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Abstract

Acetylsalicylic acid (aspirin) is highly effective for treating colon cancer patients postdiagnosis; however, the mechanisms of
action of aspirin in colon cancer are not well defined. Aspirin and its major metabolite sodium salicylate induced apoptosis
and decreased colon cancer cell growth and the sodium salt of aspirin also inhibited tumor growth in an athymic nude
mouse xenograft model. Colon cancer cell growth inhibition was accompanied by downregulation of Sp1, Sp3 and Sp4
proteins and decreased expression of Sp-regulated gene products including bcl-2, survivin, VEGF, VEGFR1, cyclin D1, c-MET
and p65 (NFkB). Moreover, we also showed by RNA interference that b-catenin, an important target of aspirin in some
studies, is an Sp-regulated gene. Aspirin induced nuclear caspase-dependent cleavage of Sp1, Sp3 and Sp4 proteins and this
response was related to sequestration of zinc ions since addition of zinc sulfate blocked aspirin-mediated apoptosis and
repression of Sp proteins. The results demonstrate an important underlying mechanism of action of aspirin as an anticancer
agent and, based on the rapid metabolism of aspirin to salicylate in humans and the high salicylate/aspirin ratios in serum, it
is likely that the anticancer activity of aspirin is also due to the salicylate metabolite.
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Introduction

Acetylsalicylic acid or aspirin is a non-steroidal anti-inflamma-

tory drug (NSAID) widely used for treatment of pain, fever and

other inflammatory conditions [1] and the role of aspirin and

other NSAIDs in cancer has been extensively investigated [2,3].

Aspirin use is associated with decreased risk for colorectal, breast,

esophageal, lung, stomach and ovarian cancer, and aspirin is both

a chemopreventive and chemotherapeutic agent for breast and

colon cancer [4–8]. A recent report on the chemopreventive

effects of aspirin showed that the incidence of colon cancer in

Scotland was significantly decreased in the general population at

the lowest daily dose of aspirin (75 mg) and the decreased

incidence was observed even after only 5 yr of aspirin use [7]. In

another study on the chemotherapeutic effects of aspirin in colon

cancer patients, a hazard ratio of 0.53 (for mortality) was observed

in patients who did not use the drug prior to diagnosis and this

value decreased to 0.39 for a subset of patients overexpressing

cyclooxygenase-2 (COX-2) [5].

Several studies on colon cancer cells and colon tumor models

have confirmed that aspirin inhibits growth and induces apoptosis

in these systems; however, the specific effects of aspirin are

somewhat variable in these reports. For example, aspirin

downregulates bcl-2 expression [9], inhibits vascular endothelial

growth factor, exhibits antiangiogenic activity [10,11], and inhibits

the WNT/b-catenin pathway [12]. Dunlop and coworkers have

also demonstrated that aspirin-induced downregulation of IkBa in

colon cancer cells results in enhanced nuclear accumulation of the

NFkB complex (p65/p50) and this has been linked to a pro-

apoptotic pathway in colon cancer cells [13–15].

Ethyl 2-[(2,3-bis(nitrooxy)propyl)disulfanyl]benzoate (GT-094)

is a synthetic nitro-non-steroidal anti-inflammatory drug (NO-

NSAID) and like aspirin, GT-094 also inhibits colon cancer cell

and tumor growth [16,17]. Mechanistic studies indicate that the

anticancer activity of GT-094 is due, in part, to ROS-dependent

downregulation of specificity protein (Sp) transcription factors Sp1,

Sp3, Sp4 and Sp-regulated genes which include bcl-2, survivin,

hepatocyte growth factor receptor (c-MET), VEGF and its

receptor VEGFR1 [17]. Other drugs including NSAIDs such as

tolfenamic acid and COX-2 inhibitors also inhibit cancer cell

growth and downregulate Sp transcription factors [18–26] and, in

this study, we have investigated the effects of aspirin on Sp proteins

and other Sp-regulated genes including b-catenin. Our results

show that aspirin and salicylate downregulate Sp1, Sp3, Sp4 and

several Sp-regulated gene products in colon cancer cells and

identifies an important pathway for the anticancer activity of

aspirin that is consistent with RNA interference (RNAi) studies in

which knockdown Sp1, Sp3 and Sp4 in cancer cells also inhibits

growth and induces apoptosis [24–26]. Knockdown of Sp proteins

also demonstrated that b-catenin is an Sp-regulated gene in colon
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cancer cells. Results of this study, coupled with previous reports on

the mechanisms of aspirin-mediated inhibition of colon cancer cell

growth, will also facilitate development of therapies with aspirin

and NSAID analogs in combination with other agents used to treat

colon cancer. The reported high serum salicylate/aspirin ratios

observed in human studies using aspirin [27] suggest that salicylate

may be an important contributor to the anticancer activity of

aspirin in colon cancer patients.

