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Abstract: Although smoke-isolated karrikins (KAR1) could regulate secondary metabolism in
medicinal plants, the signal transduction mechanism has not been reported. This study highlights
the influence of KAR1 on tanshinone I (T-I) production in Salvia miltiorrhiza and the involved signal
molecules. Results showed KAR1-induced generation of nitric oxide (NO), jasmonic acid (JA) and T-I
in S. miltiorrhiza hairy root. KAR1-induced increase of T-I was suppressed by NO-specific scavenger
(cPTIO) and NOS inhibitors (PBITU); JA synthesis inhibitor (SHAM) and JA synthesis inhibitor
(PrGall), which indicated that NO and JA play essential roles in KAR1-induced T-I. NO inhibitors
inhibited KAR1-induced generation of NO and JA, suggesting NO was located upstream of JA signal
pathway. NO-induced T-I production was inhibited by SHAM and PrGall, implying JA participated
in transmitting signal NO to T-I accumulation. In other words, NO mediated the KAR1-induced T-I
production through a JA-dependent signaling pathway. The results helped us understand the signal
transduction mechanism involved in KAR1-induced T-I production and provided helpful information
for the production of S. miltiorrhiza hairy root.
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1. Introduction

Smoke generating from burning plant material has been known to contain karrikins
(KAR1)—chemicals that are powerful germination promoters. KAR1 plays a major role in natural
systems as it is highly active at very low concentrations, shows great potential in agriculture [1] and is
promising to be a new plant growth regulator [2–8]. Until now the effects and potential mechanisms of
KAR1 on the accumulation of secondary metabolite in medicinal plants has not been reported.

Salvia miltiorrhiza, commonly known as ‘Danshen’ in Chinese, is one of the most renowned
medicinal herbs in China. Its roots and rhizomes have been widely used to remove blood stasis and to
eliminate carbuncle throughout Chinese history [9]. In recent years, Danshen has been widely used in
medicine, food and cosmetics in European and American markets, which has increased the demand of
S. miltiorrhiza [10]. The most important active constituents, tanshinones, are terpenoids. Terpenoids are
the largest class of plant secondary metabolites. The biosynthesis of tanshinones can be traced to two
distinct routes, the mevalonate pathway (MVA pathway) and the 2-C-methyl-D-erythritol-4-phosphate
pathway (MEP pathway), in which a universal five-carbon isoprene precursor, ispentenyldiphosphate
(IPP) is used as building block. Tanshinone-type constituents such as tanshinone I (T-I) are considered
as major pharmacologically active components and important indexes for measuring the quality of
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Danshen [11,12]. Now, the supply of S. miltiorrhiza to the market mostly relies on field cultivation, so
it is vital to take effective measures to improve the content of T-I in the cultivation. In our previous
study, it has been found that treatments of plant-derived smoke-water (SW) could markedly increase
the content of T-I in S. miltiorrhiza. However, we are not aware of the underlying mechanisms of KAR1

on the accumulation of T-I in S. miltiorrhiza.
The activation of endogenous signaling pathways has been well-documented to play key roles

in regulating accumulation of secondary metabolites in plants [13,14]. Signaling molecules, such as
nitric oxide (NO), jasmonic acid (JA) and the ‘cross-talk’ among them have gained great attention [15].
NO has emerged as a key signal role that exerts various signaling functions in the mechanism of
multiple biological functions in plants [6,16–19]. JA plays an essential role in secondary metabolism in
medicinal plants [20,21]. However, there is no information describing how these signaling molecules
related to the KAR1-induced accumulation of tanshinones in S. miltiorrhiza. The hairy root culture
system has been considered as a valuable tool for signal transduction research and a platform for mass
production of bioactive components [11,12,22]. Biotic elicitors (yeast extracts), abiotic elicitors (silver
ion, La) and plant signal material (JA) have been widely used in enhancing tanshinones production in
S. miltiorrhiza hairy root [23–25]. JA increased the accumulation of tanshinone, about 5.8 times that of
the control, and also up-regulated the expressions of most investigated genes in S. miltiorrhiza hairy
root [26]. JA participated in yeast extracts-induced generation of tanshinones in S. miltiorrhiza [11]. This
study aimed to investigate the roles of JA and NO and their ‘cross-talk’ in KAR1-caused generation
of T-I in S. miltiorrhiza, which would help us preliminarily understand the mechanisms involved in
KAR1-induced T-I production in S. miltiorrhiza.

