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Abstract

Increased muscle force during stretch-shortening cycles (SSCs) has been

widely examined. However, the mechanisms causing increased muscle force in

SSCs remain unknown. The purpose of this study was to determine the influ-

ence of residual force enhancement and elongation of attached cross-bridges

on the work enhancement in SSCs. For the Control condition, skinned rabbit

soleus fibers were elongated passively from an average sarcomere length of 2.4

to 3.0 lm, activated and then actively shortened to 2.4 lm. For the Transition

condition, fibers were elongated actively from an average sarcomere length of

2.4 to 3.0 lm. Two seconds after the end of active lengthening, fibers were

actively shortened to 2.4 lm. In the SSC condition, fibers were lengthened

actively from an average sarcomere length of 2.4 to 3.0 lm, and then immedi-

ately shortened actively to 2.4 lm. Increased muscle force in the SSCs was

quantified by the increase in mechanical work during active shortening com-

pared to the mechanical work measured during the purely active shortening

contractions. Work enhancement was significantly greater in the SSC com-

pared to the Transition conditions. This difference was associated with the

pause given between the active lengthening and shortening phase in the Tran-

sition test, which likely resulted in a reduction of the average elongation of

the attached cross-bridges caused by active stretching. Since some work

enhancement was still observed in the Transition condition, another factor,

for example the stretch-induced residual force enhancement, must also have

contributed to the work enhancement in SSCs.

Introduction

For a given level of activation, a muscle’s force depends

on its instantaneous length (Edman 1966; Gordon et al.

1966), shortening/lengthening velocity (Gasser and Hill

1924; Hill 1938), and contractile history (Abbott and

Aubert 1952). Importantly, the steady-state isometric

force after active shortening is smaller while the isometric

force after active lengthening is greater than that attained

in a purely isometric contraction at the corresponding

length and activation (Abbott and Aubert 1952). This his-

tory dependence of active force production is referred to
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as (residual) force depression, and (residual) force

enhancement, respectively (Mar�echal and Plaghki 1979;

Edman et al. 1993; Herzog and Leonard 1997; Herzog

et al. 2006). The force enhancement property might be

expected to contribute to the work enhancement observed

in stretch-shortening cycles (SSCs) (Cavagna et al. 1968;

Bosco et al. 1982).

Currently, work enhancement in SSCs is thought to be

caused by a stretch-induced reflex response (Nichols and

Houk 1973; Dietz et al. 1979), tendon elongation (Finni

et al. 2001; Kawakami et al. 2002), pre-activation of mus-

cles (Bobbert et al. 1996; Bobbert and Casius 2005), and

residual force enhancement (Edman et al. 1978; Joumaa

et al. 2008a). Recently, Fukutani et al. (2015, 2016, 2017)

found that muscle forces in the active shortening phase

were greater in experiments involving SSCs than pure

shortening contractions and SSCs without pre-activation.

They speculated that residual force enhancement, and an

increase in the extension of attached cross-bridges (an

increase in Huxley’s “x”-distance, Huxley 1957) in the

stretch phase of the SSCs contributed to the increased

work observed in their study. However, since they tested

human plantar-flexor and knee-extensor muscles (Fuku-

tani et al. 2015, 2016, 2017), the influence of storage and

release of elastic energy in the tendon on the work

enhancement in the SSC, could not be excluded (Finni

et al. 2001; Kawakami et al. 2002).

The purpose of this study was to determine the effect

of residual force enhancement and elongation of attached

cross-bridges on the work enhancement in SSCs. We used

skinned fibers to exclude tendon and activation effects as

confounding factors. Therefore, we could isolate the

effects of residual force enhancement and cross-bridge

extension as the two primary factors contributing to work

enhancement in SSCs. Activated fibers were stretched and

then shortened with and without a transition phase. Since

cross-bridge cycling is fast, elongated cross-bridges will

quickly detach when a transition phase is provided, thus

minimizing their effect on work enhancement.

Methods

Sample preparation

New Zealand white rabbits were euthanized according to

a protocol approved by the University of Calgary’s Life

Sciences Animal Ethics Committee. Strips of soleus mus-

cle were harvested and tied to wooden sticks to preserve

in situ sarcomere length. Muscle strips were then placed

in a rigor-glycerol solution with protease inhibitors

(Complete, Roche Diagnostics, Montreal, Quebec,

Canada) to alter the permeability of the muscle fibers and

the structure of the connective tissue. Strips were stored

at �20° for at least 21 days. On the day of the experi-

ments, a single fiber of the soleus was isolated using fine

forceps and a dissecting microscope (SMZ1500; Nikon,

Tokyo, Japan). The isolated fiber was transferred to an

experimental chamber (Models 802B; Aurora Scientific,

Ontario, Canada) containing a relaxing solution with pro-

tease inhibitors. One end of the fiber was attached to a

force transducer (Model 400A; Aurora Scientific, Ontario,

Canada), the other end to a length controller (Model

308B; Aurora Scientific, Ontario, Canada). Sarcomere

length was measured using a He-Ne laser-based diffrac-

tion system (1508P-1; JDSU, California, the United

States). Fiber length was measured using a microscope

(Stemi 2000; Zeiss, Oberkochen, Germany). All experi-

ments were conducted at room temperature (19–23°C).
This experimental set up was similar to that used previ-

