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Cellular senescence is classically considered a tumor suppressive mechanism. In addition to having stably exited the
cell cycle, senescent cells secrete inflammatory factors. We recently demonstrated that senescence correlates with
accelerated cancer progression in a mouse model of pancreatic ductal adenocarcinoma. Here, we discuss the
implications of this study.

Author View

Pancreatic ductal adenocarcinoma
(PDAC) is primarily an incurable disease
with a median survival of only 6 months,
due in large part to the late clinical presenta-
tion of the disease. The majority of PDACs
arise from activating mutations within the
GTPase Kirsten rat sarcoma viral oncogene
homolog (KRAS) gene that drive the devel-
opment and stepwise progression of pre-
neoplastic lesions called pancreatic
intraepithelial neoplasms (PanINs). As Pan-
INs progress the cells acquire additional
mutations within various tumor suppressor
genes including cyclin-dependent kinase
inhibitor 2A (CDKN2A) and tumor protein
p53 (TP53), and the lesions display
increased dysplasia and proliferation.1 It is
believed that oncogene activation drives the
cells that consitute early PanIN lesions into
cellular senescence, thus halting their prolif-
eration and preventing PanIN progression.2

Cellular senescence corresponds to an irre-
versible exit from the cell cycle that is trig-
gered by various stimuli and prevents the
uncontrolled proliferation of damaged cells.
Studies in both mouse and human tissues
have demonstrated that senescent cells accu-
mulate within preneoplastic lesions includ-
ing PanIN, but are absent in frank
carcinoma. Furthermore, in numerous

mouse models of cancer, abrogating the
molecular pathways required for entry into
cellular senescence correlates with acceler-
ated cancer progression. These observations
helped establish the classically accepted role
for senescence as a barrier to cancer
progression.3

Recently, we demonstrated that mouse
embryonic fibroblasts with inactivation of
the chromatin-associated SWI-indepen-
dent transcription regulator family mem-
ber B (Sin3B) protein are refractory to
oncogene-induced senescence. Unlike
other proteins required for cellular senes-
cence, including p16INK4A (encoded by
CDKN2A) and p53 (encoded by TP53),
deletion of Sin3B does not sensitize cells to
transformation.4 Therefore, modulating
Sin3B levels, as opposed to other regulators
of senescence, provides a context within
which the effects of cellular senescence in
cancer progression can be studied without
the confounding effects of accelerated
transformation. To better understand the
role of cellular senescence in PDAC pro-
gression, we genetically engineered mice
with pancreatic-specific expression of
oncogenic KRasG12D concomitant with
deletion of the Sin3B locus. Based on the
requirement for Sin3B for entry into cellu-
lar senescence and the role of senescence as
a barrier to cancer progression, we

hypothesized that Sin3B deletion would
accelerate KRasG12D-driven PDAC pro-
gression in the mouse. Surprisingly, we
observed the opposite phenomenon:
Sin3B-deleted animals exhibited delayed
PanIN and PDAC progression and dis-
played increased survival compared to their
wild-type counterparts.5

We initially asked whether this unex-
pected observation was due to a require-
ment for Sin3B in acinar-to-ductal
metaplasia (ADM), an initiating event in
at least some PDAC models. Although
ADM was delayed in Sin3B-deleted pan-
creata in vivo, ADM initiation did not
require Sin3B in vitro. We hypothesized
that this discrepancy reflected a non-cell
autonomous effect of Sin3B on the pancre-
atic microenvironment. Emerging evi-
dence suggests that cellular senescence has
both cell autonomous and non-cell auton-
omous effects, and that senescent cells,
although no longer cycling, actively com-
municate with neighboring cells and the
surrounding tissue. Senescent cells produce
and secrete numerous factors such as cyto-
kines, chemokines, proteases, and growth
factors, collectively referred to as the senes-
cence-associated secretory phenotype
(SASP). The SASP reinforces senescence in
both an autocrine and a paracrine fashion,
and recruits innate and adaptive immune
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cells.3 Since PDAC relies on
an inflammatory microenvi-
ronment, we postulated that
the SASP, driven by Sin3B-
dependent senescence, may
paradoxically promote
PDAC progression by
recruiting immune cells that
generate an inflammatory
microenvironment. Accord-
ingly, we observed lower
expression levels of markers
of senescence in Sin3B null
pancreata, and the infre-
quent PanIN lesions within
Sin3B-deleted pancreata
were negative for established markers of
senescence. Furthermore, we detected a
drastic reduction in immune cell infiltra-
tion in Sin3B-deleted pancreata. We con-
cluded that Sin3B was required for both
KRas-induced senescence and inflamma-
tion in vivo, and that entry into senescence
surprisingly correlated with pancreatic can-
cer progression.5 While these observations
remain correlative, we hypothesize that
senescent cells stimulate the generation of
an inflammatory microenvironment and
promote PDAC progression, questioning
the classical view of cellular senescence as
merely a tumor suppressive mechanism in
vivo (Fig. 1).

Recent studies identified a role for the
SASP in liver cancer development. How-
ever, although one study observed that the
SASP inhibited tumor development,6 the
other reported that the SASP promoted
tumor progression.7 Although the reason
for this difference is not immediately
clear, it could be due to the different mod-
els used by the 2 groups, adding further

complexity to the role of senescence and
the SASP. To better define its role in can-
cer progression, factors that are required
for the SASP but are not involved in cell
cycle exit should be identified. In our
model, interleukin-1 a (IL-1a) levels cor-
related with senescence and the inflamma-
tory response in both mouse and human
tissue. Several groups have previously
identified IL-1a as an upstream regulator
of the SASP both in vitro and in vivo.8,9

Moreover, Chia and colleagues recently
described that oncogenic KRas induces
IL-1a expression in PDAC, which in turn
stimulates NF-kb activity, previously
described to be required for the SASP.10

These studies, in combination with our
observations, point to a central role of IL-
1a in stimulating an inflammatory micro-
environment through the SASP. We
believe that dissecting the contribution of
IL-1a in various cancers, such as PDAC
and hepatocellular carcinoma, will provide
an avenue to directly investigate the role of
the SASP in cancer progression. If the

SASP promotes cancer progression in at
least some contexts, IL-1a inhibition may
represent a novel treatment option.
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Figure 1. Senescence-associated cytokines establish an inflammatory microenvironment and promote cancer pro-
gression. Upon oncogene activation cells become senescent. The senescent cells produce and secrete the senes-
cence-associated secretory phenotype (SASP), which reinforces senescence within the lesion and recruits immune
cells to the surrounding tissue. The immune cells, along with the SASP, generate an inflammatory microenviron-
ment, which in certain contexts fuels cancer progression.
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