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Abstract: We propose a new metric to characterize the complexity of weighted complex networks.
Weighted complex networks represent a highly organized interactive process, for example, co-varying
returns between stocks (financial networks) and coordination between brain regions (brain
connectivity networks). Although network entropy methods have been developed for binary
networks, the measurement of non-randomness and complexity for large weighted networks remains
challenging. We develop a new analytical framework to measure the complexity of a weighted
network via graph embedding and point pattern analysis techniques in order to address this unmet
need. We first perform graph embedding to project all nodes of the weighted adjacency matrix to
a low dimensional vector space. Next, we analyze the point distribution pattern in the projected
space, and measure its deviation from the complete spatial randomness. We evaluate our method
via extensive simulation studies and find that our method can sensitively detect the difference of
complexity and is robust to noise. Last, we apply the approach to a functional magnetic resonance
imaging study and compare the complexity metrics of functional brain connectivity networks from
124 patients with schizophrenia and 103 healthy controls. The results show that the brain circuitry is
more organized in healthy controls than schizophrenic patients for male subjects while the difference
is minimal in female subjects. These findings are well aligned with the established sex difference
in schizophrenia.

Keywords: brain network; entropy; graph embedding; point process; schizophrenia; weighted network

1. Introduction

The research of complex networks has attracted significant attention in the last few decades.
Complex networks are a natural representation of real-world interactive processes among multiple
units [1]. For example, social, financial, gene-regulation, and brain networks are complex networks,
which are neither purely random nor regular [2–5]. Complex networks consist of organized (although
often latent) network topological structures, and they exhibit properties such as scale-free and
small-worldness [6]. Analytical models have become fundamental tools to characterize the complex
structure and intrinsic mechanisms of complex networks [7,8].

The quantification of the intrinsic network complexity of complex networks is a fundamental
problem in network analysis. The complexity, as a permutation invariant graph characteristic,
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has proved to be more effective than a number of simple alternatives, including edge density, perimeter,
and path length. Recently, advanced computational models have been developed to calculate the
von Neumann entropy and Shannon entropy of an unweighted graph/network [9–11]. The network
entropy provides a robust measurement of the complexity of a weighted network/graph. The network
entropy can also be used as a graph descriptive statistic and applied to group-level network analysis,
for example, to compare the complexities between networks that were collected from two cohorts of
subjects: a group of patients with brain diseases and a group of healthy controls [12].

The brain network analysis has become an active research area in the last decade [13]. The recent
development in neuroimaging technology has facilitated the non-invasive measurement of brain
circuitry. For example, diffusion tensor imaging (DTI) and tractography can be used to construct white
matter structural networks, while the coactivation patterns of blood-oxygen-level-dependent (BOLD)
signals from functional magnetic resonance imaging (fMRI) can be calculated in order to estimate
functional brain networks [14]. The human brain network is a complex network, where brain areas
are denoted by graph nodes, and the structural/functional connections are represented by edges [4].
The brain network consists of complex, organized, yet latent topological structures and exhibits
network properties, including scale-free, small-worldness, and high-modularity [3]. These network
characteristics have been associated with brain diseases and behaviors. In these studies, brain imaging
data are acquired for each individual to compute the brain network, and then network complexity
scores can be calculated for all participants to perform group-wise statistical analyses (see Figure 1).

Figure 1. Functional brain connectivity can be denoted by a weighted network, where each node is a
brain area and the continuous edge weight represents the connection strength between a pair of brain
locations (e.g., calculated by the Fisher’s Z transformed Pearson correlation coefficient between the
two blood-oxygen-level-dependent (BOLD) time sequences).

