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Viral infections have a major impact on morbidity and mortality of immunosuppressed

solid organ transplant (SOT) patients because of missing or failure of adequate

pharmacologic antiviral treatment. Adoptive antiviral T-cell therapy (AVTT), regenerating

disturbed endogenous T-cell immunity, emerged as an attractive alternative approach to

combat severe viral complications in immunocompromised patients. AVTT is successful

in patients after hematopoietic stem cell transplantation where T-cell products (TCPs)

are manufactured from healthy donors. In contrast, in the SOT setting TCPs are

derived from/applied back to immunosuppressed patients. We and others demonstrated

feasibility of TCP generation from SOT patients and first clinical proof-of-concept

trials revealing promising data. However, the initial efficacy is frequently lost long-

term, because of limited survival of transferred short-lived T-cells indicating a need

for next-generation TCPs. Our recent data suggest that Rapamycin treatment during

TCP manufacture, conferring partial inhibition of mTOR, might improve its composition.

The aim of this study was to confirm these promising observations in a setting closer

to clinical challenges and to deeply characterize the next-generation TCPs. Using

cytomegalovirus (CMV) as model, our next-generation Rapamycin-treated (Rapa-)TCP

showed consistently increased proportions of CD4+ T-cells as well as CD4+ and CD8+

central-memory T-cells (TCM). In addition, Rapamycin sustained T-cell function despite

withdrawal of Rapamycin, showed superior T-cell viability and resistance to apoptosis,

stable metabolism upon activation, preferential expansion of TCM, partial conversion of

other memory T-cell subsets to TCM and increased clonal diversity. On transcriptome

level, we observed a gene expression profile denoting long-lived early memory T-cells

with potent effector functions. Furthermore, we successfully applied the novel protocol for

the generation of Rapa-TCPs to 19/19 SOT patients in a comparative study, irrespective
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of their history of CMV reactivation. Moreover, comparison of paired TCPs generated

before/after transplantation did not reveal inferiority of the latter despite exposition

to maintenance immunosuppression post-SOT. Our data imply that the Rapa-TCPs,

exhibiting longevity and sustained T-cell memory, are a reasonable treatment option for

SOT patients. Based on our success to manufacture Rapa-TCPs from SOT patients

under maintenance immunosuppression, now, we seek ultimate clinical proof of efficacy

in a clinical study.

Keywords: cytomegalovirus, adoptive T-cell therapy, solid organ transplantation, Rapamycin, mTOR, immune

regeneration

INTRODUCTION

Severe viral infections have a major impact on the clinical
course of immunocompromised patients. Despite availability
of powerful antiviral medication, cytomegalovirus (CMV) still
accounts for significant morbidity and mortality in solid organ
transplant (SOT) recipients (1). CMV can trigger direct and
indirect morbidities such as chronic allograft rejection or in
the case of kidney transplantation (KTx) chronic nephropathy
(2, 3). Therapeutic control of CMV may be hampered by the
development of anti-viral drug resistance (4). Moreover, after
discontinuation of anti-viral prophylaxis, late-onset CMVdisease
frequently occurs and overall mortality is significantly higher
in CMV-infected compared to uninfected KTx patients (1). Of
note, T-cell-mediated anti-CMV immunity was reported to be
predictive for the development of late-onset disease (5) and
anti-CMVIE−1-specific CD8+ T-cell responses stratify risk of
CMV disease in heart and lung transplant as well as KTx
patients (6, 7). In addition, the magnitude of the CMVpp65- and
CMVIE−1-specific T-cell responses turned out to be protective
against complications with CMV in hematopoietic stem cell
transplantation (HSCT) (8, 9). Consequently, regeneration of
the endogenous T-cell response against these antigens, as
aspired by AVTT, may prevent and reduce virus-associated
morbidities/mortality in the SOT setting. Other viruses with
impact on SOT outcomes are Epstein-Barr-virus and BK-virus,
for which less efficient or no antiviral drugs are available. T-
cells play a key role in protection from severe viral infections
(7, 10, 11). Thus, adoptive T-cell therapy (AVTT) is a potent
novel treatment strategy to tackle fatal viral complications in
immunosuppressed transplant patients. Mechanisms of success
or failure of new AVTT approaches need to be thoroughly
understood and specific characteristics of patient cohorts have to
be considered for successful translation of AVTT.

For clinical application of AVTT, ex vivo enrichment and
expansion of virus-specific T-cells under GMP conditions are
crucial and thus various protocols have been developed for CMV-
specific AVTT after HSCT (12–17). However, the success of
these approaches is limited in SOT patients due to the T-cell
products (TCPs) being derived from patients instead of healthy
HSCT donors, the lack of lymphodepletive preconditioning and
the need for concomitant immunosuppression. Nevertheless,
we and other groups demonstrated not only safety of AVTT,
but also significant reduction of viral load and control of

clinical symptoms of CMV disease in SOT recipients under
maintenance immunosuppression in proof-of-concept studies
(18–21). These observations are in line with positive results
of AVTT for treatment of patients with EBV-related post-
transplant lymphoproliferative disease (22–24). Yet, long-term
efficacy failed in some patients, who experienced recurrence of
CMV or EBV load and symptoms (18–25). To adapt AVTT
to combat these clinical challenges, it is crucial to consider
the respective patient cohort and the TCPs’ characteristics.
Specifically, our aim was to increase longevity of transferred
T-cells to improve sustainability of clinical efficacy of AVTT
in SOT patients. Failure of long-term control of CMV/EBV
infections may be due to limited persistence of adoptively
transferred T-cells in vivo, which might occur due to the late
differentiation state implying limited longevity of infused T-
cells. Therefore, advancing the quality of adoptively transferred
TCPs with defined compositions by the enrichment for distinct
T-cell memory subsets may improve therapeutic outcome.
In particular, central-memory T-cells (TCM; CCR7+ CD62L+

CD45RO+ CD45RA−) andmemory-stem T-cells (TSCM; CCR7+

CD62L+ CD45RO− CD45RA+ CD95+) have high proliferative
potential, self-renewal capacity and are reported to show
superior engraftment, persistence, and survival compared to
more differentiated memory T-cells (26–33). Conversely, late-
differentiated short-lived effector-memory T-cells (TEM; CCR7−

CD62L− CD45RA−CD45RO+) and terminally-differentiated
effector T-cells (TEMRA; CCR7

− CD62L− CD45RA+CD45RO−)
exert immediate effector function, but fail to establish long-
lasting protectivememory, because of poor proliferative potential
and limited survival following antigenic rechallenge (26,
27, 34). Remarkably, these observations match clinical data
demonstrating T-cell reconstitution after HSCT and prevention
of CMV disease related to TCM proportions in peripheral blood
(35). Direct sorting strategies to isolate only CMV-specific long-
lived T-cells are barely feasible under GMP conditions and
would yield very small cell numbers likely not sufficient for
successful AVTT in immunosuppressed SOT recipients. To
ensure applicability in a clinical setting, we recently optimized
our GMP-conform manufacturing process for autologous virus-
specific TCPs and succeeded in attenuating T-cell differentiation
by treatment with low doses of Rapamycin (inhibits the
mechanistic-target-of-rapamycin-complex-1: mTOR-C1, favorable
results with 20 nM) during expansion cultures (18, 36, 37). This
next-generation antiviral TCP comprises enriched proportions
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of early-differentiated TCM being superior for AVTT (37–39).
Furthermore, next-generation Rapamycin-treated (Rapa-)TCPs
contain higher proportions of CD4+ T-cells (37) reported to
improve clinical efficacy (29, 40, 41).

Detailed knowledge regarding the characteristics of Rapa-
TCPs is a prerequisite for realization of clinical translation.
Thus, we closely investigated the molecular properties of this
Rapa-TCP regarding dependence on cytokine supplementation
regiments during in vitro expansion, long-term stability,
survival/sensitivity to apoptosis, metabolism, transcriptome,
clonal composition, the role of the different memory T-cell
subsets and applicability to SOT patient samples. Our data reveal
a beneficial early differentiated phenotype, profound function,
elevated clonal diversity, and superior survival of Rapa-TCPs
compared to first-generation TCPs, which is further underlined
and confirmed by a distinct gene expression signature revealed
by mRNA sequencing.

We used in vitro models to mimic the situation of TCPs
once injected into a patient coping with CMV disease, i.e.,
massive antigen exposure and withdrawal of Rapamycin. Here,
we observed a preserved capacity for CMV-specific production
of effector cytokines. Moreover, we tested manufacture of CMV-
specific TCPs from material of patients with chronic end-stage
renal disease (ESRD) before and after KTx to investigate the
impact of chronic immunosuppression, showing no benefits
of TCP generation before KTx. We further investigated the
influence of CMV-reactivation history after KTx on the
differentiation of virus-reactive memory T-cells and the resulting
composition of untreated and Rapa-TCPs, implying feasibility
of TCP generation from all groups investigated. This next-
generation AVTT approach may also be applied to other viral
specificities, such as EBV and BKV or even cancer-specific T-
cells. Prospectively, implementation of next-generation AVTT
may allow for reduction or complete ablation of toxic anti-
viral medication and minimize the risk for virus-associated
complications in the SOT setting.