Experimental Procedures

Cell lines, reagents and antibodies
RKO, SW480, HT-29 and HCT-116 human colon carcinoma

cell lines were obtained from American Type Culture Collection

(Manassas, VA). RKO and SW480 cells were maintained in

Dulbecco’s modified/Ham’s F-12 (Sigma-Aldrich, St. Louis, MO)

with phenol red supplemented with 0.22% sodium bicarbonate,

5% fetal bovine serum, and 10 ml/L 100X antibiotic/antimycotic

solution (Sigma). HT-29 and HCT-116 cells were maintained in

McCoy’s 5A medium (Sigma-Aldrich, St. Louis, MO) with phenol

red supplemented with 0.22% sodium bicarbonate, 10% fetal

bovine serum, and 10 ml/L 100X anti-biotic anti-mycotic solution

(Sigma). The cells were grown in 150 cm2 culture plates in an air/

CO2 (95:5) atmosphere at 37uC and passaged approximately every

3–5 days. All antibodies were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA), except cleaved poly (ADP)

ribose polymerase (PARP) and c-Met (Cell Signaling Technology,

Danvers, MA), Sp1, survivin and VEGF-R2 (Millipore, Temecula,

CA), VEGFR1 and p65 (Abcam Inc. Cambridge, MA), and b-

actin antibodies (Sigma-Aldrich). b-Catenin was purchased from

Epitomics, Inc., Burlingame, CA. The NSAIDs acetylsalicylic acid

and sodium salicylate were purchased from Sigma-Aldrich.

N,N,N’,N’-Tetrakis(2-pyridyl methyl)ethylenediamine (TPEN),

glutathione (98%) (GSH), and lactacystin were purchased from

Sigma-Aldrich (St Louis, MO). Dithiothretol (DTT) (98%) was

obtained from Boehringer Mannheim Corp, (Indianapolis, IN).

Caspase inhibitors 2, 8 and 9 and pancaspase inhibitor (Z-VAD-

fmk) are purchased from Calbiochem (San Diego, CA). Lepto-

mycin B was inhibitor of nuclear export purchased from Enzo Life

Sciences International, Inc. (Plymouth Meeting, PA). Lipofecta-

mine and Lipofectamine 2000 were purchased from Invitrogen.

Luciferase reagent was from Promega (Madison, WI). b-Galacto-

sidase reagent was obtained from Tropix (Bedford, MA). NFkB

promoter construct was purchased from Stratagene (Cedar Creek,

TX). The VEGF and survivin promoter constructs were provided

by Drs. Gerhard Siemeister and Gunter Finkenzeller (Institute of

Molecular Medicine, Tumor Biology Center, Freiburg, Germany)

and Dr. M. Zhou (Emory university, Atlanta, GA), respectively.

Sp1 and Sp3 promoter constructs were kindly provided by Drs.

Carlos Cuidad and Veronique Noe (University of Barcelona,

Barcelona, Spain).

Cell proliferation assays
RKO, SW480, HT-29 and HCT-116 colon cancer cell lines

were plated (36104 per well) using DMEM:Ham’s F-12 medium

containing 2.5% charcoal stripped fetal bovine serum (FBS) in 12-

well plates and left to attach for 24 hr. Cells were then treated with

either vehicle or the indicated concentrations of aspirin and

sodium salicylate. After 24, 48 and 72 hr of treatment, cells were

counted using a Coulter Z1 particle counter. Each experiment was

carried out in triplicate and results are expressed as means 6 SE

for each determination.

Annexin V staining
Apoptosis, necrotic and healthy cell detection kit was purchased

from Biotium, Inc (Hayward, CA). RKO, SW480, HT-29 and

HCT-116 colon cancer cells (7.56104) were seeded in Lab-Tek

two chambered cover glass slides and allowed to attach overnight.

After treatment with aspirin (10 mM) for 24 hr, cells were washed

with cold phosphate-buffered saline (PBS) twice and incubated

with FITC Annexin V, ethidium homodimer III and Hoechst

33342 in Annexin V binding buffer for 20 min according to the

manufacturer’s instructions in the protocol. The cells were then

washed twice with Annexin V binding buffer and detected for

flouroscence with digital fluorescent microscope.

siRNA interference assays
SiRNAs for Sp1, Sp3, Sp4, and Lamin were purchased from

Sigma-Aldrich. The siRNA complexes used in this study are

indicated as follows:

Lamin: SASI_Hs02_00367643

Sp1: SASI_Hs02_00363664

Sp3 59-GCG GCA GGU GGA GCC UUC ACU TT

Sp4 59-GCA GUG ACA CAU UAG UGA GCT T

RKO and SW480 colon cancer cell lines were seeded (66104

per ml) in 6-well plates in DMEM:Ham’s F-12 medium

supplemented with 2.5% charcoal-stripped FBS without antibiotic

and left to attach for 1 d. Knockdown of Sp1, Sp3, Sp4

individually or a combination of all 3 proteins carried out using

appropriate siRNA along with iLamin as control was performed

using LipofectAMINE 2000 transfection reagent as per the

manufacturer’s instructions.

Transfection and luciferase assay
RKO and SW480 colon cancer cells (16105 per well) were

plated in 12-well plates in DMEM/Ham’s F-12 medium

supplemented with 2.5% charcoal-stripped FBS. After 24 hr,

various amounts of DNA [i.e., 0.4 mg PGL3-Luc, 0.04 mg b-

galactosidase, and 0.4 mg pNFkB-Luc (4)-Luc] were transfected

using LipofectAMINE 2000 reagent according to the manufac-

turer’s protocol. After 5 hr of the transfection, the transfection mix

was replaced with complete medium containing either vehicle

(DMSO) or the indicated compound in DMSO.

For RNA interference studies, RKO and SW480 colon cancer

cells were cotransfected with siRNA for Sp1, Sp3, Sp4 or Lamin

along with various amounts of DNA for PGL3-Luc or 0.4 mg

pNFkB-Luc. After 22 hr, cells were then lysed with 100 mL of 1X

reporter lysis buffer, and cell extracts (30 mL) were used for

luciferase and b-galactosidase assays. A Lumicount luminometer

was used to quantitate luciferase and b-galactosidase activities, and

the luciferase activities were normalized to b-galactosidase activity.