The network entropy-based complexity measurement is undoubtedly critical and informative
because the complex human cognitive functions and behaviors are associated with organized brain
networks [15]. However, the calculation of complexity of brain networks has been challenging
because (i) edge weights in the brain network are continuous variables following unknown
distributions (e.g., an infinite mixture model of multivariate distributions with unknown covariance);
(ii) the empirical distributions of edges can be misleading due to the substantial noise of edge;
and, (iii) edges are correlated with each with a large and unknown covariance structure constrained by
network and spatial structures. Moreover, simply binarizing weighted edges into binary edges
by an arbitrary threshold is subject to massive information loss and reduced statistical power.
A straightforward alternative approach to measure the complexity and non-randomness of a weighted
network is to directly extract the network topological structure from the weighted adjacency matrix.
However, the false positive and false negative noise in the edge weights can easily distort the recovery
of the true underlying topological structure. This is more challenging when the structure is complicated,
such as a mixture of k-partite and rich-club [16]. To address this unmet need, we propose a new
computational method to measure the complexity via graph embedding and statistical point pattern
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analysis. We first project each weighted complex network into a low dimensional vector space
and perform point pattern analysis via the statistical point process. The distribution of points from
an unorganized Erdős Renyi random weighted graph is distinct from an organized brain network,
which can be reflected by our complexity measurement. Note that our method does not require
learning the distribution of edges in the weighted adjacency matrix nor the underlying topological
structure, thus it is computationally convenient and is robust to false positive noise.

The rest of this paper is organized, as follows. In Section 2, we introduce the definition of
the metric of complexity for weighted complex network. Section 3 describes the validation of the
proposed approach using various simulated data and the results of an application to schizophrenia
functional network analysis. The results, for the first time, reveal that the complexity of brain networks
significantly differs between male healthy controls and schizophrenic patients, whereas they are similar
in females, which may further explain the well-established difference between sex in schizophrenia.

2. Methods

2.1. Background

The graph notation G = {V, E, W} is often used to denote the weighted network, where V is the
set of nodes/vertices, E is the edge set (links between nodes). We use a weighted adjacency matrix
Wn×n to denote the edge weights, where an entry wij is a real number and represents the connectivity
strength between the two nodes i, j, 0 < j < i < n. For example, the correlation coefficient can be used
and −1 ≤ wij ≤ 1.

The network entropy has been well established for binary networks that are based on a Bernoulli
distribution model [9,11]. However, the network entropy for the weighted network is challenging
because the edge weights in W a mixture multivariate normal distributions with a large and
unknown covariance matrix (the number of parameters is at the order of n4) and unknown mixture
component [17]. The parameter estimation is often intractable, and the computation of entropy is
then challenging.

In the current research, we are facing a more challenging task, because our data are a
group of weighted networks. For a group-level brain connectivity analysis, we denote the data
{W1

n×n, W2
n×n, · · · , WS

n×n}. For one study subject, we have a weighted network W s
n×n, s = 1, · · · , S,

and a vector of clinical covariates Zs (e.g., clinical status, age, and sex). The complexity of W s
n×n

can represent the level of brain organization and efficiency, which influences the symptoms of brain
disorders (e.g., cognitive deficit).

We develop a novel framework to quantify the complexity and non-randomness based on graph
embedding and point pattern analysis to overcome the computational challenge and understand the
association between the organization of brain connectivity networks and the clinical symptoms of
mental disorders.

2.2. Graph Embedding of a Weighted Network

Graph embedding projects a graph into a low dimensional vector space Rk while preserving the
graph information and facilitates the efficient computation of graph analytics [18]. A key advantage
of graph embedding in our application is its invariance to the isomorphic mapping of the graph:
the projection of our weighed network in a low dimensional vector space remains unchanged when
the order of nodes shuffles (see Figure 2). This property alleviates the challenging task of extracting
complicated and unknown topological structure from the weighted graph W , because the distribution
of points in Rk is independent of the detection of graph topological structure (e.g., allocating points to
clusters). The complexity and non-randomness of the original weighted network can be well captured
by the points in Rk.
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(a) A weighted network with explicit structures (b) A weighted network with implicit structures

(c) Contour plot of points in R2 of (a) (d) Contour plot of points in R2 of (b)

