and Zfx; however, none of these
six TFs prefers binding to enhancers.

To further assess the performance of Chromia, we
increased the number of predictions until FP = 2,000. We
calculated AUC2000 values for the prediction of TFBSs in
promoters and enhancers (Table S9 in Additional file 2).
The AUC2000 values are significantly higher than those
determined at random.

Evaluating the genome-wide Chromia predictions using 
RNA interference experiments
RNA interference (RNAi) experiments in mES cells (E14/
T21 cells) were conducted on 4 out of the 13 TFs to reveal
genes potentially regulated by a specific TF [39]. We
assessed our predictions using the 1,127, 1,365, 1,521 and
871 genes affected by knocking down Oct4, Sox2, Nanog
and Esrrb, respectively [39]. To determine which genes
were regulated by these TFBSs, we used a distance cutoff
|W| = 2 kbp from the RefSeq TSSs for promoter predictions
and |W| = 10 kbp for enhancer predictions. Namely, if a pre-
dicted TFBS using the promoter or enhancer HMM model
was within 2 kbp (promoter prediction) or 10 kbp (enhancer
prediction) of a RefSeq TSS, the gene was assumed to be
regulated by the TF. In the TF binding experiments by Chen
et al. [32], the number of binding peaks was in the range
3,761 (Oct4) to 2,1647 (Esrrb). Therefore, we made total

predictions of 3,600, 8,000, 12,000 and 20,000, among
which half were for promoters and half for enhancers, to
compare with the TF binding experiments. A ChIP-seq
binding peak was considered a TP if it is within 10 kbp of a
RNAi-affected gene's TSS. Even when Chromia made less
predictions than the number of TF binding peaks, we found
our method still achieved better coverage, which is defined
as correctly predicted genes among all genes affected by
knocking down a specific TF (Table 2; Figure S7 in Addi-
tional file 2).

It is noteworthy that the RNAi, TF binding, and histone
modification experiments were conducted in E14/T21, E14,
and V6.5 mES cells, respectively. Even though the TF bind-
ing experiment was conducted in a cell line closer to the
one used in the RNAi experiments, Chromia predictions
based on the histone modification data obtained from a
more distant cell line achieved better agreement with the
knockdown assays. Recently, evidence has shown that
enhancers are more cell type specific than promoters
[40,41]. It is not surprising to observe more TPs in pro-
moter predictions than in enhancer predictions. Neverthe-
less, our prediction identified a large portion of genes
affected by RNAi experiments, demonstrating the useful-
ness of our approach to identify functional TFBSs at a
genomic scale.

Comparison with other methods
We compared the performance of our method with EEL
[24], Cluster-Buster [19], Stubb [23] and MCAST [37]. We

Table 2: Detection of genes affected by RNAi using genome-wide Chromia predictions and ChIP-seq binding peaks

Chen et al. [32]

Number of 
genes 

affected by 
RNAi

Number of 
TF binding 

peaks

Chromia TP total number (promoters and enhancers) of predic-

tions†

TFs TP* 3,600 8,000 12,000 20,000

Nanog 1,521 10,343 265 (17.4%) 199 (13.1%) 407 
(26.8%)

568 (37.3%) 843 (55.4%)

Oct4 1,127 3,761 151 (13.4%) 170 
(15.1%)

327 (29.0%) 452 (40.1%) 652 (57.8%)

Sox2 1,365 4,526 137 (10.0%) 195 
(14.3%)

372 (27.3%) 529 (38.8%) 753 (55.1%)

Esrrb 871 21,647 376 (43.2%) 143 (16.4%) 256 (29.4%) 349 (40.1%) 476 
(54.6%)