METHODS

Patients’ and Healthy Donors’
Blood Samples
Venous blood samples were collected from 19 healthy donors
(HDs) (10 m/9 f; 25–81 years) and 19 KTx patients (11 m/8 f; 34–
78 years; Table S2) of the Kidney Transplant Ambulance, Charité
Virchow Klinikum, Berlin. We worked with buffy coats from
3 of the 19 different HDs to have sufficient cells for different
cell sorting steps. Peripheral blood mononuclear cells (PBMC)
were isolated by Biocoll Separating Solution density gradient
centrifugation (Biochrom). The Charité Ethics Committee (IRB)
approved the study protocol and all blood donors provided
written informed consent. Detailed characteristics of each patient
are presented in Table S2.

Enrichment and Expansion of
CMV-Specific T-Cells
CMV-specific TCPs were generated using a previously described
technique (18, 36, 37, 42). Briefly, PBMCs were stimulated

for 6 h with overlapping CMVpp65/IE−1 peptide pools (JPT
Peptide Technologies; 0.5µg/ml each). IFNγ-producing
cells underwent positive selection using the IFNγ Secretion
Assay—Cell Enrichment and Detection Kit according to the
manufacturer’s instructions (Miltenyi Biotec). Enriched IFNγ+

cells were cultured for 21 days in 96- or 24-well-plates with
irradiated (30Gy using a GSR D1 [Gamma-Service Medical
GmbH]) autologous feeder cells (derived from 1/5 of the capture
assays’ negative fraction) added only at d0 in complete media
(VLE RPMI 1640 supplemented with penicillin (100 IU/ml)
and streptomycin [all from Biochrom] and 10% fetal calf serum
[FCS, PAA]), supplemented with 10 ng/ml recombinant human
(rh) IL-7 and rh IL-15 (CellGenix) or 50 U/ml IL-2 in humidified
incubators at 37◦C and 5% CO2. Cells were split 1:1 when 100%
confluence was reached. For Rapa-TCPs, 20 nM of Rapamycin
(Rapamune, Pfizer Pharma GmbH) were added every 2nd day or
upon splitting starting from day 1 (37).

For restimulation during culture (only where indicated,
Figure 1, Figure S1), we depleted the donor’s PBMCs of CD3+

cells using magnetically activated cell sorting (MACS) with
anti-CD3 beads (Miltenyi Biotec) following the manufacturer’s
instructions. These cells were frozen in FCS with 10% cell culture
grade dimethyl-sulfoxide (Sigma-Aldrich) until restimulation
at d14. Thawed autologous CD3− PBMCs were washed twice
and pulsed with overlapping CMVpp65/IE−1 peptide pools at
concentrations of 2µg/ml each peptide for 2 h and added at a 1:5
ratio to the T-cells in culture.

Functional Tests, Phenotyping, Flow
Cytometry, and Sorting
Expanded T-cells were analyzed for effector functions by their
ability to recognize antigen-loaded target cells, which consisted of
autologous lymphoblastoid B-cell lines (LCLs), transformed with
B95-8 EBV and by specific production of cytokines. LCLs were
generated as described previously (43).

For CMV-specific stimulation of expanded TCPs for detecting
intracellular effector cytokine production, CMVpp65/IE−1 peptide
pool-loaded LCLs were added to cultured T-cells at a ratio of 1:10
and incubated for 6 h. Un-pulsed LCLs served as unstimulated
control. For effector cytokine detection ex vivo, PBMCs were
stimulated with 1µg/ml overlapping CMVpp65/IE1 peptide pools
ex vivo for 14 h. After 1 h, 2µg/ml Brefeldin A (BFA, Sigma-
Aldrich) were added to the stimulation to allow for intracellular
capture of cytokines.

To induce apoptosis, 1µg/ml of LEAF-purified Fas-activating
antibody (EOS9.1; BioLegend) was added to cultures for 16 h. To
determine survival, LIVE/DEAD R© Fixable Blue Dead Cell Stain
(Invitrogen) and Annexin V (BioLegend) were added.

For determination of killing capacity, autologous LCLs were
pulsed with 2µg/ml CMVpp65/IE−1 peptide pools, whereas
unpulsed allogenic LCLs were used as non-target controls.
Targets were labeled with 10mM Carboxyfluorescein-diacetate-
succinimidyl-ester (Sigma-Aldrich) and non-target controls with
5mM CellTraceTM Far Red (Invitrogen). Cells were co-cultured
at a T-cell/target-cell ratio of 10:1 for 14 h. Samples were analyzed
using a LSR II Fortessa flow cytometer. Samples without T-cells,
containing only LCLs, served as an internal control and reference
for calculation of the killing capacity. For analysis, we gated
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FIGURE 1 | Effects of Rapamycin on T-cell products: Expansion, phenotype and function. (A) Schematic overview of experiments: T-cell products (TCPs) were

generated from PBMCs isolated from venous blood of healthy donors (HDs) by magnetically activated cell sorting (MACS) of T-cells producing IFNγ in response to

(Continued)
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FIGURE 1 | stimulation with CMVIE−1/pp65 peptide pools and expanded in the presence of either IL-2/IL-7 (Figure S1) or IL-7/IL-15 without (w/o; blue) or with

addition of 20 nMof Rapamycin (Rapa; red) (B–P). Parts of the culture were re-stimulated using thawed CD3− PBMCs loaded with CMVIE−1/pp65 peptide pools,

deprived of Rapamycin or a combination of both on d14. (B) Expansion rates of IL-7/15-expanded Rapa-treated (Rapa-)TCPs (red) and untreated TCPs (blue) of n =

10 healthy donors (HDs) calculated from yield at d14 divided by the number of seeded cells at d0. We gated flow cytometric data on lymphocytes singlets living CD3+

T-cells. (C) Exemplary flow cytometry plots of CD4+ and CD8+ populations among living CD3+ T-cells in the Rapa-TCP (left plot) and untreated TCP (w/o, right plot)

of one HD. (D) CD4/CD8 ratios in Rapa- (red) and untreated TCPs (blue) of n = 10 HDs calculated from flow cytometry data as presented in (C). (E) Gating strategy

for CD45RA− CCR7+ central memory T-cells (TCM) among CD4+ (upper panel) and CD8+ (lower panel) in Rapa- (left panel) and untreated TCPs (right panel) of one

exemplary HD. (F) Proportions of CD4+ and CD8+ TCM among Rapa- (red) and untreated TCPs (blue) of n = 10 HDs determined from flow cytometric data as shown

in (E) at d14. (G,H) To detect CMV-specific cytokine producers, TCPs were stimulated with CMVIE−1/pp65 peptide-loaded autologous lymphoblastic cell lines (LCLs)

at a ratio of 1:10 for 6 h and Brefeldin A (BFA) was added after 1 h. (G) Representative flow cytometric plots of IFNγ- and TNFα-producers in Rapa- (left panel, red) and

untreated TCPs (right panel, blue) of one HD. The dark population represents unstimulated and the light population illustrates CMVIE−1/pp65-stimulated CD4+ (upper

panel) and CD8+ T-cells (lower panel). (H) Proportions of CMV-specific IFNγ-producers among CD4+ and CD8+ T-cells in Rapa- (red) and untreated TCPs (blue) of n

= 10 HDs determined from flow cytometric data as shown in (G) at d14. (I–N): For re-stimulation on d14 of culture, thawed CD3− autologous PBMCs were loaded

with CMVIE−1/pp65 peptide pools and added at 1:5 ratio to T-cells. (I) Expansion rates of IL-7/15-expanded re-stimulated (pastel colors) or non-re-stimulated (dark

colors) Rapa- (red) and untreated TCPs (blue) of n = 7 HDs calculated from yield at d21 divided by the number of cells at d14. (J) CD4/CD8 ratios in Rapa- (red) and

untreated TCPs (blue) of n = 7 HDs calculated from flow cytometric data as presented in (C) at d21. (K,L): Proportions of CD4+ (K) and CD8+ TCM (L) among Rapa-

(red) and untreated TCPs (blue) of n = 7 HDs determined from flow cytometric data as shown in (E) at d21. (M–P) To detect CMV-specific cytokine producers, TCPs

were stimulated with CMVIE−1/pp65 peptide-loaded autologous LCLs for 6 h and BFA was added after 1 h. (M–N) Proportions of CMV-specific IFNγ-producers

among CD4+ (M) and CD8+ T-cells (N) in Rapa- (red) and untreated TCPs (blue) of n = 7 HDs determined from flow cytometric data as shown in (G) at d21. (O,P) To

mimic the situation after infusion, Rapa was withdrawn and TCPs were cultivated long-term until d49. Proportions of CMV-specific IFNγ-producers among CD4+ (O)

and CD8+ T-cells (P) in TCPs withdrawn from Rapa (red) and untreated TCPs (blue) of n = 6 HDs determined from flow cytometric data as shown in (G) at d49. For all

graphs normal distribution of data points was tested with Kolmogorov-Smirnov test and paired t-test was used to determine significance in normally distributed

samples or Wilcoxon’s matched-pairs signed rank test in not normally distributed samples, respectively. P-values below 0.05 are indicated by * and defined to be

significant.

on LIVE/DEAD R© Fixable Blue Dead Cell Stain-negative cells
and calculated ratios of target to non-target cells as described
previously (44, 45).