Western blots
RKO, SW480, HT-29 and HCT-116 colon cancer cells were

seeded in DMEM:Ham’s F-12 medium containing 2.5% charcoal-

stripped FBS and, after 24 hr, cells were treated with either vehicle

(DMSO) or the indicated compounds. Cells were collected using

high-salt buffer (50 mM HEPES, 0.5 mol/L NaCl, 1.5 mM

MgCl2, 1 mM EGTA, 10% glycerol, and 1% Triton-X-100)

and 10 ml/L Protease Inhibitor Cocktail (Sigma-Aldrich). After

centrifugation of the lysates at 15,000 g for 15 min at 4uC, the

supernatants were recovered, and protein was quantified by the

Bradford protein assay. Protein lysates (15–60 mg) were incubated

for 5–10 min at 100uC along with 5X loading buffer and then

separated by electrophoresis on 7.5–12% sodium dodecyl

sulphate-polyacrylamide gels at 120 V for 3 to 4 hr. Proteins
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Figure 1. Aspirin inhibits colon cancer cell growth and induces apoptosis. Inhibition of SW480 and RKO (A) and HT29 and HCT116 (B) cell
proliferation. Cells were treated with DMSO or 2.5–10 mM aspirin for 3 days, and cell numbers were determined as described in the Experimental
Procedures. Induction of Annexin V staining (C) and apoptotic responses in RKO and SW480 (D) and HT29 and HCT116 (E) cells. Annexin V staining
was determined as described in the Experimental Procedures. The expression of apoptotic proteins PARP cleavage was determined by western blot
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were transferred onto polyvinylidene difluoride membranes by wet

electroblotting in a buffer containing 25 mM Tris, 192 mM

glycine, and 20% methanol for 1.5 hr at 180 mÅ. Membranes

were blocked for 45 min with 5% TBST-Blotto (10 mM Tris-HCl,

150 mM NaCl, pH 8.0, 0.05% Triton X-100, and 5% nonfat dry

milk) and incubated in fresh 5% TBST-Blotto with 1:500 primary

antibody overnight with gentle shaking at 4uC. After washing

twice with TBST for 10 min, the membrane was incubated with

secondary antibody (1:5000) in 5% TBST-Blotto for 3–4 hr by

gentle shaking. The membrane was washed twice with TBST for

10 min, incubated with 2 ml of chemiluminescence substrate

(Millipore, Temecula, CA) for 1 min, and exposed to Kodak

image station 4000 mm Pro (Carestream Health, Rochester, NY).

Xenograft studies in athymic mice
Female athymic nude mice were purchased from Harlan

Laboratories (Indianapolis, IN). The mice were housed and

maintained under specific pathogen-free conditions in facilities

approved by the American Association for Accreditation of

Laboratory Animal Care and in accordance with current

regulations and standards of the United States Department of

Agriculture, United States Department of Health and Human

Services. This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Texas A&M University Institutional

Animal Care and Use Committee (IACUC) (AUP #2012-131). All

surgery was performed under sodium pentobarbital anesthesia,

and all efforts were made to minimize suffering. To produce

tumors, RKO cells were harvested from subconfluent cultures by a

brief exposure to 0.25% trypsin and 0.02% ethylenediaminetet-

raacetic acid. Trypsinization was stopped with medium containing

10% fetal bovine serum, and the cells were washed once in serum-

free medium and resuspended in serum free medium. Only

suspensions consisting of single cells with 90% viability were used

for the injections. A xenograft was established by subcutaneous

injection of the cells (36106) into the flanks of individual mice.

Tumors were allowed to grow for 6 d until they were palpable.

Mice were then randomized into two groups of 6 mice per group

and dosed by oral gavage in corn oil 200 mg/kg/day (neutralized

with an equimolar concentration of NaOH) of aspirin on every

day for 14 d. The mice were weighed, and tumor size was

measured every second day with calipers to permit calculation of

tumor volumes: V = LW2/2, where L and W were length and

width, respectively. After 14 d, the animals were sacrificed; final

body and tumor weights were determined and plotted. At the end

of the experiment, major visceral organs and tumors were

collected and analyzed for Sp protein expression and induction

of apoptosis using western blots and TUNEL staining respectively.

Statistical analysis
Statistical significance of differences was determined by analysis

of variance and student t-test, and the levels of probability were

noted. All statistical tests were two-sided. IC50 values were

calculated using non-linear regression analysis and expressed in

mM, at 95% confidence intervals.

Results

Aspirin inhibits growth and induces apoptosis in colon
cancer cells

In this study, different concentrations (2.5–10 mM) of aspirin

inhibited growth of SW480, RKO, HT29 and HCT116 cells over

a period of 3 days (Figs. 1A and 1B), and IC50 values for aspirin-

induced growth inhibition were in the range of 2.5–5 mM in all 4

cell lines. The high dose (10 mM) of aspirin was used to determine

the proapoptotic effects of this compound after treatment for only

24 hr and the results show that aspirin increased Annexin V

staining in all 4 colon cancer cell lines (Fig. 1C). The proapoptotic

effects of aspirin (5 and 10 mM) were further investigated in colon

cancer cells by determining changes in expression in the survival

proteins bcl-2 and survivin and induction of caspase-dependent

PARP cleavage. Aspirin induced a concentration- and time-

dependent downregulation of survivin and bcl-2 and induced of

PARP cleavage, a marker of apoptosis (Figs. 1D and 1E).

