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Abstract: Purple rice is recognized as a source of natural anthocyanin compounds among health-
conscious consumers who employ rice as their staple food. Anthocyanin is one of the major an-
tioxidant compounds that protect against the reactive oxygen species (ROS) that cause cellular
damage in plants and animals, including humans. The physiological role of anthocyanin in plants
is not fully understood, but the benefits to human health are apparent against both chronic and
non-chronic diseases. This review focuses on anthocyanin synthesis and accumulation in the whole
plant of purple rice, from cultivation to the processed end products. The anthocyanin content in
purple rice varies due to many factors, including genotype, cultivation, and management as well
as post-harvest processing. The cultivation method strongly influences anthocyanin content in rice
plants; water conditions, light quantity and quality, and available nutrients in the soil are important
factors, while the low stability of anthocyanins means that they can be dramatically degraded under
high-temperature conditions. The application of purple rice anthocyanins has been developed in
both functional food and other purposes. To maximize the benefits of purple rice to human health,
understanding the factors influencing anthocyanin synthesis and accumulation during the entire
process from cultivation to product development can be a path for success.

Keywords: black rice; pigmented rice; rice anthocyanin; rice antioxidant

1. Introduction

Anthocyanins have been demonstrated to reduce the risks of serious diseases such as
cancer and obesity, and the compounds have antiviral, anti-inflammatory, and anti-skin
aging effects [1–6]. In plants, although their function is not completely understood, the
major role of anthocyanins has been reported as protecting against free radicals during
physiological metabolism; in particular, anthocyanin can alleviate cell damage when plants
are grown under biotic and abiotic stresses [7]. Therefore, consumption of naturally
synthesized anthocyanin from plants for the benefit of human health can help reduce the
risk of several major diseases.

Rice is one of the world’s major staple food crops, consumed by more than half of
the world’s population along with crops such as wheat, maize, and potato; over 90%
of the rice production areas and consumption amounts are recorded in Asia [8,9]. At
least 175 countries and territories consume rice; the overall consumption is high in the
rice-consuming countries, ranging from 100 to 200 kg of paddy rice per person per year
according to the FAO. This could be one of the reasons why many international programs
aimed at boosting human nutrition, e.g., the harvest plus biofortification with high zinc,
iron, iodine, and selenium, are focused on rice crops [10]. Moreover, it is interesting to
observe that among the staple food crops, rice is recognized as potentially containing high
amounts of antioxidant compounds such as anthocyanin, especially in pigmented rice
varieties with black (purple) and red pericarp color [11] (Figure 1). The purple rice is highly
valued, particularly among the health-conscious consumers as a functional compound
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for human health among everyday sources of carbohydrate [12]. In other staple food
crops, anthocyanin has been reported in purple maize, a variety that is rarely consumed in
comparison with other non-staple food crops such as Brassica, Solanaceous species, and
some edible flowers [13–16]. Additionally, anthocyanin can be directly taken from the
concentrate in capsules for convenience, but this can be quite expensive [17,18]. Therefore,
purple rice is an advantageous option for anthocyanin intake, especially when dealing
with a large number of rice consumers worldwide.
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Figure 1. Characteristic rice kernels with non-pericarp color (BB 3 CMU), purple (KJ CMU 107) and
red (YMCB 3 CMU) pericarp color.

The anthocyanin-rich rice grains have been recognized as excellent sources of natural
and safe food colorants [19–21]. Synthetic colorants can be harmful to humans and the
environment via allergic and toxic reactions [22]; this can raise the demand for naturally
pigmented rice such as purple rice that contains high concentrations of anthocyanin. Thus,
purple rice not only provides enough anthocyanin to fulfill the growing interest but also
can increase the value of rice products. There are numerous rice varieties containing
anthocyanins, but only some are accepted as commercial varieties due to yield potential,
cooking quality, and other functional properties that may be less acceptable. This review
will focus on the purple rice market trend, the possible sources of anthocyanin from
different plant parts of purple rice, the significant role of anthocyanin in plants and humans,
and factors controlling anthocyanin in rice plants. We also examine the role of anthocyanin
biosynthesis genes in the regulation of anthocyanin in rice, the stability of anthocyanin
in rice and rice products, and the utilization of anthocyanin in purple rice for different
purposes. Thus, this review should be useful for understanding the entire processes of
purple rice production and postharvest management, from product processing to the
benefits to consumers’ health.

2. Purple Rice’s Market and Trend

Rice is the dominant cereal and staple food in many countries. Whilst non-pigmented
rice (no pericarp color) is widely consumed throughout the world, pigmented rice varieties,
e.g., purple rice, are also gaining interest in many regions. Purple rice is traditionally culti-
vated in Asian countries such as China, Japan, Korea, Thailand, Laos, Vietnam, Indonesia,
India, Sri Lanka, and Nepal [23–26] as well as in other regions and countries including
Brazil [27] In Asian regions, it has been established as a component of the traditional
pharmacopoeia [28]. For example, traditional medicine in China uses pigmented rice to
prevent anemia and to improve blood circulation, kidney function, and eyesight [29], while
black porridge rice is given to aid recovery of broken bones [23]. Recently, Asian purple
rice has attracted attention in the international rice market; at the same time, some new
pigmented rice varieties have been bred and adapted to cultivation in other countries such
as Italy, France, Russia, and Australia [30–33]. These events confirm that the worldwide
demand for pigmented rice is increasing. Although Thai purple rice is currently produced
on a very small scale compared with white rice, the export demand is expanding in various
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international markets. In fact, the export quantity has been fairly stable during 2017 to 2020,
with an average of 11,762 tons annually, but the economic value has increased from 1423 to
1805 USD/MT according to the OAE (Figure 2a,b). Meanwhile, a higher market price trend
for purple rice has been observed compared to other rice types including the premium
fragrant rice type (Hom Mali rice) (Figure 2c) (computed from data in OAE, 2020) [34].
Additionally, the high value of purple rice has been largely provided by the online market,
where the highest price for purple rice was recorded, especially organically produced rice
with no chemical pesticides used (Siam Rice Export Company). Thus, the market trend for
purple rice is heading in a good direction, especially when the production process can be
precisely and safely controlled.
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Figure 2. Thailand’s export quantity (a) and price (b) of pigmented rice and the average price of selected rice types (c) during
2017 to 2020. Source: drawn using data from OAE 2021.