(e) Density plot of points in R2 of (a) (f) Density plot of points in R2 of (b)

Figure 2. The demonstration of permutation invariance for points (nodes) in a low dimensional vector
space Rk via graph embedding. (a,b) are the weighted adjacency matrix for two isomorphic weighted
graphs, in that, (b) can be transformed to (a) by rearranging the order of nodes. Nodes in (a,b) are
projected into Rk (k = 2 for demonstration). The distribution pattern of nodes in Rk for the two
weighted networks. (c,d) are contour plots, and (e,f) are density plots, which all show very similar
point patterns of two weighted networks. Therefore, the point pattern in Rk can reflect the intrinsic
complexity and is permutation invariant.

Graph embedding maps the weighed network W : N × N → R and a set of nodes
V = {v1, v2, · · · , vn} into vectors X̃k×n = {X1, X2, · · · , Xn} in Rk, such that

arg min
X̃
||X̃TX̃ − 1

2
JWJ||F, (1)
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where J = In − 1/n1n1t
n and In and 1n are the identity matrix and a vector of ones respectively. X̃k×n

provide a set of k-dimensional coordinates for the nodes V = {v1, v2, · · · , vn}. Next, we apply spatial
statistical methods to analyze the pattern of points in the Rk space and measure the complexity and
non-randomness of the connectivity that is based on the point distribution patterns.

2.3. Point Pattern Analysis in the Rk Space

In the Rk space, each point represents a node in the weighted network. The distribution patterns
of the points in Rk reflect their connectivity in the weighted adjacency matrix. For example, the points
that are mapped from a random weighted graph show a point pattern of complete spatial randomness
(CSR). In contrast, points mapped from a weighted network with an organized topological structure
show a clustered pattern (see Figure 3).

In spatial statistics, stochastic point processes, for example, the Poisson process and Cox process,
are often used to model the point patterns [19]. In that, the number of nodes located within a radius of
r centered at a point/node i follows a Poisson distribution. Under the assumption of a random graph
(i.e., CSR in Rk), the point process can be modeled as a homogeneous point process with the density
λ. Hence, we can use the cross entropy (CE) between the observed point pattern from an organized
weighted network and the point process by the random graph to characterize the complexity of a
weighted network. Specifically, the cross entropy is

L(r) = − 1
n

n

∑
i=1

∑
j 6=i
{I(dij < r)} log(πr2λ), (2)

where r is the radius, dij denotes the Euclidean distance between points i and j, λ is density parameter,
and πr2λ is the expected number of points within an area centered at point i and radius r. In practice,
we estimate L(r) similarly to the estimate of Ripley’s K function since L(r) = cK(r) (c is a constant).
The Poisson distribution for the nodes at the boundary of the point distributed area can be distorted
because of the edge effect [20]. The distribution function presented in Figure 3d is example of the
boundary/edge effect. Thus, the boundary/edge effect can be corrected, which also has been well
developed by the Ripley’s K function estimation. Specifically, the K function is estimated by

K̂(r) = λ−1 1
n

n

∑
i=1

∑
j 6=i

ηij{I(dij < r)}, (3)

where the weight function ηij provides the edge correction. Then, we can conveniently calculate
L̂(r) = c−1K̂(r). Last, we integrate the measure by r and name the measurement as graph embedding
based point process cross entropy (Geme ).