ously (Joumaa and Herzog 2013, 2014).

Mechanical tests

We performed two experiments on a total number of 49

fibers. Experiment 1 (n = 49 fibers) consisted of three tri-

als. In trial 1 (Control condition, see Figs. 1, 3, black

line), fibers were stretched passively from an average sar-

comere length of 2.4 lm to an average sarcomere length

of 3.0 lm in 2 s. Fibers were then activated, and once

maximal isometric force was reached, fibers were short-

ened to an average sarcomere length of 2.4 lm in 2 s.

Figure 1. Typical force and sarcomere length changes as a

function of time for the three experimental conditions of

Experiment 1. The black line indicates the control condition. The

red line indicates the transition condition. The blue line indicates

the stretch-shortening cycle (SSC) condition.
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Fibers were deactivated 15 s after the end of the shorten-

ing phase. In trial 2 (Transition condition, see Figs. 1, 3,

red line), fibers were activated at an average sarcomere

length of 2.4 lm, stretched to 3.0 lm in 2 s, held isomet-

ric for 2 s, shortened back to an average sarcomere length

of 2.4 lm in 2 s, and held isometrically for another 15 s.

Trial 3 (SSC condition, see Figs. 1, 3, blue line) was iden-

tical to trial 2, except that there was no pause between

the stretch and the shortening phase. Trial 1 was always

conducted first, while trials 2 and 3 were conducted in

random order. A minimum rest of 3 min was given

between trials. Trials 1–3 were also performed purely pas-

sively, without fiber activation. The active force in trials

1–3 was then calculated by subtracting the force in the

passive trials from the total force of trials 1–3. All data
were collected at a rate of 10,000 Hz.

Experiment 2 (n = 45 fibers) was identical to experi-

ment 1, except that the stretch velocities in the SSC cycles

were fast (stretch phase completed in 0.5 s instead of 2 s

as done in Experiment 1), or slow (stretch phase com-

pleted in 3.5 s) (Fig. 2). The sequence of these two tests

was randomized and a minimum of 3 min rest was given

between tests.

Analyses and measurements

The primary outcome measure for experiment 1 and 2

was the work performed in the shortening phase. The

work during muscle fiber shortening was calculated by

integrating fiber force over the fiber shortening distance.

In addition, force before the active stretch, at the end of

the active stretch, at the onset of active shortening, at the

end of active shortening, and 15 s after the active short-

ening, were measured.

Statistics

In Experiment 1, differences in the mechanical work were

evaluated using a one-way repeated measures analysis of

variance (ANOVA) with the primary factor “condition”

(Control, Transition, and SSC conditions). Differences in

force were determined using a two-way repeated measures

ANOVA with the primary factors “condition” (Control,

Transition, and SSC conditions) and “time” (onset of

active shortening, end of active shortening, and 15 s after

the end of active shortening). Forces prior to and after

the active stretch were compared between the Transition

and SSC conditions using a paired t-test.

For Experiment 2, a paired t-test was conducted to

determine possible differences in mechanical work

between the Fast and Slow stretch conditions. Forces at

different time points were evaluated using a two-way

repeated measures ANOVA with the primary factors

“condition” (Fast and Slow conditions) and “time” (be-

fore active stretch, end of active stretch, onset of active

shortening, end of active shortening, and 15 s after the

end of active shortening).

The effect size for the ANOVAs was determined as the

partial g2, and effect size for the post hoc tests was calcu-

lated as Cohen’s d. Statistical analyses were performed

using SPSS (version 20; IBM, Tokyo, Japan), with the

level of significance set at P < 0.05.

Solutions

The relaxing solution contained (in mmol/L) 170 potas-

sium propionate, 2.5 magnesium acetate, 20 MOPS, 5

K2EGTA, and 2.5 ATP, pH 7.0. The washing solution

contained (in mmol/L) 185 potassium propionate, 2.5

magnesium acetate, 20 MOPS, and 2.5 ATP, pH 7.0. The

activating solution contained (in mmol/L) 170 potassium

propionate, 2.5 magnesium acetate, 10 MOPS, 2.5 ATP

and free Ca2+ buffered with EGTA (CaEGTA and

K2EGTA mixed in order to obtain a pCa value of 4.2),

pH 7.0. One tablet of protease inhibitors was added to

each 100 mL of relaxing solution.