According to the increasing of demand for purple rice, meeting a quality standard has
become necessary before exportation (Table 1) [35]. Purple rice typically has an intrinsic
color from deep purple to black; the appearance and uniformity of the color are used to
initially classify the quality grade (by eye) between the two different groups of endosperm
type: non-glutinous and glutinous endosperm. This is because the non-glutinous purple
rice is often required to have a higher standard level due to the greater demand compared
with the glutinous purple rice. Although, regarding quality grade, there is currently
not a significant gap indicating the difference in domestic market price, quality involves
attractiveness as judged by customers. The color segregation is controlled by many factors
during cultivation such as sunlight (quality and duration), day and night temperature,
moisture content, rainfall, water conditions, and nutrient availability in the soil [36–38]. The
shade and color uniformity of purple rice provide opportunities for competitive products
in the health food market. However, unlike the common white rice, the price of quality
grade purple rice for export has not been officially provided; discussing the reasonable
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value can encourage farmers and entrepreneurs to produce rice and rice products that
reach maximum quality. Deeper studies of selection of rice varieties, practical management,
and processing have implications on quantity and quality of purple rice, and this should
be considered when the consumer’s interest is considered.

Table 1. Thailand’s export quality standard specifications for pigmented rice.

Grade
Entirely Dark or
Almost Entirely

Dark Kernels (%)
Allowed Off

Color Kernels (%)
Other Color
Kernels (%)

Other Type
Kernels (%)

Size of Head Rice
(Part) (mm)

Non-glutinous rice
Prime quality ≥80 ≤20 ≤4.0 ≤1.0 ≥7

Superb quality ≥65 ≤35 ≤4.0 ≤1.0 ≥7
Glutinous rice

Best quality ≥30 ≤70 ≤6 ≤1.0 ≥6.5
Standard quality ≥15–<30 >70–≤ 85 ≤6 ≤1.0 ≥6.5

Source: DFT, 2019.

3. Anthocyanins in Different Plant Parts of Purple Rice
3.1. Variation in Grain Anthocyanin

Anthocyanins are localized in the outer grain layers, the so-called bran fraction, consist-
ing of the pericarp, seed coat, nucellus, and aleurone layer [39]. Some anthocyanin is con-
tinuously distributed throughout the embryo, but it is rarely found in the endosperm [40],
even though its accumulation in the endosperm occurs in the recently engineered purple
rice [41,42]. The majority of grain anthocyanin is found in the pericarp and aleurone layers,
comprising 85% of the whole grain content [43]. A study on the histological properties of
rice confirmed that anthocyanins are mostly concentrated in the pericarp layer, especially in
the dorsal side of the grain [44]. In general, anthocyanin concentration directly results from
synthesis of the pigment responsible for the purple/black color [45]. Many researchers
have demonstrated that rice grains consistently having dark colors usually contain high
amounts of anthocyanin [46–48]. The variability in the visual grain color of the outer
kernel and the colors of anthocyanin extracts of selected purple rice varieties are shown in
Figure 3. We observed special cases such as Hom Nil and Riceberry that have similar color
patterns but differ in how their colors of anthocyanin are extracted. Similarly, a variety
with brown colored grains was classified into the highest anthocyanin group and exhibited
an anthocyanin concentration higher than a fully dark variety [49]. A recent study also
reported that anthocyanins could be combined with secondary structures of rice proteins
by hydrophobic and hydrogen bonds [50]. This is interesting in that grain anthocyanin
variability may depend on many factors such as variety, accumulation form, and location,
all of which could be affected by environmental factors during cultivation practices.
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Anthocyanin occurrence in the grain is very divergent, since most purple rice varieties
are traditional/local rice that reflect differences among regions and growing environments
(glutinous and non-glutinous rice types and upland and lowland rice types) [51,52]. Like-
wise, the majority of the genetic variation being within regions rather than between regions
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was reported in the traditional Philippine pigmented rice, and 589 pigmented rice acces-
sions occur as both indica and japonica types [53]. In Northeastern Thailand, the total
anthocyanin concentration of 30 local glutinous purple rice accessions ranged from 26 to
254 mg/100 g [54]. The latter study also evaluated total anthocyanin concentration among
five glutinous rice varieties from Laos and found a wide range of concentrations, from 61 to
223 mg/100 g [55]. In other studies, a wide divergence in total anthocyanin concentration
from 0 to 144 mg/100 g was found in whole grains of 29 Vietnamese purple rice accessions,
and from 68 to 1730 mg/100 g in the bran of 25 Chinese purple rice varieties [47,49]. A
recent report surveyed 30 glutinous pigmented rice varieties of the Chakhao landrace in
India and found a genotypic diversity ranging from 30 to 276 mg/100 g [56]. Moreover,
developing new varieties for a broad range of environmental adaptations and consumer
purposes has led to a wide anthocyanin distribution. The variation of grain anthocyanin
concentration in various rice varieties based on endosperm rice type according to ecotype,
chemical properties, and quantification method is displayed in Table 2.

Table 2. Total anthocyanin concentration (TAC) and some chemical properties of purple rice varieties across two endosperm
rice types. The ecotype, nature of rice sample, and measurement method are also listed.