2. Results and Discussion

2.1. KAR1-Induced Increasing of T-I in S. miltiorrhiza Hairy Root

S. miltiorrhiza hairy root was treated with and without KAR1 (control) to evaluate the influence
of KAR1 on the generation of T-I. The effects of KAR1 on the content of T-I in S. miltiorrhiza were
present in Figure 1. Treatment with KAR1 improved the content of T-I (205.13 mg/g) compared to
the control (176.84 mg/g) at 24 h after KAR1 treatment. There is little literature on the influence of
KAR1 on the production of secondary metabolite in medicinal plants. Aremu et al. [27] reported
that treating Tulbaghia ludwigiana with smoke water caused a significant increase in the content of
flavonoids compared to the control. Soós et al. [28] demonstrated that smoke water could upregulate
the expression of genes and promote biosynthesis of phenolic compounds. Data obtained from this
study indicated that KAR1 could enhance the content of T-I in S. miltiorrhiza, which implied that using
KAR1 for enhancing the production of tanshinones has significant scientific and industrial implications
in hairy root production.
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Figure 1. Effects of karrikins on the accumulation of tanshinone I in S. miltiorrhiza hairy root. Data are
means of three replicates ± SD. Different letters indicate significantly different values according to
one-way ANOVA followed by Tukey’s test (p < 0.05).

2.2. Burst of NO and JA Induced by KAR1

The contents of NO and JA significantly fluctuated in S. miltiorrhiza treated with KAR1 compared
to the control. It has not been found that the levels of NO and JA in the control show significant
changes, indicating that the increase of NO and JA is not owing to development-dependent changes.
As shown in Figure 2, NO content was improved significantly with treatment of KAR1, reaching
25.95% more than the control by 6 h (p < 0.05), 30.69% more by 12 h (p < 0.05) and 34.03% more by 48 h
(p < 0.05) respectively. As displayed in Figure 3, JA levels in KAR1-pretreated hairy root displayed a
time dependent increase, reaching the peak at 1.41-fold of control levels at 12 h after treatment (p < 0.05)
and then decreased gradually but remained significantly higher (p < 0.05) than that of the control. A
KAR1-caused burst of JA occurred later than generation of NO. It has been reported that NO and JA
participated in the biosynthesis of matrine, and synergistic action of NO and JA in accumulation of
matrine might be in virtue of the mutually amplifying reaction between NO and JA [29]. Previous
studies have shown NO and Put (putrescine) are upstream signals that regulate ginsenoside synthesis
during the adventitious roots culture of Panax quinquefolius [10].
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Figure 2. Time courses of NO level of S. miltiorrhiza hairy roots. The roots treated with KAR1 were
harvested at determined time points. NO contents of the root were then determined. Data are means
of three replicates ± SD. Different letters indicate significantly different values according to one-way
ANOVA followed by Tukey’s test (p < 0.05).
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Figure 3. Time courses of jasmonic acid level of S. miltiorrhiza hairy root. The roots treated with KAR1

were harvested at determined time points. JA contents of the root were then determined. Data are
means of three replicates ± SD. Different letters indicate significantly different values according to
one-way ANOVA followed by Tukey’s test (p < 0.05).

NO played a pivotal role in the transcriptional regulation of genes related to the phenylpropanoid
biosynthetic pathway in Arabidopsis and maize. It improved the expression of transcription
factors encoding genes such as ZmP, HY5 and MYB12 and the content of flavonoid [22]. Ren
and Dai [16] demonstrated NO-regulated external inducer-induced generation of volatile oil in
Atractylodes lancea. It has been investigated that JA acted as a vital signal molecule that regulated
secondary metabolism and defense response in plants. Xu et al. [30] identified an important induction
effect of JA in heat-shock-induced sesquiterpene production in Aquilaria sinensis. Our results indicated
that KAR1-induced generation of NO and JA occurred earlier than the accumulation of T-I. It is
hypothesized that JA and NO may act as signal molecules in KAR1-induced generation of T-I in
S. miltiorrhiza. Furthermore KAR1-induced NO generation occurred earlier than JA.