To define memory subsets, T-cells were stained extracellularly
for surface markers CCR7 (G043H7), CD45RA (HI100),
CD45RO (UCHL1), CD62L (DREG-56; eBioscience), and CD95
(DX2). Subsequently, cells were permeabilized and fixed with
Foxp3/Transcription Factor Staining Buffer Set (eBioscience)
and stained intracellularly for CD3 (OKT3), CD4 (SK3), and
CD8 (RPA-T8), IFNγ (4S.B3, eBioscience), TNFα (MAb11), and
Granzyme B (GZB) (GB11, BD Pharmingen). Cells were analyzed
on a LSR II Fortessa flow cytometer using FlowJo Version 10
software (Tree Star). Lymphocytes were gated based on the FSC
vs. SSC profile and subsequently gated on FSC (height) vs. FSC to
exclude doublets.

For evaluating of T-cell subsets on transcriptome level, T-cell
subsets were sorted from PBMCs from n = 3 HDs’ buffy coats
(DRK) at d0 or derived TCPs at d18 based on the expression of
CD3, CD45RA, and CCR7 by the Core Facility Flow Cytometry
of the BCRT using a FACS Aria II Calliope (BD).

All antibodies were purchased from BioLegend, unless
indicated otherwise.

Metabolic Analysis
Extracellular acidification rate (ECAR) and oxygen consumption
rate (OCR) were analyzed using a Seahorse-XFe96-Analyzer
following the manufacturer’s instructions for non-adherent cells
including immobilization of cells with Cell-Tak (Corning). Assay
medium consisted of Dulbecco’sModified Eagle’sMediumD5030
(Sigma) supplemented with 3 g/l D-glucose (Roth) and 300
mg/ml L-glutamine (Gibco) and was sterile-filtered. For T-cell
activation, 0.5µg/ml of CMV pp65/IE−1 peptide pools were added
to the microwells relying on reciprocal antigen-presentation of
T-cells 0.5 h before the measurement.

RNA Sequencing and
Bioinformatics Analysis
RNA was isolated using an All-Prep DNA/RNA Kit (Qiagen)
following the manufacturer’s instructions. RNA samples were
sent to the Deep Sequencing Core Facility in Göttingen, where
samples were prepared using TrueSeq Kits (Illumina) and
HiSeq_4000 performing 50 million reads/sample.

Fastq-files were quality checked with FastQC (Babraham
Bioinformatics) and trimmed for residual adapter sequences.
Reads were aligned to the GRCh38 human genome using
TopHatR (2.1.0–Johns Hopkins University, Center for
Computational Biology) and Bowtie2 (46). Counts per gene
were determined as sum of all reads mapped within a gene
region. Principal component (PC) analysis was performed in
R (47) using the 1,000 top-variable genes within the data set.
Differentially expressed genes were identified using negative
binomial distributions as implemented in the DESeq2 package
(48) in R. False discovery rates (FDR) were calculated to adjust
p-values for multiple testing and FDR-values below 0.05 were
considered as significant. Expression data for differentially
expressed genes were variance-stabilized transformed and
scaled prior to visualization in heat maps. RNA sequencing
data are available at the GEO platform with the accession
number GSE129196.

T-Cell Receptor Sequencing
For sequencing of T-cell receptors (TCRs) to determine
the clonality of TCPs, DNA was isolated using an All-
Prep DNA/RNA Kit (Qiagen) following the manufacturer’s
instructions. TCRβ sequencing was performed using a hsTCRb
Kit (Adaptive Biotechnologies) following the manufacturer’s
instructions and analyzed with the corresponding ImmunoSEQ-
Analyzer 3.0 software. Briefly, the most variable complementary-
determining region 3 (CDR3), spanning the recombination
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site of V-D-J recombinations of TCR β-chains was sequenced.
Productive rearrangements were regarded as unique in-frame
nucleotide sequences without stop codon, leading to a functional
TCR. Productive frequency means the individual frequency
of a specific productive rearrangement (clone) among all
productive rearrangements. Clonality was calculated based
on productive entropy normalized to the total number of
productive rearrangements. Sample overlap was investigated
using the Morisita index considering unique clones, individual
frequencies of clones and the probability of a common
origin of two samples. TCR sequencing data is accessible at
the ImmuneACCESS platform http://adaptivebiotech.com/pub/
amini-2019-frontimmunol (Adaptive Biotechnologies).

Statistical Analysis and Calculations
Graph Pad Prism version 7 was used for graph generation. To test
for normal Gaussian distribution Kolmogorov-Smirnov test was
performed. If data were normally distributed, Student’s paired
or unpaired t-test were employed for analysis. If data were not
normally distributed, Wilcoxon’s matched pairs test was applied
to paired samples and Man-Whitney’s test to unpaired samples.
All tests were two-tailed. Probability (p) values of ≤0.05 were
considered statistically significant and significance is denoted
as follows: ∗ = p < 0.05. Correlation analysis was assessed by
Pearson’s correlation coefficients for normally distributed data
or non-parametric Spearman’s rank correlation. Fold expansion
expresses the manually counted cell count (Neubauer’s counting
chamber) excluding dead cells by Trypan blue staining (Sigma-
Aldrich) at the day indicated divided by the initially seeded cell
amount from the positive fraction of the IFNγ Secretion Cell
Enrichment Assay.

All datasets are available upon reasonable request.

RESULTS

In order to prepare our approach for clinical translation,
we deeply characterized functionality, stability and distinct
molecular, metabolic and transcriptional properties of our next-
generation Rapa-TCP, for which we applied mTOR inhibition by
Rapamycin to enrich for CD4+ T-cells and CD4+/CD8+ TCM

(37). First, we addressed the question whether we can reproduce
our findings and properties published for supplementation of a
certain cytokine regiment, IL-2/IL-7, with a regiment commonly
used for GMP applications by many groups, IL-7/IL-15, which
was previously shown to support generation of TCM (49).

Supplementation of IL-7/IL-15 Does Not
Alter Rapamycin-Mediated Effects in TCPs
To investigate potential differences in the effects of Rapamycin
administration dependent on the cytokine regiment
supplemented, we expanded CMV-specific T-cells in the
presence of different cytokine combinations, namely IL-7/IL-15
(Figure 1A) and IL-2/IL-7 (37) (Figure S1A). The expansion
rates of antigen-reactive T-cells were sufficient considering
cell numbers used in a pilot study (18), although Rapamycin
significantly reduced expansion in both IL-7/IL-15- (Figure 1B)
and IL-2/IL-7-expanded TCPs (Figure S1B). Overall, different

cytokines did not alter the beneficial effects of Rapamycin
treatment (37): Rapamycin significantly increased CD4/CD8
ratio in both IL-7/IL-15- (Figures 1C,D) and IL-2/IL-7-
expanded TCPs (Figure S1C) and significantly increased
proportions of CD4+ and CD8+ TCM in both IL-7/IL-15-
(Figures 1E,F) and IL-2/IL-7-expanded TCPs (Figures S1D,E).
Furthermore, Rapamycin increased proportions of Interferon-γ
(IFNγ)-producing CD4+ and CD8+ T-cells upon exposure to
CMV-specific peptides loaded onto autologous lymphoblastic
cell lines (LCLs) in both IL-7/IL-15- (Figures 1G,H) and IL-
2/IL-7-expanded TCPs (Figures S1F,G). These data confirm
the robustness of beneficial effects of mTOR inhibition using
Rapamycin for TCP composition in the case of supplementing
commonly used IL-7/IL-15 for expansion of TCPs.

Expansion Rates of Rapa-TCPs Recover
Later During Culture
SOT patients often suffer from lymphopenia, which reduces
the amount of PBMC, i.e., the starting material, for TCP
generation and their medication can impact the functionality of
T-cells (50). Thus, TCP manufacture from patient material may
require longer in vitro expansion periods of up to 21 days to
achieve sufficient cell numbers for successful AVTT. To assess
the stability of TCPs after a longer period of expansion, we
determined phenotype and functionality of TCPs after extended
expansion on d21 in IL-7/IL-15- (Figures 1I,N) and IL-2/IL-
7-expanded TCPs (Figures S1H,M). Interestingly, Rapa-TCPs
recovered, yet even exceeded expansion of untreated TCPs in
the 3rd week of expansion (d14–d21) (Figure 1I), which was
significant in IL-2/IL-7-expanded TCPs (Figure S1H). CD4/CD8
ratios remained significantly higher in Rapa-TCPs at d21
(Figure 1J), but IL-2/IL-7-expanded TCPs showed significantly
higher CD4/CD8 ratios than IL-7/IL-15-expanded TCPs at d21
(Figure 1J vs. Figure S1I). During expansion, TCM differentiated
and the enrichment of TCM proportions upon Rapamycin-
treatment lost significance in both IL-7/IL-15- (Figures 1K,L)
and IL-2/IL-7-expanded TCPs (Figures S1J,K).