Variety Ecotype TAC
(mg /100 g)

Amylose
(%)

Aroma
Property Rice Sample Measurement/Extract Solution Reference

Glutinous Rice
Niaw Dam Pleuk Dam unknown 381 9.7 nd whole grain pH different/acidified methanol [57,58]

Niaw Dam Pleuk Khow lowland 442 8.9 nd whole grain pH different/acidified methanol [57,58]
Kum Doi Saket lowland 119 6.2 A whole grain pH different/ acidified methanol [59,60]

Leum pua upland 212 3.4 A flour pH different/nd [60,61]
Pieisu upland 271 nd nd whole grain pH different/acidified methanol [62]

KHCMU upland 58 nd A whole grain pH different/acidified methanol [62]
Kam Med-dam upland 222 nd nd whole grain pH different/acidified methanol [55]

Kam Leuang-dam upland 150 nd nd whole grain pH different/ acidified methanol [55]
Kalobhat unknown 57 5.4 nd whole grain Colorimetric/acidified methanol [24]
Chakhao lowland 276 6.0 A flour HPLC/acidified methanol [56]

Non-Glutinous Rice
Hom Nil lowland 65 14.2 nd whole grain Colorimetric/distilled water [63]
Riceberry lowland 129 17.5 nd flour pH different/nd [62]

Malinil Surin lowland 75 13.8 nd flour pH different/nd [60]
KJ CMU 107 lowland 12 nd A whole grain pH different/acidified methanol [62]
Mamihunger unknown 34 17.6 nd whole grain colorimetric/ acidified methanol [24]

Italian rice lowland 54 9.9 nd whole grain pH different /acidified methanol [64]
Jatinangor unknown 40 nd nd Whole grain colorimetric/ethanol and citric acid [65]

nd means not detected. A = contains aroma property.

From the literature review, purple rice varieties cultivated in Asian countries are
mostly found as local glutinous endosperm types, which overall have greater anthocyanin
concentration compared to non-glutinous rice types. For example, the report of Pramai
and Jiamyangyeun (2016) showed that eight glutinous rice samples across Thailand ac-
cumulated anthocyanins ranging from 81 to 442 mg/100 g, while a range from 21 to
85 mg/100 g was found among five non-glutinous rice samples [57]. Similarly, anthocyanin
concentrations ranging from 42 to 271 mg/100 g and 12 to 40 mg/100 g were reported in
four glutinous and four non-glutinous rice varieties, respectively [62]. In Indonesian rice,
anthocyanin concentrations of glutinous rice samples ranging from 95 to 202 mg/100 g
were higher than in non-glutinous rice ranging from 66 to 114 mg/100 g [66]. Additionally,
exploring 36 purple rice accessions in Vietnam showed that most varieties classified in
the high-anthocyanin group were glutinous rice [49]. These results suggest that glutinous
purple rice would be representative of rice germplasm as a good source of materials for
breeding programs designed to yield high anthocyanin rice grains. In recent years, a chal-
lenge for breeders has been to develop new varieties of non-glutinous purple rice with high
anthocyanin stability based on selection of glutinous purple rice varieties [67,68]. Although
the difference in anthocyanins between lowland rice and upland rice was not significant
based on this review, several reports have demonstrated the performance of upland rice
as a good source of anthocyanins and nutritional quality [36,69]. According to a recent
review, southeast Asian countries such as Thailand, Laos, Vietnam, Indonesia, and the
Philippines are sources of good purple rice accessions; however, there are few commercial
rice varieties cultivated in these countries. Therefore, a study of genetic variability in local
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varieties related with anthocyanin pigmentation and other desirable characteristics will
provide alternatives for rice farmers. When new varieties have been successfully developed
to be more suitable to the environmental conditions and able to be cultivated in western
countries, these varieties have been found to contain high grain anthocyanin concentrations
(81 to 347 mg/100 g) [31,70].

Anthocyanin profiles have been extensively identified in rice grains, and these have been
complex and divergent. Among the anthocyanins accumulated in rice bran of 25 purple rice
varieties, cyanidin-3-glucoside comprised the highest proportion among all anthocyanins ac-
counting for 82.3%, followed by peonidin-3-glucoside (14.6%), cyanidin-3-galactoside (1.2%),
cyanidin-3-rutinoside (1.0%), cyanidin (0.7%) and peonidin (0.2%) [47]. Jiamyangyuen et al.,
2019 identified cyanidin-diglucoside, cyanidin-3-sambubioside, cyanidin-3-rutinoside, peon-
idin3-rutinoside and pelargonidin-3-glucoside in Thai purple rice flour, but the levels were
quite low [71]. Furthermore, the free and bound extracts showed differences in anthocyanin
profiles; most of the cyanidin-3-glucoside and peonidin 3-glucoside was distributed in free
form, but other anthocyanins such as cyanidin 3-galactoside, delphinidin, and cyanidin
were found only in bound form [72]. A selection of the current data of anthocyanin profiles
in various purple rice varieties is provided in Table 3. Many reports have shown the domi-
nant anthocyanin in the grain was cyanidin-3-glucoside, followed by peonidin-3-glucoside.
For example, the whole grains of cv. Kum Doi Saket showed similar proportions between
the two anthocyanins, whereas rice bran of cv. Hom Nil had higher levels of peonidin-3-
glucoside than cyanidin-3-glucoside [73,74]. Another study also found a higher proportion
of peonidin-3-glucoside in the polished grains of an engineered rice variety (PER-Z#3) [42].
The variability in anthocyanin profiles from these samples may be due to differences in rice
variety, anthocyanin localization, the nature of the sample, the measurement method, or the
growing area. Since different anthocyanin profiles may result in differences in biological
function and stability, the occurrence of each anthocyanin may be a significant trait indicat-
ing the potential application of rice varieties. Cyanidin-3-glucoside isolated from purple
rice had greater ability to inhibit tumor cell growth and combat diabetes complications
compared with peonidin-3-glucoside [75,76], but had a higher loss rate than peonidin-3-
glucoside after being cooked in some rice samples [31]. This suggests that anthocyanin
identification will facilitate understanding of the biological properties and stability of the
anthocyanins in each rice variety. Many studies have determined the quantity and quality
of the anthocyanins, but there is no clear grouping as to function. To date, genetic resources
exhibiting high anthocyanin while demonstrating eating quality should be considered for
specific purposes such as pharmaceutical products and natural colorants.