Ĝeme =
∫

L̂(r)dr, (4)

Geme is built on the contrast between the observed point pattern of the weighted network vs.
the point pattern of CSR (projected from a non-organized weighted network random graph) in the Rk

space. In the low dimensional space Rk, the complexity of weighted networks is well captured by the
point/node distribution patterns because the Euclidean distance between nodes can appropriately
represent the edge weights in the weighted adjacency matrix. The point patterns hence reflect the
complexity of weighted networks. The point process methods developed in spatial statistics then
provide a convenient pathway to characterize the ‘complexity’ of the point patterns. The computational
complexity of Geme is O(n2.367), and thus Geme can be scalable to large networks. In summary, Geme is
a new metric to measure the complexity and non-randomness of a weighted network and graph.
Geme can avoid the arbitrary cut-off to binarize a weighted graph to a binary graph and is invariant to
all isomorphic forms of a weighted graph and can quantify the complexity robustly.
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(a) A weighted network with explicit structures (b) A random weighted network/graph

(c) Contour plot of points in R2 of (a) (d) Contour plot of points in R2 of (b)

(e) Density plot of points in R2 based on (a) (f) Density plot of points in R2 based on (a)

Figure 3. The demonstration of point patterns in a low dimensional vector space Rk for an organized
graph (a) vs. a random graph (b) with an identical edge weight distribution. Nodes in (a,b)
are projected into Rk (k = 2 for demonstration). The distribution pattern of nodes in Rk for the
two weighted networks. (c,d) are contour plots, and (e,f) are density plots. Plots (c–f) show distinct
point patterns between the weighted network with an organized structure and a random weighted
graph. The difference can be quantified by a cross entropy measurement.
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3. Results

3.1. Simulations

We first validate and evaluate the proposed complexity metric Geme using synthetic data sets.
In the current research, we focus on group level comparison and test whether Geme can accurately
capture the difference of complexity between groups of networks with different topological structures.
We illustrate examples using the commonly used two group setting; however, the conclusion can
be easily extended to the regression setting. Specifically, we simulate a set of weighted networks
(i.e., brain networks for multiple subjects) from two covariance matrices Σ0

n×n 6= Σ1
n×n, where n is the

number of nodes. For subjects s = 1, 2, · · · , S0 in group one, we simulate Zs
n×T ∼ N(µ0, Σ0

n×n) and
Zs′

n×T ∼ N(µ1, Σ1
n×n) with s′ = S0 + 1, S0 + 2, · · · , S0 + S1. T is the number of volumes of the image,

for example, the number of time points in fMRI data. In this application, we let S0 = S1 = 100. For the
sake of simplicity, we let µ0 = µ1 = 0. For a subject s, we can calculate the weighted network by
W s

n×n = diag(U)1/2 U diag(U)1/2, U = 1
T−1 Zs(Zs)T for each subject. As a result, we obtain a set of

weighted adjacency matrix {W1, · · · , WS0 , WS1+1, · · · , WS1}. We set the two covariance matrices Σ0

and Σ1 as

Σ0 =


Ia1(1− ρ1) + Ja1 ρ1

Ia2(1− ρ2) + Ja1 ρ2
. . .

1

 ,

Σ1 =


Ib1(1− ζ1) + Jb1 ζ1

Ib2(1− ζ2) + Jb1 ζ2
. . .

1

 .