Aspirin and salicylate downregulates Sp1, Sp3, Sp4 and
Sp-regulated genes

Previous studies by RNA interference (RNAi) show that both

survivin and bcl-2 are regulated by Sp1, Sp3 and Sp4 in cancer

cells [17,22,24–26]. Therefore, RKO, SW480, HT29 and

HCT116 cells were treated with 5 and 10 mM aspirin for 24 or

48 hr and western blot analysis showed that there was a

concentration- and time-dependent decrease in Sp1, Sp3 and

Sp4 proteins in all 4 cell lines (Figs. 2A and 2B). Moreover,

treatment of RKO, SW480, HT-29 and HCT116 colon cancer

cells with 5 or 10 mM aspirin for 24 or 48 hr also decreased

expression of several gene products regulated by Sp1, Sp3 and Sp4

[24–29] and these include VEGF, VEGFR1, cyclin D1 and c-

MET proteins (Figs. 2C and 2D), and the effects of aspirin on their

expression were both concentration- and time-dependent.

We also investigated the effects of 5 and 10 mM aspirin on

luciferase activity in RKO and SW480 cells transfected with

constructs containing GC-rich promoter inserts from the Sp1

(pSp1For4, 2751 to 220), Sp3 (pSp3For5, 2417 to 238), VEGF

(pVEGF, 22018 to +50), and survivin (pSurvivin, 2269 to +49)

genes (Fig. 2E). With the exception of the VEGF construct, 5 and

10 mM aspirin significantly decreased luciferase activity and these

results correlated with the decreased expression of the corre-

sponding Sp1, Sp3, VEGF and survivin proteins in RKO and

SW480 cells. The increase in luciferase activity in RKO cells

treated with 5 mM aspirin and transfected with pVEGF may be

due to the relatively slow downregulation of this protein which was

only observed after 48 hr at the 10 mM concentration, suggesting

that other aspirin-induced pathways may also be activating VEGF.

Aspirin is rapidly metabolized to salicylate [27] and the effects

of salicylate on colon cancer cell growth, Sp proteins and Sp-

regulated genes was also investigated (Fig. 3). Salicylate (sodium

salt) (2.5–10 mM) also inhibited growth of all 4 cell lines (Figs. 3A

and 3B), and the growth inhibitory effects were similar to that

observed for aspirin (Figs. 2A and 2B). Growth inhibition was

accompanied by the time-dependent downregulation of Sp1, Sp3,

Sp4 and Sp-regulated gene products (bcl-2, cyclin D1, survivin

and VEGF) in RKO and SW480 (Fig. 3C) and HCT116 and

HT29 (Fig. 3D) cells. This pattern of responses for sodium

salicylate was comparable to that observed for aspirin (Figs. 1 and

analysis of whole cell lysates as described in the Experimental Procedures. Results in (A) and (B) are means 6 SE for 3 replicate determination for each
treatment group, and significant (p,0.05) inhibition is indicated (*).
doi:10.1371/journal.pone.0048208.g001
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Figure 2. Aspirin decreases expressions of Sp1, Sp3, Sp4 and Sp-regulated gene products in colon cancer cells. Downregulation of Sp
proteins in RKO and SW480 (A) and HT29 and HCT116 (B) and Sp-regulated gene products in RKO and SW480 (C) and HT29 and HCT116 (D) cells. Cells
were treated with 5 or 10 mM aspirin for 24 or 48 hr, and whole cell lysates were analyzed by western blot analysis as described in the Experimental

Anticancer Activity of Aspirin
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2) and similar effects were also observed for methyl salicylate (data

not shown) which is also rapidly metabolized to salicylate.

Aspirin-induced suppression of NFkB and b-catenin is
due, in part, to Sp-downregulation

It has previously been reported that aspirin enhanced nuclear

NFkB accumulation [13–15] and this was further investigated in

RKO and SW480 cells treated with 5 and 10 mM aspirin for

48 hr. Levels of cytosolic p65 and p50 levels were decreased,

whereas nuclear p65 and p50 levels were relatively unchanged

after treatment with aspirin (Figs. 4A and 4B) and these results

differed with previous studies [13–15]. Moreover, overall levels of

nuclear proteins were ,10% of cytosolic proteins and this was

confirmed by western blot analysis of whole cell lysates from cells

treated with 5 or 10 mM aspirin which showed that both p65 and

p50 proteins were decreased in both cell lines within 48 hr after

treatment with aspirin (Figs. 4A and 4B). Aspirin also decreased

luciferase activity in SW480 and RKO cells transfected with a

pNFkB-luc construct (Fig. 4C) and these results were consistent

with the observed downregulation of both p65 and p50 proteins

(Figs. 4A and 4B). Previous studies reported that aspirin decreased

b-catenin expression in colon cancer cells [12] and our results

confirmed that 5–10 mM aspirin also decreases b-catenin

expression in RKO and SW480 colon cancer cells (Fig. 4D).