Table 3. Major anthocyanin species (cyanidin-3-glucoside; C3G and peonidin-3-glucoside; P3G) in
various purple rice varieties.

Variety Rice Sample Concentration (mg/100 g) Ref.
C3G P3G

Kum Doi Saket
CMU 125

whole grain
whole grain

50
200

48
65 [73]

Hom Nil
Riceberry

whole grain
whole grain

133
48

20
7 [74]

Hom Nil
Leum Pua

Bran
bran

926
2277

1422
792 [77]

WC 320 bran 1103 33 [47]
Khao Gam Pah E-Kaw whole grain 88 32 [78]

Artemide whole grain 199 11 [31]
Chakhao whole grain 208 45 [56]
IAC 600 whole grain 130 10 [27]

Heimi 2420 whole grain 111 31 [79]
PER-Z#3

PER-Z#14
polished grain
polished grain

53
27

44
26 [42]
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3.2. Occurrence of Anthocyanin in Vegetative Plant Parts

Anthocyanin in vegetative parts is mainly located in the vacuoles of upper and lower
epidermis cells [80]. The anthocyanin can be visually observed in many parts of the plant,
as the purple pigment is distributed in nodes, internodes, leaf sheaths, leaf blades, ligules,
auricles, culms, and husks (Figure 4). The presence of a purple color in the vegetative
part is a common phenotype in local rice; however, not all genotypes have the purple
coloring in both shoot and grain [37]. A classification of fifteen purple rice varieties
using morphological characters delineated two main groups: group 1 included varieties
presenting purple anthocyanin vegetative tissues, and group 2 showed green or white
characteristics [81]. Similarly, the characterizing by morphological traits of genotypic
variation in anthocyanin in the purple leaf sheath was evaluated among 53 accessions, with
39 accessions possessing a green leaf sheath and 14 accessions possessing a sheath ranging
from light to dark purple [82]. Although anthocyanins in vegetative parts have not been
as often utilized as in the grain, the core roles of anthocyanin as a strong antioxidant to
scavenge reactive oxygen species (ROS) and in tissue maintenance have resulted in the
development of rice varieties with purple leaves [80,83–86].
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As with anthocyanin in rice grains, the anthocyanins distributed in vegetative parts of
purple rice plants depend on rice variety and plant part. The variation in total anthocyanin
concentration has been evaluated among four local purple rice varieties (all varieties with
purple coloration in nearly the whole plant) as ranging from 170 to 210 mg/100 g in leaf
blades and from 67 to 100 mg/100 g in stem + leaf sheath; however, the concentrations
declined with plant age across all four rice varieties [38]. In another variety that presented
purple pigmentation in the leaf sheath, cyanidin-3-glucoside was identified using HPLC as
the dominant anthocyanin (90%) at about 5.5 mg/100 g, while peonidin-3-glucoside was a
minor component (10%) [87]. However, anthocyanin profiles from fully purple leaves in
various rice varieties have been identified as containing much less in comparison to rice
kernels. Moreover, rice husk anthocyanin concentration has been evaluated. Jha et al., 2017
were able to extract total anthocyanins from purple rice husk of cv. Poireton, yielding a
total anthocyanin content of 3.39 mg/100 g [88]. In recent years, anthocyanin profiles have
been characterized, and these have at times shown surprising concentrations. Anthocyanin
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in the purple rice husk accumulated cyanidin-3-glucoside as the major anthocyanin at
up to 280 mg/100 g, while brown and straw-white husks contained none, in contrast
to the concentration of delphinidin 3-rutinoside that was highly accumulated in brown
husks and was higher than in purple husks [89]. In contrast, the anthocyanin profiles
were dissimilar among other varieties and samples. A recent report showed that purple
rice husk of cv. Kum Doi Saket contained malvidin-3-glucoside (71 mg/100 g) as the
main anthocyanin, followed by cyanidin and peonidin-3-glucoside (55–56 mg/100 g),
cyanidin-3-glucoside (32 mg/100 g), and small amounts of delphinidin-3-glucoside and
peonidin (8 mg/100 g) [90]. In another sample of rice variety cv. Kum Doi Saket, cyanidin-
3-glucoside was identified as the main anthocyanin, with a concentration of 196 mg/100 g,
followed by peonidin-3-glucoside (115 mg/100 g) [91]. It has been noted that purple rice
straw and the husk of a purple rice variety with peculiar nutritional properties would be
efficient sources of anthocyanin for yielding both economic and environment benefits, and
thus anthocyanin content should be screened among the various rice varieties.