Both matrices exhibit a community network structure, where {a1, a2} and {b1, b2} are sizes of
community subnetworks and {ρ1, ρ2} and {ζ1, ζ2} are correlations between nodes in the communities.
The off-diagonal blocks are zeros. We simulate data using different settings by set various values
of {a1, a2} and {b1, b2}, and {ρ1, ρ2} and {ζ1, ζ2}. The larger sizes of communities indicate a greater
complexity of the weighted network because it is more organized. We consider the variation of
correlations as noises because point pattern in the low dimensional space is more clear when {ρ1, ρ2}
and {ζ1, ζ2} are larger and more likely to distinguish from false positive edges. Because we have
two matrices, we set Σ0 as fixed and vary the parameters in Σ0. We let {a1, a2} = {20, 30} and
{b1, b2} = {20, 30}, {20, 20}, {10, 15}. We set Σ0 as a fixed matrix with {ρ1, ρ2} = {0.5, 0.6} and
vary the parameters in Σ1 by letting {ζ1, ζ2} = {0.5, 0.6}, {0.4, 0.5}, {0.3, 0.4}, {0.2, 0.3}. For each
setting, we simulate {Zs} for 100 times, calculate Geme for all subjects, and then test whether the
difference of complexity of weighted networks (Geme) can be detected between the two groups. In the
Method section, we demonstrate one example subject with the parameters of {ρ1, ρ2} = {0.6, 0.5} and
{a1, a2} = {20, 30} in Figures 2 and 3. The average computational time for a subject with n = 100
nodes is 0.11 s on a PC with a CPU i7 3.6G HZ and 64G ROM.
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The results presented in Table 1 show that Geme can sensitively reflect the complexity of weighted
networks. When the difference of complexity between the two groups of weighted networks is
small (e.g., one subnetwork size in group one is larger than group two by ten nodes), we have the
power of 73%± 3.2% to detect the difference of complexity between the two groups of weighted
networks with a statistical significance α = 0.05, when (ζ1, ζ2) = (ρ1, ρ2). The power is reduced when
(ζ1, ζ2) < (ρ1, ρ2) and connected edges are less different from unconnected edges. We consider the
signal to noise ratio (SNR) in a weighted network is lower when (ζ1, ζ2) is closer to zero. When the
difference of complexity is larger (i.e., the subnetwork size difference is larger), we are more likely to
detect the difference using Geme . When the subnetwork difference is about 20, we have a power of
100%. In addition, the statistical power is related to the sample size, and we use a sample size that is
close to our motivation data set.

Table 1. Simulation results show that Geme can reflect the complexity of weighted networks.
We summarize the mean and standard error of the chance to reject the null hypothesis (no difference of
network complexity between two groups) based on 100 data sets.

Subnetwork Sizes

(ζ1, ζ2) (20, 30) (20, 20) (20, 15) (10, 15) (10,10)

(0.6, 0.5) 0% ± 0% 73% ± 3.2% 100% ± 0% 100% ± 0% 100% ± 0%
(0.4, 0.5) 2% ± 1% 53% ± 3.5% 92% ± 1.9% 100% ± 0% 100% ± 0%
(0.4, 0.3) 5% ± 1.5% 46% ± 3.5% 90% ± 2.1% 100% ± 0% 100% ± 0%
(0.3, 0.2) 9% ± 2% 43% ± 3.5% 91% ± 2% 96% ± 1.4 % 100% ± 0%

3.2. Application to Brain Network Analysis for Schizophrenia Research

We apply the proposed new metric to a resting state fMRI data that were collected from
103 patients with schizophrenia (SZ) and 124 healthy controls (HC). This average age of patients
with schizophrenia is 36.88 ± 14.17, and 33.75 ± 14.22 for healthy controls. There are 62 males and
41 females in the SZ cohort and 61 males and 63 females in the HC cohort. There are no systematic
differences in age ( p = 0.10) or gender (p = 0.13) between the two groups. We would refer readers to
Adhikari et al. [21] for the details of imaging acquisition and preprocessing procedure. We denote the
nodes of a network based on a brain connectivity-based atlas that parcellates the brain into 246 regions
of interest (ROIs) (see http://atlas.brainnetome.org/ and [22]). The functional connection (edge
weight) between a pair of nodes for each subject is calculated by the covariation between averaged
time series from the two corresponding brain ROIs. The Fisher’s Z transformed Pearson correlation
coefficient is then used as the edge connection strength and, thus, a group of weighted networks
{W s

246×246}. Our goal is to examine whether the complexity of weighted networks is different between
SZ and HC.