Since NFkB (p65) and the b-catenin promoters contain GC-rich

Sp binding sites [28,29], we used RNAi to determine the role of

Sp1, Sp3 and Sp4 in regulation of p65, p50 and b-catenin in colon

cancer cells. RKO and SW480 cells were transfected with small

inhibitory RNAs targeting Sp1 (iSp1), Sp3 (iSp3), and Sp4 (iSp4)

alone and in combination (iSp1/3/4). Figure 5A shows that each

individual oligonucleotide decreased expression of its individual

target (Sp1, Sp3 and Sp4) and iSp1/3/4 knocked down all three

proteins. iSp1 also decreased expression of Sp4 (but not Sp3) and

this is consistent with previous studies showing cross-regulatory

interactions among the Sp transcription factors due to their GC-

rich promoters [22,25]. Figure 5B illustrates cell context-depen-

dent differences in the effects of iSp1, iSp3 and iSp4 on p65

expression in RKO and SW480 cells where Sp1, Sp3 and Sp4

knockdown resulted in small changes in p65 in RKO cells and Sp1

and to a lesser extent Sp4 knockdown decreased p65 in SW480

cells. iSp1/3/4 (combined oligonucleotides) decreased p65 ex-

pression in both cell lines, whereas minimal effects were observed

for p50. Thus, aspirin-induced downregulation of p50 (Figs. 4A

and 4B) was Sp-independent. Figure 5C shows that iSp1/3/4 also

decreased luciferase activity in RKO (90%) and SW480 (40%)

cells transfected with the NFkB-luc construct, and the different

effects of Sp knockdown in these cells suggest a more dominant

role for Sp-dependent regulation of NFkB in RKO than SW480

cells. Sp knockdown (combined) also decreased b-catenin protein

in RKO and SW480 cells and results of knockdown of individual

Sp proteins suggest that Sp1 and Sp4 are the dominant

transcription factors required for constitutive expression of b-

catenin in RKO cells, whereas knockdown of Sp1, Sp3 and Sp4

decrease b-catenin protein levels in SW480 cells (Fig. 5D).

Interestingly, the RNAi studies shows that PARP cleavage

(apoptosis) is induced primarily after knockdown of Sp3 in both

RKO and SW480 cells (Fig. 5E).

Mechanism of aspirin-induced downregulation of Sp1,
Sp3 and Sp4

Several pathways have been described for enhanced Sp

degradation in cancer cell lines and these include activation of

proteasomes, caspases and ROS [17–20,22–26] and also a

pathway which involves nuclear export of Sp1 followed by

proteolytic degradation in the cytosol [30]. Western blot analysis

of nuclear and cytosol fractions from RKO and SW480 cells shows

that Sp1, Sp3 and Sp4 are localized in the nucleus and treatment

with aspirin decreased Sp1, Sp3 and Sp4 protein levels in the

nucleus without any apparent translocation to the cytosol (Fig. 6A).

Similar results were observed after cotreatment with aspirin and

the nuclear export inhibitor leptomycin B (combined), indicating

that nuclear export of Sp1, Sp3 or Sp4 was not required for

aspirin-induced downregulation of Sp1, Sp3 and Sp4. Other

agents such as the nitro-NSAID GT-094 and betulinic acid

decreased Sp proteins in RKO and SW480 cells through ROS-

dependent induction of Sp transcriptional repressor ZBTB10 and

this response was attenuated by antioxidants such as GSH or DTT

[17,31]; however, results in Figure 6B show that these antioxidants

do not block aspirin-induced downregulation of Sp proteins.

Results of preliminary studies show that aspirin-induced down-

regulation of Sp proteins was also not blocked by proteasome

inhibitors (data not shown) but was affected by cotreatment with

the pancaspase inhibitor Z-VAD-fmk. Figures 6C and 6D show

that aspirin-induced Sp downregulation in RKO and SW480 cells

was inhibited after cotreatment with the pancaspase inhibitor (Z-

VAD-fmk), caspase-2 (Z-VDVAD-fmk), and caspase-8 (Z-IETD-

fmk) inhibitors but only partially blocked with the caspase 9 (Z-

LEHD-fmk) inhibitor.

Favier and coworkers [32,33] previously reported in HeLa cells

that zinc chelation by the permeable metal ion chelator TPEN

activated multiple caspases (3-, 8- and 9-) and decreased

expression of Sp1, Sp3 and Sp4 proteins that contain zinc ions

in their catalytic sites. Treatment of RKO and SW480 cells with

25 or 50 mM TPEN for 18 hr induced PARP cleavage and

activation (cleavage) of caspases 8, 9, 3, and 7 (Fig. 7A). The

critical role of zinc depletion in mediating this response and

downregulation of Sp proteins was confirmed by treating the colon

cancer cells with TPEN alone or in combination with 50 mM

ZnSO4 (Fig. 7B). TPEN decreased expression of Sp1, Sp3 and Sp4

and the addition of ZnSO4 completely reversed the TPEN-

dependent downregulation of Sp1, Sp3 and Sp4 proteins. Like

TPEN, aspirin also induced PARP cleavage and activation

(cleavage) of caspases 8, 9, 3 and 7 (Fig. 7C). Aspirin-induced

PARP cleavage was also inhibited by zinc sulfate (Fig. 7D);

moreover, treatment of RKO and SW480 cells with aspirin alone

or in combination with 50 mM ZnSO4 show that ZnSO4 also

decreased aspirin-mediated downregulation of Sp1, Sp3 and Sp4

(Fig. 7E), thus confirming that aspirin, like TPEN, induces

caspase-dependent cleavage of Sp proteins that is due to zinc

ion depletion.