4. Anthocyanin Biosynthesis Genes in Regulation of Anthocyanin in Rice

Genetic regulation is the first level describing expression of the structural and reg-
ulatory biosynthetic genes at which induction or inhibition of anthocyanin biosynthesis
occurs in plants. Anthocyanin in rice grain has been well described in previous studies.
Structural genes including phenylalanine ammonia lyase (PAL), cinnimate 4-hydroxylase
(C4H), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H),
flavonoid 3’-hydroxylase (F3’H), dihydroflavonol 4-reductase (DFR), and anthocyanidin
synthase (ANS), anthocyanidin synthase (ANS), and UDP-glucosyl transferase (UGT) are
involved in the anthocyanin biosynthesis pathway [92,93]. The transcription levels of
purple rice cv. Chinakuromai observed in the caryopsis during grain filling were related
with the expression level of DFR, which was highest followed by ANS, LAR, CHS and
CHI in order [94]. In addition, Nayeem et al., 2020 recently studied the expression of
eight structural genes in purple rice cv. Navara and showed that the transcription levels
of CHS, CHI, F3H, DFR, LAR and ANS were maximal in the root, while only PAL was
found in the stem [95]. The differences in the expression levels among genes may be
due to the presenting of the various colors occurring in plants throughout the plant life
cycle. However, the different gene expression levels related with anthocyanin occurrence
have barely been studied in various purple rice varieties. Furthermore, the regulatory
genes encoding transcription factors that modulate the expression of the structural genes
have been widely studied in grain pericarp, while only recently have similar studies been
done in the vegetative parts. Anthocyanin in rice grain is regulated by two families of
bHLH genes (Ra1, OsB1, Rb, Ra2 and OsB2), and the R2R3-MYB gene (OsC1) [93,96,97].
Kim et al., 2018 also demonstrated that the high expression levels of OsHY5, OsBBX14
and OsB2 during seed maturation are associated with anthocyanin pigmentation in the
grain [98]. To date, purple rice varieties with purple vegetative parts have seen increased
interest concerning anthocyanin biosynthesis. A candidate regulatory gene, plr4, has been
reported to be involved in pigment accumulation in rice leaves [84]. Hu et al., 2020 demon-
strated that the combined effect of two regulatory genes consisting of the MYB (OsC1) and
bHLH (Rb1 and Rb2) loci resulted in substantial accumulation of cyanidin-3-glucoside and
peonidin-3-glucoside in the leaf sheath [99].

In general, the pigmentation of anthocyanins can be fully functional depending on the
coordination between the structural genes and regulatory genes. It has been found that the
coordinated functioning of three genes comprising two structural genes, OsDFR and ZmC1,
and one regulatory gene, OsB2, was involved in anthocyanin pigmentation in the leaf
sheath [88]. In another study, the expression of a candidate regulatory OsPA gene in mutant
rice resulted in anthocyanin coloration in the apiculus by upregulating the expression of
the anthocyanin regulatory MYB gene (OsC) and the anthocyanin structural genes (OsF3′H,
OsF3′5 ′H, OsDFR, and OsANS) [100]. Recently, Hu et al., 2020 demonstrated that the
combined effect of two regulatory genes, the MYB (OsC1) and bHLH (Rb1 and Rb2) genes,
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resulted in substantial accumulation of cyanidin-3-glucoside and peonidin-3-glucoside
in the leaf sheath [99]. Moreover, anthocyanin pigmentation in purple rice husk has also
been studied, and it has been reported that the expression of the DFR gene is the key
step in the occurrence of cyanidin-3-glucoside, while loss of expression of this gene led to
synthesis of other flavonoid compounds, resulting in a brown color in the husk [89]. To date,
anthocyanin pigmentation in both vegetative parts and grains has not been successfully
achieved. Although Akhter et al., 2019 showed that the collaboration between the structural
genes OsPAL, OsCHS, and OsANS and the transcription factor gene OsMYB55 can influence
anthocyanin pigmentation in the leaf and leaf sheath of mutant purple rice plant, the
anthocyanin coloration in rice pericarp and the yield were significantly affected [101].
Meanwhile, the regulatory genes OsC1 and OsRb were identified as the determinants of
anthocyanin biosynthesis in rice leaves, while neither gene functioned in the pericarp
due to their being tissue-specific regulatory genes in vegetative parts [102]. Similarly, the
structural genes OsF3′H, OsDFR, and OsLDOX are expressed in the vegetative plant parts,
while grain anthocyanin was absent due to inhibition of the regulatory gene [103]. Thus,
further research is required to unravel the mechanisms regulating gene expression in the
vegetative parts as well as in the grain.

5. Genotype × Environment Interactions Controlling Anthocyanin in Rice

The synthesis of anthocyanin in plants is controlled by an interaction between genetic
and environmental factors. However, the optimum environmental conditions for maxi-
mizing anthocyanin accumulation in purple rice have rarely been studied. Water, light,
temperature, and plant nutrients have been reported as environmental factors that affect
anthocyanin accumulation in purple rice. Jaksomsak et al., 2020 showed that growing
purple rice under flooded soil conditions resulted in higher anthocyanin accumulation,
and a strong effect was found in upland rice compared with the lowland type [37]. The
same study also demonstrated low anthocyanin concentration accompanied with grain
discoloration in rice grown in flooded soil in comparison to aerobic soil, and this was
similar in both wetland and upland rice varieties (Figure 5). These results indicated that the
anthocyanin synthesis response to growing conditions in the water regime was indepen-
dent of the rice variety, but it could also be related with the degree of water stress inducing
anthocyanin synthesis.
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Figure 5. The responses of two purple rice varieties, cv. Kum Phayao (lowland rice) and Kum Hom
CMU (upland rice), to flooded and aerobic soil conditions (the total anthocyanin concentrations are
provided in the brackets).

Additionally, stimulation of anthocyanin synthesis can be induced by light and tem-
perature. A study on anthocyanin accumulation in seven purple rice varieties reported that
50% shading level increased total anthocyanin concentration in all rice varieties from one
to nine times higher than without shading, while the grain yield was reduced [104]. Fur-
thermore, light quality affected anthocyanin formation in seedling leaves, as rice seedlings
grown under red + blue LED had higher anthocyanin concentrations compared to seedlings
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grown under individual red or blue lights [105]. Temperature is another important en-
vironmental factor influencing grain anthocyanin synthesis. It has been reported that
growing rice at the ambient temperature (27 ◦C) resulted in higher expression levels of
anthocyanin biosynthetic genes during seed maturation related to the accumulation of
cyanidin, cyanidin-3-glucoside, and peonidin-3-glucoside in purple rice grains, whereas
gene expression was reduced at lower temperatures (21–24 ◦C) [92]. Another study on the
effects of temperature during the grain filling stage and transplanting time using various
rice varieties found that temperatures of 23–24 ◦C and a delayed transplanting time could
increase total anthocyanin concentration and grain yield of purple rice, and that the greatest
increase was observed in the early maturing varieties in comparison to middle and late
maturing varieties [106]. However, the effect of temperature on the total anthocyanin
concentration was not uniform between the leaf sheath and grain pericarp, as induction
of low temperature (16 ◦C) at early tillering stage increased total anthocyanins in the leaf
sheath compared with rice grown under ambient temperature (26–32 ◦C). However, the
low temperature did not affect total anthocyanins in the grain pericarp [87]. In addition
to environmental effects that can enhance anthocyanin accumulation, it is also necessary
to consider their effects on grain yield. It has been reported that mycorrhizal fungi inoc-
ulation and magnesium spraying improved anthocyanin accumulation in rice grain and
resulted in greater plant tolerance to cold and water deficit conditions [87,107]. While
several environmental factors affecting anthocyanin synthesis in purple rice have been
reported, the effect depends on the rice variety. Thus, it is difficult to specify the growing
conditions that would reach the desirable anthocyanin accumulation in purple rice, as
other environmental factors, e.g., soil fertility and nutrient management, also affect its
synthesis and accumulation.