*A TF binding peak in the Chen et al. study [32] was considered to be a TP if it was within |W| = 10 kbp of an RNAi-affected gene's TSS. PPV is 
shown in parenthesis.†The same number of predictions was made for promoters and enhancers. A promoter and an enhancer prediction 
were considered to be a TP if it was within |W| = 2 kbp for promoters and |W| = 10 kbp for enhancers of an RNAi-affected gene's TSS. The TP 
value from Chromia is shown in bold when it is larger than that from the Chen et al. study [32] but the number of Chromia predictions is 
smaller than the number of TF binding peaks determined in the Chen et al. study [32].
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assessed the performance of all these methods using the TF
binding peaks as the gold standard. We used the same dis-
tance cutoff |W| = 1,000 bp to decide whether a predicted
TFBS was a TP. Because Stubb and EEL require pairwise
alignment with other genomes and it was too time consum-
ing to evaluate the performance of all methods using the
entire genome, 20 chunks of genomic sequences (total
513,846,568 bp) that had pairwise alignment with the
human genome were selected from the UCSC genome
browser [42] for this comparison (Table S11 in Additional
file 2).

Table 3 lists TPs and FPs of the predictions made by each
method on each TF. We selected the top 600 predictions
(combining promoter and enhancer predictions) with the
largest log-odd score made by Chromia in these regions
because the other methods did not have separate promoter
and enhancer predictions. We found Chromia outperformed
all the other methods for all TFs except CTCF. For CTCF,
MCAST and Cluster-Buster performed the best, which
might be due to the fact that the CTCF binding motif was
very informative and/or only a small portion of CTCF bind-
ing sites were located in promoters (26.8%) or enhancers
(0.9%) (Table S1 in Additional file 2).

We also plotted ROC curves by changing the number of
predictions made by each method (Figure 7). Because the
number of true negatives (TNs) was very large, the specific-
ity of all the listed methods was very high. Nevertheless,
our method achieved higher AUC values (Table S10 in
Additional file 2) than all other methods for all TFs but
CTCF, which is consistent with the observation in Table 3.

The ChIP-seq experiments could be noisy and the binding
peaks defined in these experiments could be due to indirect
protein-DNA interactions. To obtain a set of highly confi-
dent binding peaks to assess the performance of each
method, we selected the peaks that contained the binding
motif recognized by the TF (the peaks listed in Table S1 in
Additional file 2 using 500 bp as the distance cutoff). By
changing the number of predictions made by our model, we
plotted ROC curves in Figure 7. We observed better perfor-
mance of our method using this evaluation set except Oct4.

Discussion
The analysis of the recently available ChIP-seq data on 8
histone modification marks and 13 TF binding sites in mES
cells confirmed the distinct chromatin signatures associated
with promoters and enhancers. We did not observe any sig-
nificant correlation between the histone modification pat-

Table 3: Comparison of several computational methods for predicting TFBSs in the 20 genomic regions of sequences

TF Chromia Cluster-
Buster

EEL MCAST Stubb single Stubb 
multiple

CTCF 79/521 
(13.2%)

215/352 
(37.9%)

20/19 (51.3%) 251/320 
(44.0%)

24/155 
(13.4%)

21/524 (3.9%)

E2f1 512/88 
(85.3%)

7/550 (1.3%) 0/19 (0.0%) 3/578 (0.5%) 69/508 
(12.0%)

48/509 (8.2%)

Esrrb 141/459 
(23.5%)

28/542 (4.9%) 3/28 (9.7%) 94/486 
(16.2%)

52/323 
(13.9%)

27/504 (5.1%)

Klf4 205/395 
(34.2%)

2/574 (0.3%) 2/33 (5.7%) 74/518 
(12.5%)

165/412 
(28.6%)

50/479 (9.5%)

Myc 347/253 
(57.8%)

2/563 (0.4%) 3/39 (7.1%) 19/559 (3.3%) 76/301 
(20.2%)

94/433 
(17.8%)

Nanog 47/553 (7.8%) 2/554 (0.4%) 0/21 (0.0%) 4/571 (0.7%) 4/283 (1.4%) 1/550 (0.18%)