In vivo studies
In athymic nude mice bearing RKO cells as xenografts, aspirin

was administered when the tumors were initially palpable. The

sodium salt of aspirin (200 mg/kg/d) was administered daily by

oral gavage and this resulted in decreased tumor volumes and

Procedures. Results are typical of duplicate experiments. (E) Aspirin decreases reporter gene activity. Cells were transfected with pSp1For4, pSp3For5,
pVEGF and pSurvivin and treated with DMSO or aspirin (5 or 10 mM). Luciferase activity was determined as described in the Experimental Procedures.
Results are expressed as means 6 SE (3 replicates) and significant (p,0.05) inhibition is indicated (*).
doi:10.1371/journal.pone.0048208.g002
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Figure 3. Salicylate inhibits colon cancer cell growth and downregulates Sp1, Sp3, Sp4 and Sp-regulated genes. Inhibition of RKO and
SW480 (A) and HCT116 and HT29 (B) cell growth. Cells were treated with 2.5–10 mM sodium salicylate for up to 3 days, and cell numbers were
determined as described in the Experimental Procedures. Protein downregulation in RKO and SW480 (C) and HCT116 and HT29 (D) cells. Cells were
treated with 5 or 10 mM salicylate for 24 or 48 hr, and whole cell lysates were analyzed by western blots as described in the Experimental Procedures.
doi:10.1371/journal.pone.0048208.g003
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weights (Figs. 8A and 8B) and due to the lack of toxicity of the

sodium salt, the treatment was continued for several days without

any apparent signs of toxicity. Tumor lysates from control and

treated animals were analyzed by western blot analysis for Sp1,

Sp3 and Sp4, and levels were quantitated relative to b-actin and

showed significant decreases in expression of Sp1, Sp3 and Sp4 in

aspirin vs. control animals (Fig. 8C). Figure 8D shows increased

apoptosis (TUNEL staining) in tumors from aspirin-treated mice

compared to controls and these results complement in vitro studies

showing that aspirin induced apoptosis in colon cancer cells

(Fig. 1). These data confirm that aspirin-mediated inhibition of

colon cancer cell and tumor growth was accompanied by

downregulation of Sp transcription factors and this response

contributes to the anticancer activity of aspirin.

Discussion

Aspirin and other NSAIDs reduce the incidence and increase

survival of colon cancer patients and similar results have been

observed for aspirin as a chemotherapeutic agent for treatment of

breast cancer patients [4–8]. These results indicate that aspirin has

significant potential as a chemotherapeutic agent, although there is

Figure 4. Aspirin decreases expression of NFkB and b-catenin in colon cancer cells. Decreased p65/p50 in RKO (A) and SW480 (B) cells.
Cells were treated for 48 hr with 5 or 10 mM, and whole cell, nuclear and cytosolic extracts were analyzed by western blot analysis as described in the
Experimental Procedures. Levels of p65 and p50 proteins (relative to b-actin) in whole cell lysates were quantitated from 3 replicate experiments and
were significantly decreased by aspirin. (C) Aspirin decreases NFkB-luc. The construct was transfected into RKO and SW480 cells treated with DMSO or
aspirin, and luciferase activity determined as described in the Experimental Procedures. Results are means 6 SE (3 replicates) and significant (p,0.05)
inhibition is indicated (*). (D) Downregulation of b-catenin. Cells were treated with 5 or 10 mM aspirin for 48 hr, and whole cell lysates were analyzed
by western blots as described in the Experimental Procedures.
doi:10.1371/journal.pone.0048208.g004
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concern regarding the adverse gastrointestinal side-effects of

aspirin [2,3,34] and in the future, these may be circumvented by

using NO-NSAIDs. The effective doses of aspirin in most in vitro

studies in colon cancer cells vary from 1–10 mM [9–15] and we

observed significant inhibition of SW480, RKO, HT29 and

HCT116 cell growth at #2.5 mM aspirin (Fig. 1) and 10 mM

aspirin completely inhibited cell growth without causing seeded

cells to detach. In children with autoimmune disease, treatment

with aspirin (25 mg/kg) exhibited maximum serum concentrations

of 5.2 mM aspirin with a range of 0.38–10.26 mM [27],

suggesting that the dose range of aspirin used in this and many

previous studies in colon cancer cells (1–10 mM) is within the

Figure 5. Knockdown of Sp1, Sp3 and Sp4 (alone and combined) by RNA interference. Knockdown of Sp1, Sp3, Sp4 and Sp1/3/4 (A) and
p65/p50 (B) in colon cancer cells. Cells were transfected with various oligonucleotides, and whole cell lysates were analyzed by western blot analysis
as outlined in the Experimental Procedures. (C) Knockdown of Sp1/3/4 (combined) inhibits NFkB-luc. Cells were transfected with iLamin (control) and
iSp1/3/4 (combined oligonucleotides) and NFkB-luc, and luciferase activity was determined as described in the Experimental Procedures. Results are
expressed as means 6 SE (3 replicates), and significantly (p,0.05) decreased activity is indicated (*). Sp knockdown decreases b-catenin (D) and
induces PARP cleavage (E). Cells were transfected with various oligonucleotides, and whole cell lysates were analyzed by western blots as described
in the Experimental Procedures.
doi:10.1371/journal.pone.0048208.g005
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range of serum levels achieved in studies using pharmacological

doses of aspirin [27].