The enhancement of anthocyanin accumulation in purple rice has been achieved
by fertilization. Yamuangmorn et al., 2018 reported that nitrogen fertilizer application
increased anthocyanin in the leaf blade and stem + leaf sheath among four purple rice
varieties. However, this did not significantly increase anthocyanin in the grain [38]. This
illustrates that the biosynthesis pathway and accumulation mechanisms of anthocyanin
could differ between the vegetative and reproductive organs; it would be interesting to
investigate this point in future studies. In a recent report, the addition of mineral ele-
ments, especially calcium, strongly increased the total grain anthocyanin concentration by
three-fold compared to the control, while selenium effectively increased anthocyanin in the
leaf [108]. Previously, rice grain anthocyanin was induced by applying ZnO nanoparticles
at 200 mg/L and was accompanied by an increase in enzyme antioxidant activity [109].
Moreover, supplementing the media with sucrose and nitrogen has been shown to increase
flavonoid biosynthesis gene expression levels, resulting in accumulation of cyanidin and
delphinidin in the rice callus. However, this effect needs to be confirmed in rice grain [110].
Although there are some studies reporting the enhancement of anthocyanin via manipu-
lation of environmental factors, the responses of different experiments have been varied.
Therefore, the study of interaction effects between rice variety and growing conditions on
anthocyanin accumulation in purple rice will provide the necessary information on the
selection of rice variety with appropriate growing condition to stabilize high anthocyanin
content for improving plant and human health.

6. Stability of Grain Anthocyanin in Purple Rice during Post-Harvest Processing

Purple rice is harvested at maturity and is stored in the available conditions before
processing for consumers. Post-harvest processing usually affects rice grain quality in both
physical and chemical properties. Among many factors, temperature is critical for antho-
cyanin stability, as thermal conditions can cause de-glycosylation of anthocyanin molecules
resulting in the loss of the B-ring and transformation to a colorless coumarin glucoside
derivative [111]. Thermal drying is one method used to reduce moisture accumulation and
the resulting anthocyanin degradation. Lang et al., 2020 reported that drying temperature
increased degraded anthocyanin concentration, especially when the temperature reached
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60 ◦C and above [112]. The loss of 50% of cyanidin-3-glucoside has been reported after hot
air drying, but it has been established that drying with far infrared radiation can increase
the anthocyanin content up to threefold, a result that can be explained by the effect of
grain alerting leading to better yield extraction by thermal processes [113]. Thus, the
effect requires further work to identify the physical and chemical reactions after treatment
with the radiation, as alerting may not be sufficiently repeatable. In addition, purple rice
anthocyanins were examined under different storage temperatures of 4 ◦C and room tem-
perature, but no significant effect was obtained [114]. This result was in accordance with
black rice grains stored at 16, 24, 32 and 40 ◦C for six months, where there was no significant
difference in grain anthocyanins reduction [115]. In contrast, storage of brown rice grains
in which the husk was removed and vacuum packaging under nitrogen-atmosphere has
been shown to improve the reduction of anthocyanins during storage [112,114,116].

Cooking strongly affects grain anthocyanins [71,117]. In the laboratory, cooking
purple rice in an autoclave resulted in a 56% reduction of anthocyanins [118]. However,
the decreased content of anthocyanin via cooking can be avoided by using alternative
methods. Using an electric rice cooker retained anthocyanins in glutinous rice better than
using the pressure-cooker method [62]. Microwave cooking conserved two- to three-fold
higher anthocyanin content in glutinous and non-glutinous rice in comparison to steam
cooking [119]. For Italian purple rice, no anthocyanin reduction was obtained after cooking
using either a rice cooker or a water bath [120]. Similarly, cooking with risotto showed
stable cyanidin-3-glucoside content [31]. In addition to the thermal effect on anthocyanin
reduction, anthocyanins are directly affected by soaking in water and increasing the soaking
time compared to total cooking time. Cooking without soaking and/or a reduced soaking
time prevented anthocyanins from leaching into the water [62]. Likewise, cooking by
boiling with a low amount of water has been reported as an effective method of preserving
anthocyanins; the effect resulted from the decrease in boiling time [121]. Thus, since the rice
cooking methods are based on cultural practices according to rice type and the consumer’s
taste, the maintenance of anthocyanins via thermal cooking is influenced by many factors.
The most appropriate method should allow purple rice cooked grains to retain the highest
anthocyanins content while yielding a desired taste.

Roasting rice grain is a traditional process performed on well-done cooked rice to
improve aroma, flavor, and taste. However, grain anthocyanin stability is affected by
roasting. A reduction of purple rice anthocyanins was obtained after microwave roast-
ing [122]. Meanwhile, roasting at 100 ◦C for 20 min slightly increased anthocyanin content,
but a reduction was observed in roasted grains at higher temperatures and longer roast-
ing times [123]. In addition, other rice processing practices in the food industry such as
drum drying, and extrusion could lead to anthocyanin loss [124]. From the literature
review, every step-in post-harvest processing related to thermal temperature affected grain
anthocyanin stability, and thus there are many factors that influence the final intake of
anthocyanins among consumers.