We first map each weighted network to a low dimensional space Rk via graph embedding and
then calculate the Geme metric for each subject. Further, we perform regression analysis to examine
the association between disease and network complexity while adjusting for age and sex. We use
a step-wise regression model selection procedure to determine the optimal model regarding the
interaction terms. In the final model, the sex and disease interaction term is included. The results show
that the interaction term is significant (p = 0.032). The network complexity difference between HC
and SZ in males is significant (p = 0.0026), whereas the group difference not significant in females
(p = 0.90) based on the stratified analysis. Figure 4 shows the group difference in males and females.

http://atlas.brainnetome.org/
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Figure 4. The results show that the weighted network complexity metric Geme is lower in patients with
schizophrenia than healthy controls for male subjects, whereas the difference is minimal for female
subjects. Thus, the brain is less organized in male patients when comparing to male healthy controls
while the brain is organized at a similar level in female patients and female healthy controls. The sex
moderated difference in brain organization level between SZ and HC may explain the commonly
observed phenomenon that male patients have more severe clinical symptoms than female patients.
The figure above demonstrates the subgroup analysis for the female and male cohorts, and the figure
below shows the results for all subjects.

4. Discussion

We have developed a new metric Geme to characterize the complexity of the weighted complex
network. This current research is motivated by a group-level brain network study, which includes a
set of weighted brain networks with different clinical statuses. We aim to investigate whether brain
disorder can be associated with the complexity of the functional brain networks. The weighted network
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is different from the binary network, as the values of edges are continuous variables. Unlike binary
edges, the distribution of continuous edge variables is unknown because it can be a mixture distribution
with infinite unknown components. Thus, the existing network entropy metrics are not applicable.
On the other hand, the extraction of network topological structure from the weighted network can be
difficult due to the distortion of false positive and negative noise. To overcome these challenges, we
implement an integrative procedure of graph embedding and statistical point pattern analysis that is
invariant to the permutation of the network. Interestingly, we find that the point distribution pattern
of points projected from the nodes of weighted networks in the low dimensional space can reflect
the complexity of weighted networks. We utilize the statistical techniques for point process analysis
to implement a cross entropy metric in order to capture the deviation of point patterns in complex
networks from random graph networks. We propose a computationally efficient method to calculate
the metric. We perform extensive simulation analysis to validate the new metric. The results show that
our metric can sensitively detect the difference in network complexity based weighted network data.
We also note that this method is rust to noise.

We further apply the new metric to our data example. In this study, brain imaging data and
weighted brain networks were acquired for each of the 124 patients with SZ and 103 healthy controls.
We calculate the network complexity metric for each subject and perform statistical analysis. The results
reveal new neuropathological findings that the complexity of functional brain networks is significantly
higher for HC than SZ in male subjects, while the difference is not significant in females. The sex
difference in schizophrenia has been long established [23,24]. Many studies have reported that onset
time of females are later than males [25,26]. In addition, the symptoms of female patients with SZ are
milder than males [27–29]. These external phenotypes can be well reflected by the organization and the
complexity of functional connectivity networks [30]. Our findings may provide a viable neurological
explanation for the long-established sex difference in schizophrenia. The functional brain networks are
more disturbed and less organized in male patients than female patients when comparing to healthy
controls, which is associated with more severe symptoms regarding cognitive functions, anhedonia,
and social functioning in male patients. We can further the location-specific edges and nodes that
cause the complexity difference using recently developed network methods [16,17,31].

In the data example, we show the application of Geme to a functional brain connectivity study.
In general, Geme can be applied to any weighted (functional and structural) network with a positive
semidefinite weighted adjacency matrix. In white matter structural network analysis, we find that
clinical symptoms (e.g., cognitive functions) are related to the SC connection strengths (e.g., fractional
anisotropy—FA levels) instead of the network complexity [32]. Therefore, these SC connection
differences cannot be detected Geme . In contrast, the complexity of functional networks is more
informative than the absolute connectivity strengths because the connectivity scale can be influenced
by procedures, like global regression. Thus, Geme is more suited to identify the difference of network
organization patterns for functional brain network analysis.

In summary, Geme is a computationally efficient metric for measuring the complexity of weighted
networks. Geme can become a complement to the existing von Neumann network entropy metrics [11].
The graph embedding and point pattern analysis strategy may also provide an alternative pathway for
network entropy analysis in addition to the exiting spectral entropy methods.
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