Oct4 90/510 
(15.0%)

16/546 (2.8%) 0/44 (0.0%) 19/526 (3.5%) 1/192 (0.5%) 0/528 (0.0%)

Oct4-Sox2-
Nanog

120/480 
(120%)

22/541 (3.9%) 0/45 (0.0%) 8/551 (1.4%) 3/152 (1.9%) 6/501 (1.2%)

Smad1 6/594 (1.0%) 2/564 (0.4%) 0/33 (0.0%) 1/571 (0.2%) 0/188 (0.0%) 0/506 (0.0%)

Sox2 25/575 (4.2%) 14/560 (2.4%) 0/37 (0.0%) 16/551 (2.8%) 1/500 (0.2%) 1/120 (0.8%)

STAT3 6/594 (1.0%) 1/555 (0.2%) 0/34 (0.0%) 9/567 (1.6%) 3/99 (2.9%) 4/522 (0.8%)

Tcfcp2l1 203/397 
(33.8%)

66/506 
(11.5%)

2/38 (5.0%) 156/417 
(27.2%)

10/69 (12.7%) 28/496 (5.3%)

Zfx 310/290 
(51.7%)

1/560 (0.2%) 2/34 (5.6%) 146/443 
(24.8%)

268/303 
(46.9%)

140/398 
(26.0%)

TP, FP and PPV (PPV = TP/(TP + FP)) are listed for each TF using every method.
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terns and the binding of the 13 TFs probably because none
of these factors are involved in chromatin modification.
The unexpected correlations between several histone marks
and the binding strength of TFs (Table S3 in Additional file
2) still needs further validation and determination of the
underlying molecular mechanisms.

Histone modifications reflect the epigenetic state of a
cell, which provides useful information to map the func-
tional activities of regulatory elements. In this study, we
present a new computational model called Chromia that
integrates sequence motif and chromatin signatures to pre-
dict target loci of TFs. We have demonstrated that the per-
formance of our method is superior to many other methods.
When comparing the predicted target genes of four TFs
with the genes affected by knocking down these TFs, we
found that Chromia identified more TF target genes than
using the binding peaks of these TFs. This observation is
not totally unexpected because the histone modifications
are tightly related to function, which illustrates the useful-
ness of Chromia for predicting functional TFBSs.

There are several advantages of our approach. First, anti-
bodies specifically against many histone marks are already
available and therefore the chromatin modification profiles
can be readily obtained for many organisms/tissues/cell
lines. Second, this approach does not rely on the assump-
tion that TFBSs are evolutionarily conserved, which allows
identification of fast evolving or species-specific TFBSs.
Furthermore, the non-trivial problem of choosing genomes
with appropriate evolutionary distance and aligning these
genomes can also be avoided. Third, since histone modifi-
cation patterns are condition-specific, our method provides
an approach to identifying TFBSs that may be functional
only in specific tissues or developmental stages. Fourth, our
method is much more efficient than many methods for pre-
dicting TFBSs at the genomic scale.

It is also worth noting that our model suggests a way to
combine discrete and continuous sources of information by
converting DNA sequence information to continuous
PSSM scores. Previous studies showed that, in many sce-
narios, a cluster of weak TFBSs may play significant roles
in regulating gene expression. The PSSM score profile pro-

Figure 7 ROC curves of TFBS identification using various methods for 20 genomic regions. Sensitivity = TP/(TP + FN) and Specificity = TN/(TN 
+ FP). Dotted lines are using all the ChIP-seq binding peaks and solid lines are using the confident ChIP-seq binding peaks that have strong motif 
scores in Table S1 in Additional file 2.
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vides an overall characterization of binding preference of a
TF at a genomic locus. This is captured by the HMM and
integrated with the chromatin signature to pinpoint the
binding sites of a TF.