7. Utilization of Anthocyanin in Purple Rice as Functional Compounds

The unique antioxidant properties of anthocyanins have led to various applications
in areas from health foods to beauty products. Recently, the physical and chemical func-
tions of anthocyanins extracted from rice have been used as biosensors and natural dyes.
Anthocyanin applications can be divided into functional and other purposes (Table 4).
Thus, anthocyanin stability is needed to investigate processes related with temperature,
pH, solvent, and pretreatment [125–127]. Furthermore, advanced techniques such as mi-
croencapsulation that ensure minimal anthocyanin degradation in food products as well as
the human digestive tract have been intensively investigated [17,18,128,129].
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Table 4. Different applications of purple rice anthocyanins in functional food and other purposes.

Purple Rice Anthocyanin Application Ref.

Functional Food

Bread made from anthocyanin-rich purple rice improved postprandial plasma glucose and
antioxidant status in healthy subjects [130]

Anthocyanin-rich purple rice flour can be used as a gluten-free ingredient in bread providing FRAP
antioxidant activity [131]

Bread fortified with 1–4% of anthocyanin-rich rice powder has a low digestion rate
that provides health benefits [132]

Anthocyanin-rich rice beverage added with xanthan gum has high thermal stability [133]
Germinated purple rice that retains anthocyanins has good sensory characteristics [134]

Crispy rice bar made purple rice provides high anthocyanin [135]
Fresh germinated purple rice noodles provide total anthocyanin and DPPH

and FRAP antioxidant capacity [136]

15% of anthocyanin-rich purple rice extract supplemented pasta contains high anthocyanins and
antioxidant capacity (DPPH and FRAP) [137]

Purple rice sprouts present high total anthocyanin and could be
developed for natural health products [138]

0.25% of anthocyanin-rice purple rice extract supplemented yogurt suppresses postprandial glucose
level and improved plasma antioxidant capacity in healthy volunteers [19]

0.06% of purple rice anthocyanin extract inhibited lipid and protein oxidation in
whey-protein-stabilized food emulsions [21]

Other Purposes

Anthocyanin extract used in cream exhibited in vitro antioxidant activity and in vivo anti-ageing
activity on human skin [139]

Rice bran extracts containing anthocyanins have been investigated as ingredients in the cosmetic
formulations that exhibit antioxidant capacity [140]

Purple rice anthocyanin is used in the colorimetric sensing of Al+3 [141]
Packaging film based on oxidized chitin nanocrystals/gelatin incorporating purple rice bran

anthocyanins has potential in freshness monitoring [142]

3% of purple rice bran anthocyanins added in oxidized-chitin nanocrystals/chitosan matrix are able
to monitor the spoiling of seafoods [143]

1% of purple rice anthocyanins incorporated into chitosan packing films can
be used to monitor pork spoilage [144]

Anthocyanin dye increased the performance of dye-sensitized solar cells [145]

8. Significant Roles of Anthocyanin from Purple Rice in Human Health

Anthocyanin compounds are mediators of ROS, and as such are a unique charac-
teristic of stressed plants. Therefore, most literature reviews tend to focus on the roles
of anthocyanins in enhancing tolerance to abiotic and biotic stresses. Zaidi et al., 2019
showed that high temperature during grain development resulted in declines in grain
weight and kernel starch content, and a mutant rice plant displaying grain anthocyanin
production was much less damaged by high temperatures compared to wild-type plants
without grain anthocyanin pigmentation [146]. In addition, anthocyanin has been used to
distinguish drought-responsive traits. Tiwari et al., 2021 showed anthocyanin accumulation
was induced in a drought-tolerant variety, and this was related with the increase in the tran-
scription level of regulatory genes involved in antioxidative mechanisms [147]. Similarly, a
previous study found that the purple rice variety that can produce anthocyanin in leaves at
higher levels under drought conditions could alleviate the degree of drought damage [148].
Regarding the study of metabolite compounds of various purple rice varieties grown under
dry-land cultivation, it has been demonstrated that anthocyanins could maintain energy
metabolism, carbon assimilation, and the transduction of stress signals to support starch
accumulation [149]. This accords with a previous study by Chunthaburee et al., 2016 who
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showed that purple rice plants having a deep purple leaf color were less affected by salt
stress than plants with a greenish purple leaf color due to higher anthocyanin concentration
as well as higher levels of anthocyanin biosynthesis gene expression [150]. Besides protec-
tive effects during plant growth, anthocyanins may also play important roles in controlling
pests and maintaining plant growth. Several recent studies have reported that the increased
expression levels of structural anthocyanin genes related with anthocyanin in rice plants
are believed to be significant traits for enhancement of rice resistance to the white-backed
planthopper [151,152]. A strong positive relationship between anthocyanin concentration
and seedling vigor in rice has been also reported [153]. These studies indicate that antho-
cyanins are required for rice plants to survive in stressful environments. However, the
case of purple rice varieties having natural anthocyanin synthesis in vegetative organs has
not yet been compared with greenish plants regarding the alleviation of growth resulting
from increased anthocyanin synthesis. This would provide strong evidence to support the
essential roles of anthocyanins in purple rice plants and thus should be considered and
evaluated in various environments.