2.3. JA Acted as a Downstream Signal of NO Pathway Induced by KAR1

Although a burst of the two signal molecules suggests defensive reactions of the hairy root in
response to KAR1, it is still uncertain about their possible upstream and downstream relationships.
Thus, the influence of PBITU and cPITO on KAR1-caused JA generation and SHAM and PrGall on
KAR1-induced NO have been investigated. Our test displayed that cPITO and PBITU significantly
inhibited the burst of JA induced by KAR1 (p < 0.05, Figure 4), however, SHAM and PrGall have not
been found to severely affect the generation of NO (Figure 5). It is not difficult to see that KAR1-induced
NO generation located in upstream of JA biosynthesis.
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Figure 4. Effects of inhibitors on KAR1-induced JA accumulation in S. miltiorrhiza hairy root.
S. miltiorrhiza hairy root treated with KAR1, and various inhibitors were harvested at 12 h after
KAR1 and NO contents were determined. Inhibitors were pretreated 1 h before treatment of KAR1. The
control received vehicle solvent only. Data are means of three replicates ± SD. Different letters indicate
significantly different values according to one-way ANOVA followed by Tukey’s test (p < 0.05).
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Figure 5. Effects of inhibitors on KAR1-induced NO generation in S. miltiorrhiza hairy root.
S. miltiorrhiza hairy root treated with KAR1, and various inhibitors were harvested at 12 h after
KAR1 and JA contents were determined. Inhibitors were pretreated 1 h before treatment of KAR1. The
control received vehicle solvent only. Data are means of three replicates ± SD. Different letters indicate
significantly different values according to one-way ANOVA followed by Tukey’s test (p < 0.05).

2.4. Dependence of KAR1-Stimulated T-I Production on NO Accumulation as well as JA production

It has been exhibited in our experiments that NO generation and production of JA were early
events in hairy root of S. miltiorrhiza responding to KAR1. Whilst little information about whether
NO and JA participated in KAR1-induced accumulation of T-I has been known. So we investigated
the influence of scavengers and inhibitors of JA and NO on production of T-I induced by KAR1. As
displayed in Figure 6, cPTIO and PBITU significantly (p < 0.05) suppressed the increase of T-I induced
by KAR1, suggesting that KAR1-induced accumulation of T-I through NO pathway. Treatments of
SHAM and PrGall induced a decline in T-I level, indicating that JA plays a signal part in KAR1-induced
increase of T-I. These results were verified by the finding that the suppression of inhibitors of JA and
NO on increase of T-I induced by KAR1 were turned back by treatments of JAMe and SNP (Figure 4).
Treatments of NO donor SNP significantly improved the content of T-I, which was evaluated as much
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as 92.70% of that of KAR1 response. SNP-stimulated increasing of T-I was significantly suppressed
by SHAM and PrGall (p < 0.05). Production of T-I in S. miltiorrhiza was stimulated by treatment of
JAMe, and it has not been inhibited by PBITU or cPITO. These results displayed that NO-triggered
T-I generation depend on JA pathway. This conclusion was further supported by the finding that
suppression of SHAM and PrGall on SNP-induced T-I production is relieved by treatment of JAMe
(Figure 6).
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Figure 6. Effects of inhibitors on KAR1-induced T-I production of S. miltiorrhiza hairy root. The root
treated with KAR1 of, and inhibitors were harvested at 24 h after KAR1 and T-I production was then
determined. Inhibitors were pretreated 1 h before KAR1. The control received vehicle solvent only. Data
are means of three replicates ± SD. Different letters indicate significantly different values according to
one-way ANOVA followed by Tukey’s test (p < 0.05).

3. Materials and Methods

3.1. Hairy Root Culture and Experimental Design

S. miltiorrhiza hairy root culture was established by infecting the leaf with Agrobacterium rhizogenes
bacterium (ACCC10060). It was incubated in 6, 7-V medium, which contained sucrose of 30 g/L.
Experiments in this study were carried out in 250-mL flasks on an orbital shaker running at 120 rpm
and 25 ◦C in the dark [31].