Recently, several approaches have been proposed to pre-
dict TFBSs in mammalian genomes using chromatin struc-
ture information. For example, ProbTB combined multiple
sources of data to identify TFBSs in 47 mouse promoters
[43]. Whitington et al. [44] used H3K4me3 as an additional
filter to predict TFBSs in promoter regions. However, these
studies are restricted to the small regions near TSSs. In con-
trast, we integrated chromatin signature and sequence motif
information into one model and performed genome-wide
prediction of TFBSs in both promoter and enhancer
regions. Also, we demonstrated the superior performance of
Chromia over the baseline method, which is in the same
spirit of the Whitington et al. approach. Compared to our
previous study [30], which aimed to find genomic regions
of functional elements, including promoters and enhancers,
here we were able to pinpoint TFBSs to 100-bp resolution
by incorporating motif information, which also demon-
strates the flexibility of our model to integrate additional
data.

Although the performance of our method is very encour-
aging, it is no doubt there is still much room for improve-
ment. Currently, only eight histone marks are mapped in the
mES cells and not all of them are informative for locating
regulatory elements. We expect that more histone marks
with distinct patterns will help improve the performance of
our method. We also observed that predictions for enhanc-
ers were relatively worse than those for promoters. Recent
studies suggested that enhancers might be more cell type
specific than promoters [40]. It is possible that the lower
prediction accuracy for enhancers may be due to different
cell lines used in histone modification (murine V6.5 ES
cells) and TF binding (murine E14 ES cells) experiments.
Furthermore, we should point out that our HMM was
trained on the chromatin signatures associated with the
p300 binding sites, which might only represent a small sub-
set of the histone modification patterns at enhancers. There-
fore, the trained HMM may miss many enhancers with
different chromatin signatures. When binding sites of other
cofactors commonly appearing at enhancers are mapped, a
more comprehensive collection of histone modification pat-
terns can be established and it is possible that the perfor-
mance of our method can be further improved. Another
limit of our method is that, like all methods that rely on
binding motifs, it cannot distinguish TFs with very similar
PSSMs (like n-Myc and c-Myc). However, if more histone
marks are mapped and these TFs are associated with dis-
tinct chromatin signatures, it is possible to resolve the
ambiguity of binding of these TFs.

Chromia is available at [45].

Materials and methods
Dataset
The histone modification data of eight chromatin marks in
murine V6.5 ES cells were obtained from [33,35]. Based on
our previous studies of smoothing ChIP-seq data, the
sequencing reads were binned into 100-bp bins by averag-
ing four adjacent 25-bp bins documented in [33,35]. PSSM
scores were generated by a sliding window of the motif
size, and the largest of the PSSM scores within a 100-bp bin
was used as the value of that bin. These 100-bp binned val-
ues of sequencing read counts and PSSM scores were input
to the HMM of Chromia.

Data visualization: heatmaps
In plotting a heatmap of histone marks and the PSSM
scores (but not in the HMM models), we re-scaled the sig-
nals in order to achieve a better visualization effect. Let x
be the sequence read of a 100-bp bin. The re-scaled count in
a bin n(x) is calculated as:

Where xmax is the maximum sequencing read count of a
histone mark in the entire genome, and αx is the value that
only 0.1% of the histone mark bins have higher read counts.
Each histone mark was re-scaled individually. In re-scaling
the PSSM scores, αx was set to 15, which was the top 0.1%
value of the PSSM scores in the entire genome. Plotting the
re-scaled read counts avoided the problem that only the
sites with large values (>0.1%) were visible with a bright
color.