Antigen Encounter Decreases Expansion
Rates, but Promotes Less
Differentiated Cells
We further mimicked the scenario happening once the TCPs
are injected into a patient coping with CMV viremia in
an in vitro model. Therefore, we modeled the situation
of high antigen load by re-stimulation with CD3-depleted
PBMCs pulsed with CMV-specific peptides: CMV-specific re-
stimulation significantly reduced expansion rates in both IL-7/IL-
15- (Figure 1I) and IL-2/IL-7-expanded TCPs (Figure S1H).
Re-stimulation did not influence CD4/CD8 ratios in IL-
7/IL-15- (Figure 1J) neither IL-2/IL-7-expanded Rapa-TCPs
(Figure S1I), but significantly decreased CD4/CD8 ratios in IL-
7/IL-15-expanded untreated TCPs (Figure 1J). Remarkably, re-
stimulation significantly augmented the proportions of CD4+

and CD8+ TCM in both IL-7/IL-15- (Figures 1K,L) and IL-
2/IL-7-expanded TCPs (Figures S1J,K). However, re-stimulation
decreased the proportion of CD4+ and CD8+ IFNγ-producers
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(Figures 1M,N), which was statistically significant in IL-2/IL-7-
expanded Rapa-TCPs (Figures S1L–M).

Rapamycin Preserves Superior Capacity
for IFNγ Production
Importantly, IL-2/IL-7-expanded Rapa-TCPs showed
significantly higher proportions of IFNγ-producers among
CD4+ T-cells at d14 and d21 (Figures S1F,L) and CD8+

T-cells at d21 (Figure S1M) compared to untreated TCPs
illustrating improved functionality. Because TCPs are deprived
of Rapamycin and exposed to antigen once injected, we analyzed
samples in which we withdrew Rapamycin and re-stimulated
with CMV peptide-loaded CD3-depleted PBMCs on d14
(Figure 1A, Figure S1A). Interestingly, once treated with
Rapamycin during the first 2 weeks of culture, both IL-7/IL-15-
(Figures 1O,P) and IL-2/IL-7-expanded TCPs (Figures S1N,O)
comprised more CD4+ and CD8+ IFNγ-producers continuously
until d49 of culture.

Rapamycin Enhances Survival of T-Cells
Longevity is a crucial prerequisite for long-term efficacy of
adoptively transferred TCPs in patients. Based on findings in
B-cell lymphoma cell lines, we hypothesized that Rapamycin
treatment may increase viability of T-cells (51). Thus, we
analyzed overall survival of T-cells in TCPs. Strikingly, we found
significantly higher proportions of living T-cells in TCPs treated
with Rapamycin compared to untreated TCPs (Figures 2A,B).

Immunosuppressant regiments including Tacrolimus, which
are commonly used in SOT, are reported to sensitize T-
cells to programmed cell death (52). Hence, we investigated
the TCPs’ sensitivity to apoptosis employing induction of the
death receptor pathway by agonistic Fas-specific antibody to
identify differences between untreated and Rapa-TCPs. We
recorded partial resistance to Fas-induced apoptosis in Rapa-
TCPs, while untreated TCPs were more sensitive to Fas-
induced apoptosis (Figures 2A,C). The anti-apoptotic effect
of Rapamycin observed in B-cell lymphoma lines is reported
to depend on upregulation of Bcl-2 on protein level (51).
Hence, we assessed (Figure 2D) the mean fluorescence intensity
(MFI) of Bcl-2 in TCPs and found significantly higher
MFIs in CD4+ and CD8+ T-cells of Rapa-TCPs compared
to untreated TCPs (Figures 2E,F). The findings regarding
viability and resistance to apoptosis suggest an increased
fitness of T-cells in Rapa-TCPs implying improved long-term
survival in vivo.

Rapamycin Stabilizes T-Cell Metabolism
Upon Activation
Characteristically, memory and effector T-cells are distinguished
by differences in metabolic activities (53). Thus, we investigated
the ratio of fatty acid oxidation to glycolysis defined by the ratio of
oxygen consumption to ECAR (OCR/ECAR). In fact, we detected
significantly lower OCR/ECAR ratios in Rapa-TCPs compared
to untreated TCPs (Figure 2G). Moreover, upon activation with
CMV-specific peptides, the metabolism of Rapa-TCPs proofed to
be more stable, whereas the OCR/ECAR ratio was significantly
decreased in untreated TCPs (Figure 2G).

Distinct Effects of Rapamycin on Isolated
T-Cell Memory Subsets
Distinct memory T-cell subsets were reported to have defined
properties and are not equally suited for long-term regeneration
of T-cell immunity (26–33). To assess the effect of Rapamycin
on distinct CMV-specific memory T-cell subsets, we performed
fluorescently activated cell sorting (FACS) for CCR7+CD45RA−

TCM, CCR7−CD45RA− TEM, and CCR7−CD45RA+ TEMRA

based on their differential expression of CD45RA and CCR7
ex vivo and subsequently performed IFNγ-secretion assays of
sorted subsets to isolate CMV-specific T-cells of these particular
subsets (Figure 3A). The CMV-reactive T-cells of each memory
T-cell subset were expanded in the presence or absence of
Rapamycin and analyzed after 3 weeks of culture. Interestingly,
Rapamycin significantly reduced expansion in TEM- and TEMRA-
derived cultures, which was not significant in TCM-derived
cultures (Figure 3B), indicating preferential expansion of TCM

and implying reduced sensitivity to anti-proliferative effects
of Rapamycin.

Moreover, Rapamycin prevented a significant proportion
of CD4+ and CD8+ TCM from differentiation into late-
stage memory/effector T-cells compared to control cultures
(Figures 3C,D). Remarkably, Rapamycin treatment even
induced some cells with a TCM-like phenotype in cultures
derived from TEM and TEMRA subsets suggesting some
“rejuvenation” of late-stage memory cells (Figures 3C,D).

Notably, Rapamycin increased the MFI of Bcl-2 in CD4+

and CD8+ T-cells from TCM- and TEM-, but not TEMRA-derived
cultures (Figures 3E,F). Interestingly, Rapamycin-treated TEM-
and TEMRA-derived cultures contained significantly higher
proportions of CD8+ IFNγ-producers than untreated cultures
upon CMV-specific re-stimulation (Figure 3H), whereas there
were no significant differences in CD4+ IFNγ-producers
(Figure 3G). Overall, Rapamycin conferred distinct effects
on different T-cell memory subsets, sustaining TCM features
and counteracting differentiation into late-stage memory/
effector T-cells.

Rapamycin-Treated T-Cell Products Have a
Unique Transcriptome Resembling TCM

To confirm that expansion of antigen-reactive T-cells under
Rapamycin treatment “freezes” an early memory T-cell stage,
we tried to extend our analysis on transcriptome level by
RNA-sequencing using next-generation sequencing (NGS) of
untreated and Rapa-TCPs at d21 (Figure 4A). The RNA
expression data revealed a total of 146 differentially expressed
genes between Rapa-TCPs and untreated TCPs (Figure 4A).
Many of these relate to TCP performance (Figure 4B, Table S1).
We reviewed the literature and various databases to identify
T-cell associated processes (Figure 4B) and to estimate the
relevance of the differentially regulated genes (Table S1). With
reference to previously published data, 84% of the genes
identified as potentially relevant for TCP potency and longevity
in vivo were regulated in a beneficial manner in Rapa-
TCPs. Among these differentially expressed genes, we identified
increased expression of TCM markers such as CCR7 and PIM2
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FIGURE 2 | Rapamycin promotes survival of T-cells and stabilizes their metabolism. (A) Exemplary dot-plots of flow cytometry data regarding live/dead stain and

Annexin V stain (apoptosis) gated on lymphocytes singlets CD3+ T-cells. Living T-cells are defined by double negative staining for Annexin V and live/dead stain in

Rapa- (upper panel) and untreated TCPs (lower panel). Samples in the right panel were treated with 1µg/ml activating antibody against Fas (CD95) to induce

apoptosis. (B) Proportions of living T-cells in Rapa- (red) and untreated TCPs (blue) of n = 8 HDs identified as shown in (A) at d21. (C) Proportions of living T-cells in

Rapa- (red) and untreated TCPs (blue) of n = 8 HDs incubated with Fas-activating antibody identified as shown in (A) at d21. (D) Exemplary histograms of

fluorescence intensity of Bcl-2 in CD4+ (upper panel) and CD8+ T-cells (lower panel) of untreated (blue) and Rapa-TCPs (red) acquired by flow cytometry. (E,F) MFIs

of Bcl-2 in CD4+ (E) and CD8+ T-cells (F) in untreated (blue) and Rapa-TCPs (red) of n = 18 HDs. (G) Oxygen consumption rare (OCR)/extracellular acidification rate

(ECAR) ratio of Rapa- (red) and untreated TCPs (blue) of n = 5 HDs determined in a Seahorse assay. For stimulation (pastel colors) CMVIE−1/pp65 peptide pools were

added to TCPs relying on mutual presentation of peptides by T-cells from the TCP. For all graphs normal distribution of data points was tested with

Kolmogorov-Smirnov test and paired t-test was used to determine significance. P-values below 0.05 are indicated by * and defined to be significant.