After 18 days of culture, KAR1, signal molecular and scavengers were added into the medium and
the samples were then allowed to continue culturing for additional days. The content of tanshinone
I was determined until sampling for evaluation at adaptation time point. No elicitors were added
to the control cultures. Chemical reagents used in the experiment were bought from Sigma Co.
(St. Louis, MO, USA), including NO donor sodium nitroprusside (SNP), NO-specific scavenger
2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), nitric oxide synthase
(NOS) inhibitors, S,S′-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea (PBITU). Jasmonic acid methyl
ester (JAMe), JA synthesis inhibitor salicylhydroxamic acid (SHAM) and JA synthesis inhibitor
n-propylgallate (PrGall). Chemical reagent, which was dissolved in water or 0.2% dimethyl sulfoxide
solution, was used in hair roots 36 h before treatments of KAR1-or signal molecules. Each treatment
consisted of 10 replicates, and all treatments were repeated three times.
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3.2. Preparation of KAR1 Solution

Smoke water was obtained with the method described by Light et al. [32]. Briefly, dry branches
of Crataegus pinnatifida and Magnolia denudata were burned slowly with smoke but no flame, and the
smoke was taken through 500 mL distilled water for 45 min. KAR1 was isolated and identified from
smoke water with the method of Van Staden et al. [3] and 10−9 M was used in the experiment.

3.3. HPLC Analysis of T-I

The content of T-I in hairy root of S. miltiorrhiza was analyzed based on the methods of
Liang et al. [33]. An oven-dried sample (0.2 g) was pulverized with a mortar and pestle, and extracted
with 20 mL 70% methanol under ultrasonic treatment for 1 h. The resulting mixture was centrifuged at
8000 r/min for 20 min and filtered through a 0.22 µm syringe filters before high performance liquid
chromatography (HPLC) analysis. The content of T-I was analyzed by HPLC on Agilent-1260 apparatus
equipped (Palo Alto, CA, USA) with a C18 column (4.6 mm× 250 mm, 5 µm particle size), and the flow
rate was 1 mL/min with the detection wavelength at 275 nm. The working temperature of column was
kept at 30 ◦C and the sample injection volume was 20 µL. Separation was achieved by elution using a
linear gradient with solvent-B (acetonitrile) and solvent-A (0.2%-methanoic acid-ammonium). The
gradient was as follows: 0–20 min, 20–40% B; 20–21 min, 40–80% B; 21–40 min, 80–90% B; 40–45 min,
90–20% B.

3.4. Determination of NO

The content of NO was estimated in S. miltiorrhiza hairy root using the method of Li et al. [34]
with slight modification. According to the principle of the conversion of oxyhemoglobin
(HbO2) to methemoglobin (MetHb), the content of NO was determined by spectrophotometry
(Shanghai Spectrum Instrument Co. Ltd., China) at 401 and 421 nm. NO accumulation in
hairy root was labeled with a specific fluorescent probe of DAF-2DA (4-amino-5-methylamino-2′,
7′-difluorofluorescein diacetate).

3.5. Measurement of JA

The content of JA in S. miltiorrhiza hairy root was determined by the method described in the
instruction manual of kit (Shanghai Enzyme Biotechnology Co., Ltd., Shanghai, China). Briefly, 4.0 mL
of phosphate buffer was added to 1.0 g of hairy root; the mixture was uniformly ground in a mortar on
an ice plate; and the homogenate was centrifuged at 2800 r/min for 20 min at 4 ◦C. The supernatant
was obtained for the JA content assays. The absorbance was read at 450 nm.

3.6. Statistical analysis

ANOVA with SPSS software (version 18.0, SPSS, Inc., Chicago, IL, USA) was used analyze all data
and statistical differences among treatments was based on one-way analysis of variance (ANOVA) and
a significant difference was concluded at a level of p < 0.05.

4. Conclusions

In summary, the results from this work revealed KAR1 improved the production of T-I by
triggering the biosynthesis of endogenous NO and JA in hairy root of Salvia miltiorrhiza. Furthermore,
NO regulates the KAR1-induced T-I production through a JA-dependent signaling pathway. Together,
the results suggest that KAR1 may be used as a new practical approach to improve the T-I accumulation
in S. miltiorrhiza by modulating NO and JA levels. This information will help us better understand
the underlying mechanism of KAR1-regulating secondary metabolism. Furthermore, it also suggests
strategies to improve the quality of medicinal herbs. Whether these are other downstream molecules
participating in JA signal transduction leading to increase of T-I in Salvia miltiorrhiza and their
relationships with JA still remains unrevealed. Therefore, it is apparent that we are only at the
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early stage in understanding the signal transduction mechanism in S. miltiorrhiza. Moreover, this
means that molecular biology would be used to provide molecular evidence for revealing the signal
transduction mechanism in KAR1-regulated secondary metabolism in medicinal plants.
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