Position specific scoring matrices (PSSMs) of the 13 TFs
Chen et al. [32] conducted ChIP-seq experiments on 13 TFs
in the murine E14 ES cell. We extracted 200-bp sequences
centered at each of the top 500 ChIP-seq binding sites of the
13 TFs. These sequences were input to the motif finding
algorithm MEME [46]. We used the option '-dna -nmotifs 1
-mod oops -revcomp -minw 10 -maxw 15', which specified
the number of motif, the oops assumption (one occurrence
per sequence) and the range of the motif length (10 to 15
bp). By manually examining the motifs identified by
MEME [46], all position specific frequency matrices
(PSFMs) (Figure S8 and Table S1 in Additional file 2) were
similar to those documented in the TRANSFAC database
[22] and those reported in [32] by running the motif finding
algorithms Weeder [47] or NestedMICA [48]. Because
Oct4, Sox2 and Nanog are known to share many binding
sites [49], we also searched for enriched motifs in the 1,500
peaks generated by pooling together the top 500 peaks of
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each TF. Such a 'combined' motif was similar to that found
in a previous study [50].

A PSSM score was calculated for each motif:

where Wx is the width of the motif, Pk(xk) and Pb(xk) are
the probabilities of observing nucleotide xk at position k
from the motif and the background distributions, respec-
tively. The background was obtained from the occurring
frequency of each nucleotide in the entire mouse genome.

The Chromia model
Chromia integrates continuous (histone modifications) and
discrete data (DNA sequence) in its model. It converts the
discrete sequence data to continuous PSSM score signals
using Equation 1. As described above, the PSSM score was
also binned to have the same format as the ChIP-seq data.

Chromia uses parallel HMM(Θ)s with a left-right struc-
ture [30,51] to integrate these two types of information. The
left-right structure was chosen because it has been success-
fully applied to speech recognition, in which the speech sig-
nals are very similar to the ChIP-seq data and PSSM scores.
In a left-right structure, transitions from state q to q'<q are
not allowed. The first state has no transition from other
states and the last state terminates the sequence. Transition
is only allowed from state i to state j ≥ i. In our previous
study, this left-right structure has been successfully applied
to capture the characteristic patterns of histone signatures
[30]. The HMM has Q states. An HMM state emits a signal
according to a probability density function of a Gaussian
mixture of N dimensions. Here N is the total number of his-
tone marks (NHistoneMark) and the PSSM score, that is, N =
NHistoneMark + 1. The probability density function of the
Gaussian mixture is:

where x is the vector being modeled, M is the number of
Gaussians and cjm is the mixture coefficient for the mth
Gaussian distribution in state j; G [x, μjm, Ujm] represents
the Gaussian function with a mean vector μjm and a covari-
ance matrix Ujm. The forward and backward algorithm [51]
was used to estimate the transition probabilities and the
mixture coefficients as well as mean and covariance matri-
ces of the Gaussians in each state. In this study, we chose to
train three HMMs for promoters, enhancers and back-
ground separately. We set Q = 3 in the promoter and

enhancer HMMs and Q = 1 in the background HMM.
Strictly, it is a simple mixture of Gaussians when Q = 1.
Each state was composed of three mixtures of Gaussian
components (M = 3) to capture the complex signal patterns.
Models with larger M did not improve the prediction per-
formance (data not shown).

In our previous study [30], we investigated how to select
Q to capture characteristic patterns of the histone modifica-
tions. We found the number of Q was related to the length
of the genomic regions containing the histone modifica-
tions. Here, we considered 2,000-bp regions (20 100-bp
bins) and Q was set to 3. This choice was particularly moti-
vated by the observation of bimodal patterns for several his-
tone marks, such as H3K4me1, in the promoters (Figure 1).
Namely, the first and third state aimed to capture the two
shoulder peaks and the second state the middle dip. In addi-
tion, mixtures of Gaussians allows modeling of the signal
profiles better than individual Gaussians. In other words,
the choice of Q = 3 and M = 3 is presumably better than Q =
9 and M = 1. We tested this in the leave-one-out validation
using Q = 9, M = 1 and Q = 1, M = 3 (Figure S9 in Addi-
tional file 2). To further illustrate this point, we plotted the
probability density versus sequencing read count in Figure
8 for the three states of the trained HMMs. The probability
density of H3K4me1 trained with the histone marks cen-
tered at the p300 binding sites and with the strongest Oct4
PSSM motif scores has peaks of read count around 5, 3 and
9 for the first, second and third state of the HMM, correctly
capturing the bimodal pattern of this mark. H3K4me3 is
generally skewed towards TSS, which is consistent with the
probability density peak at smaller read count in the first
state and at larger ones in the next two states at the TSSs
ranked highest with the E2f1 PSSM scores. An example,
the promoter of Yipf6, is shown in Figure 9, in which the
peaks of H3K4me3 and PSSM scores of E2f1 are located
downstream of the TSS; Chromia correctly predicted this
region as a promoter. It is worth pointing out that chromatin
profiles at individual sites are not necessarily aligned well
to the average pattern (Figure 1; Figure S1 in Additional
file 2). We observed that a single Gaussian distribution was
often not able to model the individual profiles as well as a
mixture of three (or more) Gaussians.