(54), increased expression of TERT, which induces self-renewal
capacity and increases the proliferative potential of human T-
cells (55), and IL7R, which is reported to be a marker for
persisting and protective CD8+ memory T-cells (56) in Rapa-
TCPs (Table S1). Furthermore, our observation of sustained
IFNγ production in Rapa-TCPs is in line with the findings
of increased expression of IL-13 regulating IFNγ synthesis
(57), DRD2 inducing IFNγ production (58) and TNFRSF11A,
which increases IFNγ secretion upon binding its ligand (59).
In addition, these data are underlined by increased expression
of activation enhancing genes, including e.g., KLF7 (60), RGMB
(61), and TNFRSF19 (62) in Rapa-TCPs. Moreover, the fact
that anti-apoptotic Bcl-2 is upregulated on protein level may
be supported by increased expression of MYB, which exerts
its anti-apoptotic activity via Bcl-2 (63). However, also many
other genes inhibiting apoptosis, such as e.g., BEX2 (64) and
SIX1 (65), show significantly higher expression in Rapa-TCPs
compared to untreated TCPs. The metabolic data of increased
glycolysis in Rapa-TCPs are in line with increased expression
of EPAS1 (66), however, also CHDH, a gene involved in fatty
acid oxidation, (67) is higher expressed in Rapa-TCPs than in
untreated TCPs. See Table S1 for a complete view and annotation
of the genes differentially expressed in untreated and Rapa-

TCPs and their functions potentially relevant for TCP efficacy

in vivo. Of note, the TCM-like cells sorted from untreated
TCPs on day 18 of culture (Figure 4C) clustered with Rapa-
TCPs (Figure 4D) regarding the differentially expressed genes
identified in Figure 4A. Interestingly, principle component (PC)
analysis revealed some components of the transcriptome of
Rapa-TCPs to be more similar to ex vivo-sorted TCM than TEM

(dimension PC2; Figure S2).

Rapamycin-Treated T-Cell Products Show
Less Clonal and More Diverse
TCR Repertoires
To estimate the TCR repertoire of our TCPs, we performed
TCRβ NGS. Notably, TCRβ sequencing showed a more diverse
clonal composition of Rapa-TCPs compared to untreated TCPs
(Figure 4E). Venn diagrams of the total numbers of clones
and overlap between Rapa- and untreated TCPs are shown
in Figure S3A and the distribution of the top 100 clones
is shown in Figure S3B. Correspondingly, the top 10 clones
covered around 70 and 90% of the whole TCRβ repertoire
of Rapa-TCPs and untreated TCPs, respectively (Figure 4F)
and Rapa-TCPs contained more different clones than untreated
TCPs (Figure 4G). The top 10 shared clones and their
respective frequencies in Rapa- and untreated TCPs are shown
in Figure S3C. Comparison of unique nucleotide sequences
revealed a high clonal overlap between the distinct Rapa- and
untreated TCPs generated from the same donor (Figure S3D).
In contrast, comparison of clonal repertoires between different
individuals showed no overlap, confirming the specificity of the
findings (Figure S3D).

Onset of Immunosuppression in Patients
Does Not Influence the Starting Material
for TCPs Regarding T-Cell Differentiation
and CMV-Specificity
As a prerequisite for clinical translation, we aimed at
confirming feasibility of Rapa-TCP generation from patient
blood and therefore collected samples from end stage
kidney disease (ESRD) patients before and after kidney
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FIGURE 3 | Influence of Rapamycin on different T-cell memory subsets. (A) Schematic experimental setup: TCM, TEM, and TEMRA were sorted out of lymphocytes

singlets CD3+ T-cells according to expression of CCR7 and CD45RA, CMV-reactive T-cells were isolated from each subset using an IFNγ secretion assay and

CMV-reactive T-cells from each subset were cultured with (Rapa) and without Rapamycin (w/o). Exemplary dot plots of flow cytometry data of sorted subsets of one

HD and respective positive fractions of the IFNγ secretion assay are shown. (B) Expansion rates of the indicated subsets in the presence of (red, Rapa) and absence

of Rapamycin (blue, w/o) calculated from total cell numbers at d21 divided by the seeded cell number. (C,D) Proportions of CD4+ (C) and CD8+ CD45RA− CCR7+

TCM-like cells (D) among Rapa-treated (red) and untreated (blue) cultures of indicated subsets determined from flow cytometric data at d21. (E,F) MFIs of Bcl-2 in

CD4+ (E) and CD8+ T-cells (F) in untreated (blue) and Rapa-treated cultures (red) of isolated T-cell subsets determined in flow cytometry. (G,H) To detect

CMV-specific cytokine production, cultures were stimulated with CMVIE−1/pp65 peptide-loaded autologous LCLs at a ratio of 1:10 for 6 h and BFA was added after

1 h. Proportions of CMV-specific IFNγ-producers among CD4+ (G) and CD8+ T-cells (H) in Rapa-treated (red) and untreated (blue) cultures of isolated T-cell subsets

determined from flow cytometric data. All graphs contain data from n = 6 HDs, normal distribution of data points was tested with Kolmogorov-Smirnov test and

paired t-test was used to determine significance in normally distributed samples or Wilcoxon’s matched-pairs signed rank test in not normally distributed samples,

respectively. P-values below 0.05 are indicated by * and defined to be significant.

transplantation (KTx). To investigate the influence of
immunosuppression on the starting material for TCPs, 7
paired samples from ESRD patients before/after KTx were
analyzed ex vivo. All KTx recipients received standard
immunosuppression (characteristics in Table S2, pre/post-
Tx paired samples highlighted in gray). T-cells were divided
into five differentiation subsets: CCR7+CD45RA+CD95− TN

(naïve T-cells), CCR7+CD45RA+CD62L+CD45RO−CD95+

TSCM, CCR7+CD45RA− TCM, CCR7−CD45RA− TEM, and
CCR7−CD45RA+ TEMRA (Figures S4A,B) revealing no
substantial differences between CD4+ and CD8+ memory T-cell
subset distributions of paired patient samples before/after KTx
(Figures S4C,D). To assess the phenotypic and functional
characteristics of CMV-specific T-cells, PBMCs were
stimulated with CMVpp65/IE1 peptides showing markedly
higher frequencies of CMV-responsive T-cells among CD8+
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FIGURE 4 | Rapamycin-treated TCPs have a unique transcriptome resembling TCM and are clonally more diverse. RNA expression data were acquired by RNA

sequencing and samples had to pass a quality control to be included in the analysis. (A) Expression heat map of differentially expressed genes between untreated and

Rapa-TCPs generated from fresh blood of n = 3 HDs at d21. (B) Processes allocated to the differentially expressed genes based on the literature (see Table S1 for

details). (C) Exemplary dot plots of CCR7/CD45RA expression of untreated and Rapa-TCPs and the respective TCM-like cells sorted on d18 of culture. (D) Expression

of differentially expressed genes between Rapa- and untreated TCPs from fresh blood of n = 3 HDs at d21, buffy coats of n = 3 HDs at d18 and TCM sorted from

Rapa- and untreated TCPs generated from buffy coats of the same n = 3 HDs at d18 including clustering. Samples not included in the graph were discarded due to

failure at the quality threshold. (E) Clonality of Rapa- (red) and untreated TCPs (blue) n = 3. (F) Proportions of represented sequences covered by the top 10 most

represented clones in Rapa- (red) and untreated TCPs (blue), n = 3 HDs. (G) Numbers of productive rearrangements included in in Rapa- (red) and untreated TCPs

(blue), n = 3 HDs. Data in (E,F) were calculated with ImmunoSEQ-Analyzer3.0 software based on TCRβ sequencing.

compared to CD4+ T-cells (Figures S4E,F). However,
frequencies of CMV-responsive T-cells were similar before
and after KTx (Figures S4G,H) and T-cell memory subsets were
comparable among CMV-responsive T-cells before and after
KTx (Figures S4I,J).