While it is well documented that anthocyanin is essential in anti-oxidative functions
of plants, numerous studies have suggested that anthocyanins from purple rice have other
biological activities, and these may be positively associated with human health. The ben-
efits of purple rice anthocyanins have been tested via both in vitro and in vivo studies.
Recently, in vitro studies have reported that anthocyanins reduce the risk of obesity by
lowering glucose uptake and inhibiting adipocyte formation and proliferation [4]. Similarly,
purple rice extract affected reduction of carbohydrate and lipid digestion and absorption
in Caco-2 cells [154]. In addition, the purple rice anthocyanins have been shown to exhibit
anti-inflammatory effects in IL-1β-stimulated human chondrocytes as well as exert an
anti-metastatic effect on HER-2-positive breast cancer cells [1,6]. Furthermore, anthocyanin
from purple rice has been reported as an efficient compound in pharmaceutical production.
The cosmetic industry has recognized the value of inhibition of ROS generation in anti-
aging products, where purple rice anthocyanins can be used as cosmetic ingredients for
preventing skin photoaging [155,156]. Recently, food bioactive compounds have been high-
lighted for supporting the immune system against COVID-19 [157]. Likewise, anthocyanins
have been recommended compounds for significant antiviral enhancement, and they have
recently been reported to act against the protease enzymes of COVID-19 [2,3,158]. The
established evidence has clearly confirmed the positive effects of purple rice anthocyanins,
while studies using in vivo models have been increasingly employed to examine the effects
on various diseases.

In the in vivo studies, anti-hypoglycemic and anti-osteoporosis effects of purified
cyanidin-3-glucoside have been demonstrated in the kidneys; the effects are produced by
reducing blood glucose and by suppressing oxidative stress and inflammation [159]. Addi-
tionally, anthocyanin in rice starch has inhibited the activities of starch digestive enzymes
resulting in the reduction of blood glucose levels in mice, thereby positively affecting dia-
betes mellitus [160]. A significant body of evidence has supported the preventive efficacy
of cyanidin-3-glucoside isolated from purple rice in suppression of allergic airway inflam-
mation in lung tissues [161]. The alleviation of the symptoms and inflammation of colitis
was demonstrated in dietary purple rice anthocyanin-rich extracts [162]. Additionally, the
extracted anthocyanin from purple rice grain has been suggested to reduce gastroduode-
nal symptoms caused by microbial infection as well as improve cholesterol metabolism
and gut microbiota dysbiosis in high-fat and high cholesterol diet groups [163,164]. Re-
cently, the benefits of purple rice rich in anthocyanins in boosting immune responses have
been shown to function by increasing the numbers of immune cells such as white blood
cells, lymphocytes, and neutrophils [165]. A previous study indicated that the risk of
leukemia was reduced after intake of purple rice anthocyanin by increasing the popula-
tion of white blood cells and promoting macrophage phagocytic activity [166]. Moreover,
the anti-inflammatory properties of anthocyanin extracted from purple rice have been
investigated in the treatments of wound healing of psoriasis and oral mucositis in an-
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imal models [167,168]. Most recently, anthocyanins isolated from rice husk have been
demonstrated to be novel anticarcinogenic compounds in the liver due to their cancer
chemo-preventive properties [90].

According to reports concerning the role of anthocyanins in the prevention and treat-
ment of disease, the consumption of anthocyanin from purple rice has been confirmed
to benefit human health. This includes research that identified consumption of bread
made from anthocyanin-rich purple rice by healthy participants resulting in lower post-
prandial plasma glucose concentration and postprandial plasma insulin compared with
consumption of white rice. Meanwhile, anthocyanin consumption also improved the
antioxidant status of the plasma [130]. However, the effects of anthocyanins on health
have not been well studied in humans, suggesting that the study of suitable anthocyanin
dosage is a serious topic that needs to be examined in the future. The above literature
review found that recommended purple rice anthocyanin extract dosages estimated from
animal models had a wide range that may be due to the differences in sample extracts,
target diseases, and participants. For example, dosages from 95 to 190 mg per day for a
person weighing 60 kg were recommended for diabetes diet control [159]. A supplement
with 400 mg of purified cyanidin-3-glucoside per day for a 60 kg adult effectively inhibited
airway inflammation [161]. The dose of 100 mg/kg of body weight per day of purple
rice anthocyanin-rich extract was suggested in the treatment of inflammatory bowel dis-
eases [162], while the daily intake of 1000 mg/kg of body weight had more effectiveness on
immunity enhancement when compared with 100 or 300 mg/kg [165]. In addition, Wang
et al., 2020 reported that 5.84 mg/kg body weight/day (equal to 350 mg/day for a person
weighing 60 kg) of purple rice anthocyanin extract could protect against liver steatosis in
high-fat and high cholesterol diet groups [164]. Although the daily intake of purple rice
anthocyanins can be estimated from the supplements in animal studies, it has not yet been
shown in human models to be related with bioavailability and metabolites of anthocyanins.
The appropriate dosage of the extracted anthocyanins from purple rice should be carefully
evaluated using the covariates of gender, age, weight, and health condition; otherwise, the
whole purple rice grain can be consumed to avoid overdoses.

9. Conclusions

Purple rice rich in anthocyanins is widely consumed directly as a food and indirectly as
an ingredient in alternative products. The consumer’s demand for healthy foods is driving
purple rice to be more visible and acceptable as a potential natural source of anthocyanin.
The benefits of anthocyanin in human health have been intensively investigated via both
in vivo and in vitro models of chronic diseases. The conclusions obtained from this review
article confirm the results of recent research that has focused on the effects of anthocyanin
on non-chronic diseases. This knowledge can be used as a guide for how anthocyanin-rich
purple rice affects human health. However, it is necessary to consider the bioavailability
and metabolites of anthocyanins in human physiology. This would provide daily intake
amounts of anthocyanin according to gender, age, weight, and health condition. In addition,
the strong anti-inflammatory effect and antioxidant activity of anthocyanins have resulted
in the production of novel bioactive compounds in non-food goods such as cosmetics and
skin care products. However, the intake of anthocyanins by direct grain and the utilized
form should be evaluated for both farmers and entrepreneurs. At the same time, it will be
interesting to investigate other sources of anthocyanins from the by-products of purple rice
processing such as defatted rice bran, husk, and straw, as these can add the value to less
economically important biomaterials as functional ingredients and natural dyes. Therefore,
the performance of purple rice cultivation and optimal post-harvest processing related to
anthocyanin’s yield and properties should be involved in determining the final uses for
maximizing the potential of anthocyanins from purple rice.
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