Training set
To train an HMM that integrated chromatin signatures and
the motif information, we selected regions containing both
strong histone modification signals and large PSSM scores
because the HMM model was designed to capture patterns
of chromatin and sequence motif data. To select strong his-
tone modification signals, we first chose a read count cutoff
where only 1% of all bins in all chromosomes had a value
larger than the cutoff. We selected H3K4me3 (cutoff =
13.6) as the mark for promoters (annotated RefSeq TSSs)
and H3K4me1 (cutoff = 5.9) or H3K4me2 (cutoff = 7.6) as
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the marks of enhancers (p300 binding sites). The prediction
results were not sensitive to the cutoff value (data not
shown). Next, all the selected promoter or enhancer bins in
the entire genome that contain a sequencing read count
larger than the cutoff value were ranked using the PSSM
score of the TF under consideration. The top 100 promoters
and 100 enhancers were then selected as the training set
(Figure 1; Figure S1 in Additional file 1). The background
model was trained on the entire chromosome 1.

Genome-wide predictions of the TFBSs using the Chromia 
model
For a given genomic region, likelihood scores were calcu-
lated using the three HMMs for promoter, enhancer and
background separately. The likelihood of an input x (chro-
matin and sequence data) was calculated by summing over
all possible paths through the hidden states.

where q is the state of the HMM(Θ) (promoter, enhancer
or background). In Chromia, two log-odd scores, one for
promoter and one for enhancer predictions, were calculated
as:

The log-odd score reflects how strong a signal is com-
pared to the background and has been widely applied, for

likelihood = = ∑P P |
q

( ) ( )x | x,qΘΘ ΘΘ

for promoters
(

: log
| )

( | )

P promoters

P background
x

x

ΘΘ

ΘΘ
(2)

for enhancers
(

: log
| )

( | )

P enhancers

P background
x

x

ΘΘ

ΘΘ
(3)

Figure 8 Mixture of Gaussians in the trained HMM. The x-axis is the signal intensity (sequencing read count) and the y-axis is the weighted sum 
of the three Gaussians in each state of the HMM. The first column shows the distribution of the mixture of Gaussians of the three states trained for 
H3K4me1 centered at the p300 binding sites (enhancers) with the strongest 100 Oct4 motif scores. Second column is for H3K3me3 in E2f1.