Manufacturing Rapa-TCPs Is Feasible
Before and After Transplantation
We assessed feasibility of TCP generation from patient material
collected before and after KTx. Manufacture of untreated and
Rapa-TCPs was successful with respect to yield (Figure 5A),
although untreated CMV-specific TCPs resulted in higher

yields, which was statistically significant in TCPs generated
after KTx (Figure 5A). Rapa-TCPs showed beneficial, higher
CD4+ T-cell proportions compared to untreated TCPs,
which was statistically significant in TCPs generated before
KTx (Figure 5B). Compared to untreated TCPs, Rapa-TCPs
showed higher proportions of CD4+ and CD8+ TCM in
KTx recipient-derived TCPs, which was significant in TCPs
generated after KTx (Figures 5C–E). Upon re-stimulation with
CMV-peptide-loaded autologous LCLs, we found enhanced
IFNγ-producers (Figure 5F) and IFNγ/granzyme B (GZB)-
double-producers (Figure 5I) among Rapamycin-treated CD8+

T-cells (Figures 5H,K), whereas their proportions among
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CD4+ T-cells remained stable (Figures 5G,J). We recorded
comparable frequencies of IFNγ-producers and IFNγ/GZB-
double-producers among CD4+ T-cells in TCPs generated before
and after KTx (Figures 5G,J), whereas both increased among
CD8+ T-cells in TCPs generated after KTx (Figures 5H,K).
Remarkably, Rapamycin increased the frequency of TCM

among IFNγ-producers (Figures 5L,M), which was statistically
significant among CD4+ IFNγ-producers in TCPs generated
after KTx (Figure 5l). Regarding CMV-specific cytotoxic
effects, Rapa-TCPs were as effective as untreated TCPs and
TCPs generated pre- and post-KTx neither showed any
differences (Figure 5N).

CMV History Affects the Composition of
Starting Material From Post-KTx Patients
To determine the influence of the CMV infection status
on the T-cell subset composition and function of starting
material for TCP generation, 19 CMV seropositive KTx
patients (Table S2) and 13 CMV seropositive healthy donors
(HDs) were analyzed in parallel. Patients were categorized
according to their CMV reactivation status: No recorded
(n = 9; 5 m/4f), history of (n = 6; 2 m/4f) or very recent
CMV-DNAemia within 2 weeks before blood collection
(n = 4; 4 m/0f) (Table S2). The CMV reactivation status
had almost no effect on the global CD4+/CD8+ T-cell
memory subset distribution (Figures S5A–C,E,F,H–J),
except for an increase in proportions of CD8+ TSCM

and a decrease in CD4+ TEM in the blood of patients
with no record of CMV viremia compared to HDs
(Figures S5D,G).

We found CMV-reactive T-cells in all KTx patients and
HDs, with markedly higher frequencies among CD8+ vs.
CD4+ T-cells (Figures S6A,F). We did neither observe major
differences in the magnitude of the CMV-response between KTx
patients and HDs nor between the different groups of KTx
patients (Figures S6A,F). Of note, proportions of below 0.2%
of CMV-responsive T-cells among CD8+ T-cells occurred in
38.5% of HDs and only 10.5% of patients without recorded
CMV-DNAemia (Figure S6F).

The majority of KTx patients showed TSCM frequencies
<10% among CMV-reactive CD4+ T-cells. However, patients
with a CMV history or recent CMV-DNAemia presented with
significantly elevated CMV-reactive CD4+ TSCM compared to
KTx patients with no recorded CMV-DNAemia and HDs
(Figure S6B). TCM proportions among CD4+ CMV-responsive
T-cells showed high inter-individual differences among the
patients and HDs (Figure S6C). TEM proportions among
CD4+ CMV-responsive T-cells were significantly lower in the
cohort of KTx patients with a record of CMV-DNAemia
compared to patients with no recorded CMV-DNAemia and
HDs (Figure S6D). The proportions of TEMRA among the CD4+

CMV-responsive T-cells were below 5%, except for three patients
with recent or previous CMV-DNAemia, who all received
virostatic medication (Figure S6E, Table S2). We found no
significant differences in the memory subset distribution among
CMV-reactive CD8+ T-cells between the different patient groups

and HDs (Figures S6G–J). Notably, we could not detect CMV-
responsive CD8+ TCM in the majority of samples (Figure S6H).

Impact of CMV Reactivation State on
Manufacture of Untreated and Rapa-TCPs
To evaluate the quality of untreated and Rapa-TCPs generated
from KTx patients under maintenance immunosuppression with
distinct CMV reactivation states, CMVpp65/IE1-specific T-cells
were expanded with or without Rapamycin (37). We successfully
manufactured untreated and Rapa-TCPs from all KTx patients
and HDs analyzed, although Rapamycin substantially reduced
yields in TCPs from all patients and HDs (Figure 6A).
Recent CMV reactivation further significantly reduced yields
of untreated and Rapa-TCPs compared to HDs and history of
CMV reactivation reduced yields of Rapa-TCPs compared to
HDs (Figure 6A). Interestingly, there was an inverse correlation
between expansion rate/yield and age in untreated and Rapa-
TCPs (Figures S7A,B). Furthermore, the number of records with
CMV-DNAemia correlated inversely with the yield of Rapa-TCPs
(Figure S7C). We found that Rapamycin significantly increased
the CD4+/CD8+ T-cell ratio in TCPs of KTx patients without
recorded CMV-DNAemia and HDs, which was less pronounced
in TCPs of KTx patients with a record of CMV-DNAemia
(Figure 6B). Rapa-TCPs showed significantly higher proportions
of CD8+ TCM in all groups except the KTx patients with recent
CMVDNAemia (n= 4) (Figure 6D), while CD4+ TCM were only
significantly enriched in TCPs of KTx patients with no recorded
CMV-DNAemia and HDs, being less pronounced in TCPs from
the other groups (Figure 6C).

Upon CMV-specific re-stimulation, we found increased
frequencies of CD8+ IFNγ-producers in Rapa-TCPs, which was
statistically significant in the group of KTx patients without
record of CMV DNAemia (Figure 6F). However, Rapa-TCPs
of KTx patients with a history of CMV DNAemia contained
significantly lower frequencies of IFNγ-producers compared to
Rapa-TCPs fromHDs (Figures 6E,F). Remarkably, the frequency
of IFNγ-producers among CD8+ T-cells, but not CD4+ T-cells
(Figure S8A), inversely correlated with the time from the last
CMV-DNAemia in untreated, but not Rapa-TCPs (Figure S8B).
Notably, Rapa-TCPs included higher proportions of TCM-like
among IFNγ-producing CD4+ and CD8+ T-cells compared to
the corresponding untreated TCPs (Figures S8C,D). This was
significant in IFNγ-producing CD4+ T-cells in TCPs of KTx
patients without record of CMV DNAemia and IFNγ-producing
CD8+ T-cells in TCPs of KTx patients without record and history
of CMV DNAemia (Figures S8C,D). The TCM-like phenotype
among IFNγ-producing CD4+ T-cells was significantly more
frequent in Rapa-TCPs of KTx patients compared to HDs
(Figure S8C). IFNγ-producing CD8+ T-cells were significantly
more frequent in Rapa-TCPs of KTx patients with history of
CMV viremia compared to HDs (Figure S8D).

In order to characterize functionality, we co-cultured TCPs
with CMV-antigen-loaded LCLs for 14 h and killing was
analyzed. Untreated and Rapa-TCPs achieved similar target
cell lysis (Figure 6G). CMV-specific re-stimulation further
characterized up to 65.6% of CD4+ T-cells to be cytotoxic
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FIGURE 5 | Manufacture of Rapa-TCPs is feasible before/after transplantation. N = 7 paired samples of untreated (w/o, blue) and Rapa-TCPs (red) from the same

patients before (pre; pastel colors) and a few weeks after KTx (post). (A) Yield of TCPs = total cell number derived from 20ml of patient blood on d21. (B) CD4/CD8

ratio of TCPs determined by multicolor flow cytometry on d14. (C) Exemplary dot plots of one patient’s untreated (right) and Rapa-TCPs (left) comparing subset

distributions of CD3+CD4+ (upper panel) and CD3+CD8+ (lower panel) T-cells according to CCR7 and CD45RA expression on d14. (D,E) Proportions of CD45RA−

CCR7 + TCM among CD4+ (D) and CD8+ T-cells (E) in TCPs on d14 as determined per gating strategy shown in (C). (F) Exemplary dot plots of one patient

comparing CD3+CD4+ (left panel) and CD3+CD8+(right panel) IFNγ- and TNFα-producers in Rapa- (red) and untreated TCPs (blue) detected by intracellular staining

(Continued)
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FIGURE 5 | in multicolor flow cytometry after 6 h stimulation with autologous LCLs loaded with CMVIE−1/pp65 peptide pools (gray) or incubation with unloaded

autologous LCLs as control (black) and addition of BFA after 1 h on d21. (G,H) Summary of background subtracted proportions of CD4+ (G) and CD8+ (H)

CMV-reactive IFNγ-producing T-cells in Rapa- (red) and untreated TCPs (blue) gated as illustrated in (F). (I) Exemplary dot plots of one donor comparing CD4+ (left

panel) and CD8+ (right panel) CMV-reactive IFNγ- and GZB-producers in Rapa- (red) and untreated TCPs (blue) detected by intracellular staining in multicolor flow

cytometry after 6 h stimulation with autologous LCLs loaded CMVIE−1 and CMVpp65 peptide pools (gray), incubation with unloaded autologous LCLs as control