RNA interference studies in several cancer cell lines show that

knockdown of Sp1, Sp3 and Sp4 (singly or in combination) results

in decreased expression of growth promoting (EGFR, c-MET,

cyclin D1), survival (bcl-2, survivin), angiogenic (VEGF and its

receptors), and pro-inflammatory [p65 (NFkB)] genes or gene

products [18,21–26]. Decreased Sp-regulated genes is also

accompanied by decreased cell growth and cell cycle progression

and induction of apoptosis after knockdown of Sp proteins [20–

26]. Moreover, several anticancer agents including NSAIDs and

GT-094 (a NO-NSAID), curcumin, betulinic acid and synthetic

triterpenoids, and arsenic trioxide decrease expression of Sp1, Sp3,

Sp4 and Sp-regulated genes in cancer cells and these effects

contribute to their anticancer activity [17,18,20,35]. The reported

growth inhibitory and antiangiogenic activity of aspirin and the

downregulation of bcl-2 expression [9–11] suggested that one of

the mechanisms of action of aspirin may also be due to

downregulation of Sp1, Sp3 and Sp4 transcription factors. Results

in Figures 1 and 2 show that aspirin induced a time- and

concentration-dependent downregulation of Sp1, Sp3, Sp4 and

Sp-regulated gene products in RKO, SW480, HT29 and

Figure 6. Mechanisms of aspirin-induced Sp protein degradation. (A) Effects of leptomycin B. Cells were treated with 10 mM aspirin in the
presence or absence of leptomycin B for 48 hr, and whole cell lysates were analyzed by western blot analysis as described in the Experimental
Procedures. Effects of antioxidants (B) and caspase inhibitors (C, D) on aspirin-induced Sp protein downregulation. Cells were treated with DMSO,
aspirin alone or in combination with antioxidants or caspase inhibitors, and after 48 hr, whole cell lysates were analyzed by western blots as
described in the Experimental Procedures.
doi:10.1371/journal.pone.0048208.g006
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Figure 7. Zinc depletion results in induction of caspases and downregulation of Sp proteins. (A) TPEN induces activation (cleavage) of
caspases. Cells were treated with 25 or 50 mM TPEN for 18 hr, and whole cell lysates were analyzed by western blots as described in the Experimental
Procedures. (B) TPEN decreases Sp protein expression and zinc sulfate blocks the effects of TPEN on Sp downregulation. Cells were treated with
50 mM ZnSO4 for 18 hr, and whole cell lysates were analyzed by western blots. (C) Aspirin activates caspases. Cells were treated with aspirin for 48 hr,
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HCT116 cells. There was some variability among the different cell

lines in terms of their sensitivity to aspirin; however, after

treatment for 48 hr, downregulation of Sp1, Sp3 and Sp4 was

observed at concentrations of aspirin that were #5 mM (HT29

and HCT116 cells) or 5–10 mM (RKO and SW480 cells). These

results, coupled with in vivo data showing that the sodium salt of

aspirin decreased colon tumor growth in a xenograft model (RKO

cells) in athymic nude mice and also decreased levels of Sp1, Sp3

and Sp4 proteins in tumors (Fig. 7), suggest that aspirin-induced

downregulation of Sp proteins plays a role in the anticancer

activity of this compound.

Aspirin-induced inhibition of b-catenin and NFkB have also

been associated with the anticancer activity of aspirin [12–15], and

we have previously identified that p65-NFkB expression was

and whole cell lysates were analyzed by western blots as outlined in the Experimental Procedures. (D) Aspirin-induced PARP cleavage is blocked by
ZnSO4. Cells were treated for 48 hr with aspirin alone or in combination with ZnSO4 and PARP cleavage was analyzed by western blots of whole cell
lysates. (E) Effects of ZnSO4 on aspirin-induced downregulation of Sp proteins. RKO or SW480 cells were treated with 10 mM aspirin alone or in
combination with 50 mM ZnSO4 for 48 hr, and whole cell lysates were analyzed by western blots as outlined in the Experimental Procedures.
doi:10.1371/journal.pone.0048208.g007

Figure 8. Aspirin inhibits colon tumor growth in athymic nude mice (xenografts). Inhibition of tumor weight (A) and volume (growth) (B)
in athymic nude mice administered the sodium salt of aspirin. Athymic nude mice bearing RKO cells as xenografts were treated with the sodium salt
of aspirin, and tumor volumes and weights were determined after sacrifice as described in the Experimental Procedures. (C) Expression of Sp1, Sp3
and Sp4 in colon tumors. Tumor lysates from solvent (control) and aspirin-treated mice were analyzed by western blot analysis as described in the
Experimental Procedures. Expression of Sp1, Sp3 and Sp4 in aspirin-treated tumors compared to solvent (control)-treated tumors (set at 100%) was
determined by densitometry, and b-actin was used to normalize protein expression. Results are means 6 SE (6 replicates) and significant (p,0.05)
inhibition of Sp1, Sp3 and Sp4 protein levels by aspirin is indicated (*). (D) Induction of apoptosis. Fixed tumor tissue from control and aspirin-treated
mice were analyzed for TUNEL staining as outlined in the Experimental Procedures.
doi:10.1371/journal.pone.0048208.g008
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regulated by Sp transcription factors in colon and bladder cancer

cells [22,25]. One study reported that aspirin induced rapid

phosphorylation and inactivation of b-catenin within 60 min after

treatment and this was accompanied by decreased expression of

several putative b-catenin-regulated gene products (e.g. cyclin D1

and c-MET) after treatment for 24–72 hr [12]. Our results

confirm that aspirin also decreased expression of b-catenin protein

(Fig. 4D); however, results of knockdown of Sp proteins by RNAi

showed that b-catenin itself is an Sp-regulated gene, demonstrat-

ing that the effects of aspirin on b-catenin are also due to

downregulation of Sp proteins.