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

or H3K4me1 in Oc4or H3K4me1 in Oct4

0 5 10 15

0
.0

1
7
0

0
.0

1
7
5

0
.0

1
8
0

0
.0

1
8
5

0
.0

1
9
0

First HMM state for H3K4me1 in Oct4

Intensity

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 5 10 15

0
.0

2
0
.0

3
0
.0

4
0
.0

5

Second HMM state f

Intensity

0 5 10 15

0
.0

1
2
8

0
.0

1
3
0

0
.0

1
3
2

0
.0

1
3
4

Third HMM state f

Intensity

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 50 100 150

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

First HMM state for H3K4me3 in E2f1

Intensity

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 50 100 150

0
.0

0
1
1
5

0
.0

0
1
2
0

0
.0

0
1
2
5

0
.0

0
1
3
0

Second HMM state for H3K4me3 in E2f1

Intensity

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 50 100 150

0
.0

0
0
4
3
9
0

0
.0

0
0
4
4
0
0

0
.0

0
0
4
4
1
0

Third HMM state for H3K4me3 in E2f1

Intensity

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y



Won et al. Genome Biology 2010, 11:R7
http://genomebiology.com/2010/11/1/R7

Page 15 of 17
example, to calculating the conservation score in phylo-
HMM [38].

To incorporate conservation information, we further mul-
tiplied the Phastcon score [38]. The maximum Phastcon
score in a bin was used as ScorePhastcon in the following
equations (Table S6 in Additional file 2):

We calculated the log-odd scores for both promoters and
enhancers using a sliding window of 2,000 bp centered at
each bin. We smoothed the results by averaging the scores
of the three adjacent bins. Among log-odds for promoters
and enhancers, we only considered bins as potential TFBS-
containing regions if they had a log-odd score larger than
all other bins within ± 2,000 bp. We kept all the potential
TFBS-containing bins if the distance between them was
greater than 2,000 bp.

Running other programs
All programs were run using their default setup and param-
eters. To run MAST we used the background obtained by
running MEME [46]. Especially, for cross-validation, we
tested MAST [52] on the sequences whose alignment
between human and mouse genomes was available in the
UCSC genome browser. We used the option '-comp' to
select the current target sequences as a random model and '-
ev 1000000' to obtain output with various E-values. We
used different cutoffs for E-value to draw ROC curves.
MCAST was run with an option '-e-thresh 0' to turn off
thresholding. We changed the motif score to draw ROC
curves. Cluster-Buster [19] was run with an option '-p0 -m0
-c0' to get the output not using pseudocounts (because
pseudocounts were already included in the PSSM) and
without thresholding the motif and cluster scores. We used
a cluster score threshold as a cutoff to draw ROC curves. To
run EEL [24] and Stubb [23], we used human and mouse
orthologous sequences obtained from the UCSC genome
browser. EEL aligned the orthorlogous sequences and
yielded a binding score, which was changed to plot ROC
curves. To run Stubb using its multiple sequence option, we
used LAGAN [53] to align human and mouse orthorlogous
sequences and used 'window size' = 500 and 'shiftsize' =
100. We changed the free energy calculated by Stubb to plot
ROC curves.

for promoters
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: log
| )

( | )

P promoters

P background
ScorePhas

x

x
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× tt

for enhancers
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Figure 9 HMM log-odds scores along with histone signatures and PSSM score around the TSS of gene Yipf6.
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Calculating AUC2000 of Chromia and plotting ROC curves for 

method comparisons
To evaluate the performance of the genome-wide TFBS
predictions made by Chromia, we calculated the AUC
when FP = 2000 (AUC2000; Table S9 in Additional file 2).
For comparison between different methods using the 20
large chunks of genomic regions, we plotted ROC curves
(Figure 7). In both of the above situations, we scored every
100-bp bin in large genomic regions and the number of TNs
was huge. To make it possible to draw a ROC curve and
calculate the AUC, we grouped the adjacent ten 100-bp
bins into one 1,000-bp bin. This 1,000-bp bin was consid-
ered a TP if it contained a ChIP-seq binding peak and was
predicted to contain a TFBS; otherwise, it was a FP. A TN
was a 1,000-bp bin that did not contain any ChIP-seq bind-
ing peak and was not predicted to contain a TFBS; other-
wise, it was a false negative (FN).

Additional material
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AUC: area under the ROC curve; ChIP: chromatin immunoprecipitation; FN:
false negative; FP: false positive; HMM: hidden Markov model; mES: mouse
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