(black) and addition of BFA after 1 h on d21. (J,K) Summary of background subtracted proportions of CD4+ (J) and CD8+ (K) CMV-reactive

IFNγ/GZB-double-producers in Rapa- (red) and untreated TCPs (blue) gated as illustrated in (I). (L,M) Proportions of CD45RA− CCR7 + TCM among CMV-reactive

IFNγ-producing CD4+ (L) and CD8+ T-cells (M). Gates were applied from gates set for global T-cell subset distribution (see Figure S4). (N) Specific killing of

CMVIE−1/pp65 peptide pool loaded autologous LCLs determined by ratio with unloaded allogenic LCLs at a 1:10 ratio with TCPs after incubation overnight. All data

tested for normal distribution of data points with Kolmogorov-Smirnov test; significance determined with paired t-test if normally distributed or Wilcoxon’s

matched-pairs signed rank test for not normally distributed samples. P-values below 0.05 are indicated by * and defined to be significant.

as defined by GZB/IFNγ-double-production (Figure S8E).
Interestingly, Rapa-TCPs of KTx patients with no record
of CMV viremia contained significantly more GZB/IFNγ

double producers among CD8+ T-cells than their untreated
counterparts (Figure S8F). Rapa-TCPs of KTx recipients
with history of CMV viremia contained significantly less
GZB/IFNγ double producers among CD8+ T-cells than those of
HDs (Figure S8F).

Rapa-TCPs From Patients Exhibit Superior
Viability After Thawing
Strikingly, every single Rapa-TCP consistently comprised
higher proportions of living T-cells compared to its untreated
counterpart (Figure 7A). By convention, TCPs have to be frozen
until GMP-compliant quality controls are accomplished and
then are thawed directly before infusion into patients. This
procedure is a major stress for the TCPs. We froze and thawed
TCPs from ESRD/KTx patients and HDs and observed an
increased frequency of living T-cells in the Rapa-TCPs, being
detectable immediately and even 1 day after thawing and culture
(Figures 7B,C). Consistent with the findings from HDs, also
Rapa-TCPs of KTx patients showed elevated MFIs of Bcl-2
compared to the untreated TCPs (Figure S9).

In summary, we demonstrate that CMV-specific Rapa-
TCPs can be generated irrespective of the employed cytokine
regiment, show better viability even after thawing, a stable
metabolism, beneficial gene expression and increased clonal
diversity. We likewise demonstrate the possibility to generate
TCPs from patients in ESRD and post-KTx despite maintenance
immunosuppression containing similar attributes as from HDs.
Further, we illustrate that functional CMV-specific T-cells, the
prerequisite for manufacture of CMV-specific TCPs, could be
identified in all KTx patients investigated and present successful
manufacture of untreated and Rapa-TCPs irrespective of the viral
replication history.

DISCUSSION

The aim of our study was to demonstrate the benefit of
the Rapamycin treatment during manufacture of TCPs with
improved properties. We demonstrate stability of Rapa-TCPs
irrespective of cytokine combinations administered during
expansion, sustained IFNγ production despite withdrawal of
Rapamycin and re-stimulation with viral antigen. Furthermore,
we found superior viability and partial resistance to death

receptor-induced apoptosis, stable metabolism upon activation,
favorable gene expression pattern, and enhanced clonal diversity
of Rapa- compared to untreated TCPs. Moreover, we show
preferential expansion of TCM in the presence of Rapamycin
and partial conversion of other T-cell memory subsets to TCM-
like cells. We demonstrate the feasibility of manufacturing
autologous anti-CMV Rapa-TCPs from blood of ESRD patients
and KTx recipients with distinct CMV reactivation history. We
confirm increased CD4/CD8 ratios and TCM proportions in
Rapa- compared to untreated TCPs (37), which are associated
with long-term clinical efficacy of adoptively transferred TCPs
(29, 30, 40, 41). In addition, our results imply that generation
of CMV-specific TCPs prior to transplantation is possible,
however, not favorable. Moreover, Rapa-TCPs from patients
contained more viable cells after freezing/thawing compared to
untreated TCPs.

Although the cytokine combination IL-7/IL-15 was reported
to preferentially promote TCM (49), we did not reveal substantial
differences compared to cultures expanded with IL-2/IL7,
suggesting these combinations are equally suited for TCP
expansion and do not alter cell intrinsic mTOR-dependent
signaling programs. Antigenic re-challenge and concomitant
elimination of antigen-loaded APCs decreased T-cell expansion
and resulted in T-cell culture contraction. These cultures
predominantly contained long-lived memory T-cells. In line with
this, among CMV-specific CD4+ T-cells, we recorded significant
decreases in TEM and significant increases in TSCM in KTx
recipients with a record of CMV DNAemia.

Rapa-TCPs consistently contained more living T-cells than

untreated TCPs, even after freezing/thawing. Hence, Rapa-TCPs

may entail increased fitness following infusion, as TCPs are
frozen until accomplishment of all quality controls in a clinical
setting respecting GMP/GCP. As shown previously for B-cell
lymphoma lines (51), Rapamycin increased Bcl-2 on protein level
and moreover led to partial resistance to Fas-induced apoptosis.
We did not identify altered gene expression of BCL-2 on mRNA
level, however, expression ofMYB, exerting anti-apoptotic effects
via Bcl-2 (63), was upregulated in Rapa-TCPs. Furthermore, the
decreased sensitivity to apoptosis of Rapa-TCPs may also be
conferred by additional proteins and pathways as we found many
other anti-apoptotic genes, such as BEX2 (64) and SIX1 (65), to
be overexpressed in Rapa-TCPs compared to untreated TCPs.

We recorded higher OCR/ECAR ratios in untreated
TCPs, although inhibition of glycolysis is associated with
a long-lived memory phenotype (68) and memory T-cells
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FIGURE 6 | Impact of CMV history on manufacture of untreated and Rapa-TCPs. Untreated (w/o, blue) and Rapa-TCPs (red) of n = 19 patients (9 with

so far no recorded CMV viremia; 4 with recent CMV viremia and 6 with a history of CMV viremia)/13 HDs. (A) Yield of TCPs= total cell number derived from 20ml of patient

(Continued)
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FIGURE 6 | blood on d21. (B) CD4/CD8 ratio of TCPs on d14. (C,D) Proportions of CD45RA− CCR7 + TCM among CD4+ (C) and CD8+ T-cells (D) in TCPs as

determined per gating strategy shown in Figure 5C on d14. (E,F) Proportions of CMV-reactive CD4+ (E) and CD8+ (F) IFNγ-producers detected by intracellular

staining in multicolor flow cytometry after 6 h stimulation with autologous LCLs loaded CMVIE−1/pp65 peptide pools at a ratio of 1:10 and addition of BFA after 1 h on

d21. Gating strategy is shown in Figure 5F. (G) Specific killing of CMVIE−1/pp65 peptide pool loaded autologous LCLs determined by ratio with unloaded allogenic

LCLs at 1:10 ratio with TCPs after incubation overnight. All data were tested for normality with Kolmogorov-Smirnov test; significant differences for paired samples

determined with paired t-test if normally distributed or Wilcoxon’s matched-pairs signed rank test and for unpaired samples with unpaired t-test if normally distributed

or Man Whitney’s test. P-values below 0.05 are indicated by * and defined to be significant.

FIGURE 7 | Rapa-TCPs from patients exhibit superior viability before and after thawing. Untreated (w/o, blue) and Rapa-TCPs (red) of n = 19 patients (9 with so far no

recorded CMV viremia; 4 with recent CMV viremia and 6 with a history of CMV viremia)/13 HDs. (A) Proportions of living T-cells determined by positive staining for

CD3 and negative staining for live/dead stain and Annexin V. (B,C) Untreated (w/o, blue) and Rapa-TCPs (red) from n = 4 (paired pre- and post-KTx samples of

patient no. 11; post-KTx TCPs of patient no. 9 and two HDs). TCPs were frozen in fetal calf serum substituted with 10 % dimethylsulfoxide and stored in liquid

nitrogen. After thawing and two washing steps, proportions of living T-cells defined by positive staining for CD3 and negative staining for live/dead stain and Annexin V

were determined immediately (d0, B) and after 24 h rest in complete medium in a humidified incubator at 37◦C and 5% CO2 (d1, C). All data were tested for normality

with Kolmogorov-Smirnov test; significant differences for paired samples determined with paired t test if normally distributed or Wilcoxon’s matched-pairs signed rank

test and for unpaired samples with unpaired t test if normally distributed or Man Whitney’s test. P-values below 0.05 are indicated by * and defined to be significant.

are reported to preferentially perform fatty acid oxidation
(53). Increased glycolysis in Rapa-TCPs was supported by
RNA sequencing data showing increased expression of EPAS1
(66), however, also CHDH, a gene involved in fatty acid
oxidation (67), showed increased expression in Rapa-TCPs.
In fact, glycolysis is reported to allow immediate effector
function (69), which is in line with the Rapa-TCPs’ enhanced
capacity for IFNγ production and increased expression
of MAP3K21 allowing a rapid switch from a rested to an
activated state (70). Furthermore, the metabolism of Rapa-
TCPs remained more stable upon CMV-specific activation.
Memory cell self-renewal might occur at a comparable
number to that of effector T-cell generation in Rapa-TCPs,
whereas in untreated TCPs, the balance might be extremely
skewed toward effector T-cells upon activation, leading to this
significant decrease in OCR/ECAR ratio and lack of long-lived
memory T-cells.