Results

Experiment 1

Mechanical work was greater in the SSC condition than

in the Transition condition (P < 0.001, Cohen’s

Figure 2. Typical time courses of force and sarcomere length for

the two conditions of Experiment 2. The red line indicates the fast

condition. The blue line indicates the slow condition.
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d = 0.35) and was greater in the Transition condition

than the Control condition (P < 0.001, Cohen’s d = 0.23,

Fig. 3).

Force at the onset of shortening was significantly greater

in the SSC than the Transition condition (P < 0.001,

Cohen’s d = 1.00), and was significantly greater in the

Transition than the Control condition (P < 0.001, Cohen’s

d = 0.27) (Fig. 4A). Force at the end of shortening was the

same for all conditions (P = 0.745, Cohen’s d = 0.05 for

Control vs. Transition, P = 0.491, Cohen’s d = 0.07 for

Control vs. SSC, P = 0.152, Cohen’s d = 0.11 for Transi-

tion vs. SSC) (Fig. 4B). Force at 15 s following shortening

was significantly greater in the Control than the Transition

and SSC conditions (P < 0.001, Cohen’s d = 0.20 for Con-

trol vs. Transition, P < 0.001, Cohen’s d = 0.16 for Control

vs. SSC), while there was no difference in force at this time

point between the Transition and SSC conditions

(P = 0.774, Cohen’s d = 0.03) (Fig. 4C).

There was no difference in force prior to and at the end

of the stretch phase between the Transition and SSC condi-

tions (P = 0.768, Cohen’s d = 0.02 prior to stretch, and

P = 0.226, Cohen’s d = 0.03 at the end of stretch) (Fig. 5).

The results for the active forces (Fig. 6) were the same

as those obtained for the total forces (Fig. 3–5).

Experiment 2

Work performed during the shortening phase of the SSC

was significantly greater in the Fast than the Slow condi-

tion (P < 0.001, Cohen’s d = 0.14) (Fig. 7A).

Force at the end of the stretch phase in SSC (and thus

also the onset of shortening) was significantly greater in

Figure 3. Mechanical work done during the concentric contraction phase in Experiment 1. *Indicates a significant difference between

conditions (P < 0.05). The black line indicates the control condition. The red line indicates the Transition condition. The solid line indicates the

stretch-shortening cycle (SSC) condition.

A

B

C

Figure 4. Forceattheonsetofactiveshortening(A),attheendofactive

shortening(B),and15 saftertheactiveshortening(C)inExperiment1.

*Indicatesasignificantdifferencebetweenconditions(P < 0.05).
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A

B

Figure 5. Force before the active stretch (A) and after the active stretch (B) in Experiment 1. The red line indicates the Transition condition.

The blue line indicates the stretch-shortening cycle (SSC) condition.

A B

C D

E F

Figure 6. Active work and active force (passive force was subtracted from total force) in Experiment 1. (A) Mechanical work done during the

concentric contraction phase. Force at the onset of active shortening (B) and at the end of active shortening (C). (D) Force 15 s after the end of

active shortening. Force before active elongation (E) and at the end of active elongation (F). *Significant difference between conditions

(P < 0.05). Note that the statistical results were identical with those in Figures 3–5 (i.e., the results of total force).
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the Fast than the Slow condition (P < 0.001, Cohen’s

d = 0.53) (Fig. 7C). Although force at the end of shorten-

ing was significantly greater in the Fast than the Slow con-

dition (P = 0.005, Cohen’s d = 0.06) (Fig. 7D), the

absolute difference (0.003 mN) was small and corre-

sponded to 1% of the isometric force measured prior to the

stretch phase (0.289 mN) (Fig. 7B). Force at 15 s following

the end of the shortening phase was the same for all condi-

tions (P = 0.926, Cohen’s d = 0.02) (Fig. 7E). Force prior

to stretching was the same for all conditions (P = 0.827,

Cohen’s d < 0.01).

Discussion

The purpose of this study was to investigate work enhance-

ment in skinned muscle fibers and determine the contribu-

tion of residual force enhancement and cross-bridge

elongation on work enhancement in SSCs. We achieved

this purpose using skinned fibers and adding a transition

phase to the SSCs. According to the cross-bridge theory,

one would expect the average cross-bridge extensions to be

greater following fiber stretching compared to the purely

isometric conditions. However, by adding a pause of suffi-

cient time, one would expect the average cross-bridge

extensions to become that of the isometric control condi-

tions. Accordingly, we observed more work in the SSC

than the Transition conditions (Fig. 3). This work differ-

ence may be explained by the loss of elastic energy stored

in the extended cross-bridges for the Transition condition.