It was also reported that aspirin increased nuclear p65 levels

and induced apoptosis in colon cancer cells within 24 hr after

treatment, and this former response has been linked to decreased

expression of IkBa [13–15]. In contrast, our results show that

aspirin treatment had minimal effects on nuclear p65 or p50 levels

and the dominant effect was a dramatic decrease in p65 and p50

proteins in whole cell lysates (Figs. 4A and 4B). RNAi shows that

p65 is an Sp-regulated gene (Fig. 5B) as previously reported in

other cancer cell lines [22,25]. The maximal (.50%) decrease was

only observed in cells transfected with iSp1/3/4 (combined);

however, the overall decrease in p65 in this experiment (Fig. 5B)

was less than observed in other cancer cell lines [22,25] and

aspirin-induced inhibition of NFkB was only due, in part, to

downregulation of Sp1, Sp3 and Sp4 transcription factors. Thus,

although aspirin induces a dramatic downregulation of p65 and

p50 in colon cancer cells, Sp protein downregulation contributes

to decreased p65 levels, whereas effects on p50 are Sp-dependent.

Results of transfections assays with an NFkB-luc contruct (Fig. 5C)

also suggests that Sp1, Sp3 and Sp4 differentially affect NFkB-

dependent transactivation in RKO and SW480 cells and this is

currently being investigated. Aspirin-induced downregulation of

p65 expression is maximal after treatment for 48 hr, whereas

previous studies showed that IkBa expression was observed as

early as 6 hr after treatment [13]. This suggests that aspirin-

mediated inhibition of NFkB may be due to both short and long

term effects on IkBa and p65, respectively, and this is currently

being investigated.

The NO-NSAID GT-094 also decreased expression of Sp

proteins and Sp-regulated genes in RKO and SW480 cells and this

was due to induction of ROS and ROS-dependent downregula-

tion of miR-27a and induction of the Sp transcriptional repressor

ZBTB10 [17]. These responses were inhibited by antioxidants,

whereas aspirin induced Sp downregulation was not affected by

antioxidants (Fig. 6B); however, the pan-caspase inhibitor Z-VAD-

fmk inhibited aspirin-induced effects on Sp1, Sp3 and Sp4

(Fig. 6D). Arsenic trioxide also induced caspase-dependent

cleavage of Sp3 and Sp4 in bladder cancer cells [26] and retinoid

(CD437)-induced Sp1 degradation was also caspase-dependent in

EL-4 cells [36]. It has also been reported that zinc depletion

induces apoptosis and decreases Sp1, Sp3 and Sp4 in cancer cell

lines [32,33], and we confirmed that aspirin-induced PARP

cleavage and downregulation of Sp1, Sp3 and Sp4 was inhibited in

RKO and SW480 cells cotreated with aspirin plus ZnSO4

(Figs. 7D and 7E). The physical interactions of zinc ions with

aspirin have previously been observed [37], and functional

interactions between zinc ions and aspirin in terms of zinc-

induced neurotoxicity and the fetal toxicity have also been

reported [38,39]. Results of this study has identified a novel

pathway for aspirin-induced effects on Sp1, Sp3 and Sp4 in colon

cancer cells, and current studies are focused on specific enzymes

and pathways associated with the effects of aspirin on zinc

homeostasis.

Previous Studies on the pharmacokinetics of aspirin (25 mg/kg)

administered to children with autoimmune disease showed that

maximum serum concentrations of aspirin were 5.20 mM (range

of 0.38–10.26 mM), whereas the maximum concentration of the

major aspirin metabolite salicylate was 172 mM with a range of

59.8–312.2 mM [27]. Thus, pharmacologic doses of aspirin that

give low mM serum concentrations can be accompanied by .30-

fold higher concentrations of salicylate which are more than

sufficient to inhibit colon cancer cell growth and decrease Sp1,

Sp3, Sp4 and Sp-regulated genes (Fig. 3). Our studies with

salicylate show that both aspirin and salicylate induced similar

responses with comparable potencies in colon cancer cells (Figs. 1,

2, 3) and this is consistent with previous reports [3,10,11,40]. The

high salicylate/aspirin serum ratios observed in children admin-

istered pharmacological doses of aspirin (25 mg/kg) [27] suggests

that the salicylate metabolite may be a major contributor to the

reported chemotherapeutic effects of aspirin in colon cancer

patients. Colon cancer patients on low dose aspirin therapy

(75 mg/d; ca. 1 mg/kg/d) would exhibit maximum average serum

concentrations of salicylate (6.8 mM) and aspirin (0.21 mM)

sufficient to inhibit colon cancer cell growth and decrease

expression of Sp1, Sp3, Sp4 and Sp-regulated genes (Fig. 3).

In summary, this study demonstrates that aspirin induces

caspase-dependent proteolysis of Sp1, Sp3 and Sp4 proteins in

colon cancer cells and tumors and, this was accompanied by

downregulation of several Sp-regulated genes involved in cell

proliferation, survival and angiogenesis. Aspirin-induced apoptosis

and Sp downregulation was due to activation of nuclear caspases

and perturbation of zinc homeostasis, and the mechanisms that

regulate this pathway are unknown and are currently being

investigated. Based on the similar effects of aspirin and salicylate as

anticancer agents observed in Figures 1, 2, 3 and other studies

[3,10,11,40] and the high serum salicylate/aspirin ratios [27], the

cancer chemotherapeutic effects of aspirin observed in human

cancer studies [3–5,7,8] may primarily be due to the salicylate

metabolite.
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