Intriguingly, 84% of genes differentially expressed between
untreated and Rapa-TCPs, whose function we could allocate to
impact TCPs, were regulated toward promotion of an effective
and long-lived product. Our data imply a TCM-like transcriptome
of long-lived poly-functional memory T-cells for Rapa-TCPs
(54–56, 66, 71–79). The fact that Rapa-TCPs show increased
clonal diversity may occur due to survival of low frequency

clones. Especially, the preferential expansion of TCM in Rapa-
TCPs may contribute to increased clonal diversity, as this subset
was shown to have a higher clonal diversity compared to further
differentiated memory T-cells (80). In fact, this may also be the
underlying mechanism, why we have more CD4+ T-cells in the
Rapa-TCP, because, evident from our ex vivo data, proportions
of CMV-specific TCM are much higher among CD4+ compared
to CD8+ T-cells.

When CMV-specific T-cells from different memory T-cell
subsets were cultured individually, we revealed preferential
expansion of TCM with preserved TCM phenotype, partially
protected from differentiation in the presence of Rapamycin, but
partially also conversion of T-cells from other memory T-cell
subsets into TCM-like cells (81). Interestingly, patient 12 lacked
CMV-specific early CD8+ memory T-cells and his CMV-specific
T-cells consisted to 90.6% of TEMRA. However, the respective
Rapa-TCP included a strikingly high proportion of CD8+ TCM

suggesting reprogramming of TEM/TEMRA to TCM.
We did not record major differences in the characteristics of

the TCPs irrespective of whether the TCPs were generated post-
KTx or pre-KTx. Nonetheless, CD8+ T-cells comprised higher
proportions of TCM and cytokine producers in TCPs generated
pre-KTx. Hence, there is no benefit to generate anti-CMV TCPs
prior to KTx.
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Investigating ex vivo-T-cell responses to CMV-specific stimuli,
we found higher frequencies of CD8+ than of CD4+ CMV-
specific T-cells as described previously (82). Frequencies of
below 0.2% of CMV-reactive CD8+ T-cells were found in
2/19 patients compared to 6/13 HDs, which matches findings
suggesting an increase of CD8+ CMV-reactive T-cells post-Tx
(83). Interestingly, low frequencies of CMV-reactive CD8+ T-
cells did not cause low TCP yields, underlining the feasibility
of TCP generation. Intriguingly, a high proportion of CD8+

TEMRA among CMV-responsive T-cells did neither cause low
expansion/yield nor high CD4/CD8 ratio in the TCP, which
stresses the applicability even to patients with a high degree of
terminal T-cell differentiation.

The dosage for successful CMV-specific AVTT in the SOT
setting is undetermined. Case reports suggest numbers between
30 and 245 million T-cells (19–21, 36). Importantly, our protocol
for TCP generation achieves medians of IFNγ-producers of 20
and 50% in CD4+ and CD8+ T-cells, respectively, and median
killing rates of 85%, while these frequencies are much lower
in other published approaches reporting a maximum of 8% of
CMV-reactive IFNγ-producers in the TCP and specific lysis of
≤50% at higher T-cell/target ratios (19, 20). Comparable values
are only achieved in a recent study (21). Based on the superiority
in function and phenotype of Rapa-TCPs, we assume that also
smaller T-cell numbers would be efficient for long-term control
of CMV in KTx patients. The patients in this study whose
TCPs yielded <5 million T-cells from 20ml of peripheral blood,
included the two patients with the lowest lymphocyte counts
(Patients 6/10), suggesting an amendment of the amount of blood
collected to the lymphocyte count. Patient 6, with no recorded
CMV DNAemia, was diagnosed with acute rejection and treated
with ATG before blood collection. ATG administrationmay be an
indication to collect blood for TCP generation preventively, given
the patients’ risk of developing CMV disease (84, 85). Indeed,
transient CMV DNAemia was recorded in this patient 54 days
after blood collection for the study. Patient 10 had a record
of recent CMV viremia, was seronegative pre-KTx, received
a kidney from a seropositive donor and had extensive CMV-
associated complications. Notably, he was the oldest patient
included and correlation analysis revealed a negative correlation
between age and yield of Rapa-TCPs. We also recorded a low
yield of the Rapa-TCP of Patient 19, who had a history of
CMV-DNAemia and was receiving Acyclovir-treatment at the
time of blood collection, which was reported to diminish IFNγ-
production in response to CMVpp65 peptides (50). In cases as
described above, we suggest to first generate untreated TCPs for
patients with acute CMV disease to diminish viral load (36) and
then successively generate and infuse Rapa-TCPs for long-term
control of the virus. The fact that we recorded significantly lower
yields in patients with a recent CMVDNAemia compared to HDs
also suggests to follow the proposed approach in these patients
and motivates to investigate more than the four patients that
we were able to recruit for this study. In fact, we also found
a negative correlation of the number of records with viremia
and the yield of Rapa-TCPs for the ten patients with detected
CMV DNAemia. However, this analysis may be biased by a
more thorough screening of problematic patients, as the tests

for CMV DNAemia were not of equal frequency in all patients.
Moreover, patient 12, for whom we could also only generate a
Rapa-TCP with a yield of around 5 million cells, suffered from
chronic hepatitis. These, of course limited data, indicate that
problems may occur during manufacture in the case of different
chronic infections. It has to be thoroughly overthought whether
it is possible to begin with more blood as starting material in
these patients with numerous reactivating infections or use first
the conventional approach and then generate a Rapa-TCP for
long-term protection.

Recently, Smith and colleagues published a study about the
application of a comparable autologous CMV-specific TCP in
SOT patients (21). However, their production process varies in
many points, as they do not select for CMV-specific T-cells
starting their culture with PBMCs, use G-Rex reactors instead of
classical well-plates for expansion and have a different cytokine
supplementation strategy using IL-21 and IL-2. They infuse
multiple doses of TCPs at up to 6 different points in time. Of note,
they demonstrate safety and clinical improvement in themajority
of patients and could decrease or stop antiviral medication in
many patients. Interestingly, compared to the time of infusion,
they see an increase in viral load in 9 of 13 patients after infusion
of TCPs (21). In 5 of the 9 monitored patients CD8+ CMV-
specific T-cells were reduced by the end of monitoring (max. day
300) and in three of the cases this correlated with an increase in
viral load. One of the patients died of CMV disease (21). These
data demonstrate, that there is still room for optimization in
the long-term outcome of SOT patients treated with autologous
CMV-specific TCPs. Probably, Rapa-TCPs could improve long-
term efficacy, however, the actual clinical performance of our
TCP has to be demonstrated. Our preclinical data imply a long-
lived TCP with beneficial properties maybe even allowing for a
single infusion.

A variety of other putative strategies are reported to rejuvenate
T-cells with beneficial characteristics for AVTT. These include
among others interference with different signaling pathways
(86–90), use of different cytokine supplementation strategies
(91, 92), employment of certain microRNAs (93), modulation
of metabolism (53, 68), inhibition of ion channels (94), and
promotion of autophagy (95). However, most of these are far
from being practicable under GMP conditions for contemporary
application to a clinical setting. This is also the case for genetic
manipulation of T-cells for optimization of AVTT. Proposed
strategies for genetic engineering include induction of resistance
to immunosuppressive medication (96, 97), introduction of
suicide genes as safety switch (49, 98) and knock out of anti-
inflammatory signaling components such as PD-1 and LAG-3
(99, 100). All these suggestions have to be adapted to realistic
GMP-feasible conditions and then may be valuable upgrades
for even more sophisticated AVTT approaches. In contrast to
other approaches, whose translation is less progressed at the
moment, ourminimallymanipulative next-generation anti-CMV
AVTT may help many transplanted patients whose endogenous
immune system is not capable of defying the virus. Furthermore,
the beneficial properties of Rapa-TCPs may also be transferred to
other approaches using antigen-specific T-cells, e.g., other viruses
or cancer immunotherapy with known antigens (42).
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In summary, our study revealed favorable phenotypic and
functional properties of Rapa-TCPs as well as their applicability
to a variety of ESRD/KTx patient samples. Ultimately, we seek for
clinical confirmation of functionality and efficacy of Rapa-TCPs
in a clinical proof-of-concept trial.
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