Nevertheless, the work in the Transition conditions was

greater than the Control conditions (Fig. 3), indicating

that cross-bridge extension was not the only factor con-

tributing to the enhanced work in SSCs, but that the resid-

ual force enhancement may have contributed too.

A

B C

D E

Figure 7. Work and force in Experiment 2. (A) Mechanical work done during the concentric contraction phase. Force before active elongation

(B) and at the end of active elongation (C). (D) Force at the end of the active shortening. (E) Force 15 s after the end of active shortening.

*Significant difference between conditions (P < 0.05).
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When activated muscle fibers are stretched, the

attached cross-bridges are stretched as well, and so pro-

duce greater force (Huxley 1957). This change in cross-

bridge force may contribute to the SSC effect. This obser-

vation is substantiated by the greater forces at the onset

of shortening in the SSC compared to the Transition con-

dition (Fig. 4A). However, the elongated cross-bridges

cannot provide additional force/work for great periods of

time or shortening distances as attached cross-bridges

detach quickly from actin filaments (Huxley and Sim-

mons 1971), and their stored elastic energy is lost (Bosco

et al. 1982; Wilson et al. 1991).

Work enhancement in the Transition condition was

smaller than in the SSC condition, which may be explained

by the loss of elastic energy stored in cross-bridges attached

at the end of active stretching. However, work in the Tran-

sition condition was greater than that obtained in the Con-

trol condition (Fig. 3), indicating that factors other than

cross-bridge extension must have contributed to the

enhanced work. A possible factor contributing to this

increased work is the residual force enhancement (Abbott

and Aubert 1952; Joumaa et al. 2008a). Residual force

enhancement has been shown to be long lasting and is lar-

gely explained by the engagement of a passive structural

element (Noble 1992; Forcinito et al. 1998), likely titin

(Joumaa et al. 2008b; Leonard and Herzog 2010). The

energy stored in this passive structural element is not lost,

but would be expected to contribute to the enhancement of

force and work throughout the entire range of shortening

(Seiberl et al. 2015; Fortuna et al. 2017). If titin behaves

viscoelastically, elastic energy is dissipated to some extent

during the transient period. However, because titin is

thought to behave essentially elastically within the physio-

logical range of muscle excursion (Kellermayer et al. 1997),

we would not expect energy to be lost from titin in the

transient period of SSCs.

If elastic energy stored in attached cross-bridges con-

tributes to the SSC effect, the SSC effect should become

larger when the speed of active lengthening becomes

higher, because the magnitude of the elastic energy stored

in the attached cross-bridges is larger. As expected, and

shown previously (Edman et al. 1978; Sugi and Tsuchiya

1988;. Lombardi and Piazzesi 1990), force at the end of

the active stretch was higher (Fig. 7C), and resulted in an

increase in the mechanical work for the Fast compared to

the Slow condition (Fig. 7A). The influence of the resid-

ual force enhancement would be expected to be similar

for the Fast and Slow conditions because the magnitude

of the residual force enhancement is essentially unaffected

by the speed of muscle stretching (Edman et al. 1982;

Sugi and Tsuchiya 1988; Lee and Herzog 2002). Thus, it

is reasonable to assume that the observed larger mechani-

cal work in the Fast compared to the Slow condition

(Cavagna et al. 1968; Bosco et al. 1981) was caused by

the increased elastic cross-bridge energy.

For submaximal contractions, the proportion of

attached cross-bridges is smaller than for maximally acti-

vated muscles. Thus, the effect of elongation of attached

cross-bridges would be expected to be smaller as well in

submaximal compared to maximal contractions. How-

ever, the amount of the absolute residual force enhance-

ment has been shown to remain similar for maximal and

submaximal contractions (De Ruiter et al. 2000; Minozzo

and Rassier 2013), because residual force enhancement is

largely independent of cross-bridge kinetics and is pri-

marily explained by the engagement of passive structural

elements (Leonard and Herzog 2010; Powers et al. 2014).

Therefore, the work enhancement observed in this study

for maximal contractions might be similar for submaxi-

mal contractions, and thus, the relative effect of work

enhancement in SSCs might be more pronounced, and

potentially play a greater functional significance at sub-

maximal compared to maximal muscle contractions.

Conclusions

Based on the results of this study, we conclude that

residual force enhancement and the elastic energy stored

in cross-bridges following active muscle stretching are

contributors to the enhanced work observed following

SSCs.
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