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A B S T R A C T

Fluorodeoxyglucose positron emission tomography (FDG-PET) imaging based 3D topographic brain glucose
metabolism patterns from normal controls (NC) and individuals with dementia of Alzheimer's type (DAT) are
used to train a novel multi-scale ensemble classification model. This ensemble model outputs a FDG-PET DAT
score (FPDS) between 0 and 1 denoting the probability of a subject to be clinically diagnosed with DAT based on
their metabolism profile. A novel 7 group image stratification scheme is devised that groups images not only
based on their associated clinical diagnosis but also on past and future trajectories of the clinical diagnoses,
yielding a more continuous representation of the different stages of DAT spectrum that mimics a real-world
clinical setting. The potential for using FPDS as a DAT biomarker was validated on a large number of FDG-PET
images (N=2984) obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database taken across
the proposed stratification, and a good classification AUC (area under the curve) of 0.78 was achieved in dis-
tinguishing between images belonging to subjects on a DAT trajectory and those images taken from subjects not
progressing to a DAT diagnosis. Further, the FPDS biomarker achieved state-of-the-art performance on the mild
cognitive impairment (MCI) to DAT conversion prediction task with an AUC of 0.81, 0.80, 0.77 for the 2, 3,
5 years to conversion windows respectively.

1. Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder char-
acterized by the presence of AD pathology (ADP) such as aberrant de-
position of amyloid beta (Aβ) proteins, and the appearance of neuro-
fibrillary tangles of tau proteins. The initial symptom of AD is cognitive
impairment notably in the memory domain, that gradually involves
other domains leading to a clinical diagnosis of dementia of Alzheimer's
type (DAT). Patients with DAT progressively succumb to severe stages
of dementia, requiring complete assistance for daily activities. DAT is
the most common form of dementia, affecting 1 in 9 people over the age
of 65 years (Alzheimer's Association, 2015) and as many as 1 in 3
people over the age of 85 (Hebert et al., 2013). As of 2015, there were
an estimated 46.8 million dementia afflicted growing to reach 131.5

million in 2050 (Prince et al., 2016), projecting a very sizeable burden
on healthcare systems and caregivers worldwide. This impending
public health crisis due to rising DAT cases has prompted drug-devel-
opment efforts to find treatments for AD that can reduce the severity of
ADP or remove it altogether (Cummings et al., 2014; Godyń et al.,
2016). However, the success of such treatments ultimately depends on
the ability to diagnose DAT as early as possible before irreversible brain
damage occurs. Therefore, in recent years there has been a considerable
push towards developing robust biomarkers useful for diagnosing DAT
in clinical practice (Weiner et al., 2017).

Fluorodeoxyglucose positron emission tomography (FDG-PET) is a
minimally invasive neuroimaging technique to quantify the glucose
metabolism in the brain which indirectly measures the underlying
neuronal activity (Mosconi et al., 2010). As metabolic disruptions are
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hypothesized to precede the appearance of cognitive symptoms in AD
(Jack et al., 2013), FDG-PET imaging presents itself as an attractive tool
for investigating the metabolism changes triggered by ADP across the
entire DAT spectrum, ranging from the presymptomatic phase to the
mild cognitive impairment (MCI) stage followed by dementia. Our aim
in this work is to develop an automatic method that can aid in the
interpretation of the 3D topographic metabolism patterns encoded in
FDG-PET images for the purpose of DAT diagnosis. To this end, we
devised a supervised machine learning framework that takes as input a
FDG-PET image of subject and outputs a continuous value between 0
and 1 termed as the FDG-PET DAT score (FPDS), which indicates the
probability of the subject's metabolism profile to be belonging to the
DAT trajectory, i.e., how likely is the subject to be clinically diagnosed
with DAT.

One of the main contributions of our work is the introduction of a
novel approach for stratifying the imaging data used in the develop-
ment and validation of the proposed FPDS methodology. Most com-
monly, imaging biomarker studies employ a 3 group stratification,
where the clinical diagnostic labels of NC, MCI and DAT assigned at the
time of image acquisition are directly used for grouping the imaging
data (Rathore et al., 2017). In contrast, here we present a stratification
scheme that groups images based not only on their associated clinical
diagnosis but also on past and future clinical diagnoses. Our novel
stratification is able to more faithfully represent the different diagnostic
trajectories observed in a real-world clinical setting when compared to
the stratification depending only on the diagnosis at a single timepoint.
For instance, based on our stratification, we can distinguish among NC
images that stay NC (stable NC, sNC) from those that convert to MCI
(unstable NC, uNC), and from those that convert to DAT (progressive
NC, pNC). A similar delineation is also induced among the MCI and
DAT images using our stratification scheme. An important contribution
in this paper is the design of a novel multi-scale ensemble classification
model for the proposed FPDS computation. The ensemble model con-
sists of several individual classifiers trained on features extracted from
the FDG-PET image at multiple scales. The probability predictions from
each of these individual classifiers regarding the association of the
given FDG-PET image with a DAT trajectory are fused together to ob-
tain a more robust final FPDS prediction. Another noteworthy con-
tribution of our work is the exhaustive and comprehensive statistical
evaluation approach used to validate the FPDS predictions. First, the
training model fit was evaluated and then a pseudo-independent test
sample consisting of follow-up images corresponding to the baseline
training data was used to obtain a more accurate estimate of the en-
semble model's generalization error. Finally, the predictive perfor-
mance of the FPDS biomarker was evaluated on a large completely
independent validation set of images taken from different stages of the
DAT spectrum demonstrating a strong generalization potential of the
reported results. To the best of our knowledge, ours is the largest FDG-
PET based imaging biomarker study reported till date. Our study goals
align with the phase 3 aims of the structured five-phase AD biomarker
development framework that was recently proposed (Garibotto et al.,
2017), and the results presented in our paper add to the currently
available evidence for supporting the use of FDG-PET as a diagnostic
tool for DAT (Frisoni et al., 2017).

2. Materials and methods

2.1. Study participants

Data used in the preparation of this article was obtained from the
ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by principal investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and neuropsycholo-
gical assessment can be combined to measure the progression of MCI
and early Alzheimer's disease. Till date, ADNI has involved 1887

subjects and assessed over one or more visits. Clinical diagnosis re-
ceived by these subjects, can be broadly categorized among one of NC,
MCI and DAT. Detailed description of the ADNI recruitment procedure,
image acquisition protocols and diagnostic criteria can be found at
www.adni-info.org and inclusion criterion are detailed in Petersen et al.
(2010).

2.2. Novel database stratification

We devised a novel stratification scheme to distinguish within the
NC, MCI and DAT groups based on past and future clinical diagnosis
received by the individual (Table 1). Each of these three groups were
further divided into subgroups based on the diagnoses received during
their follow-up. The subgroups are named according to the convention
‘prefixGroup’, where ‘Group’ is the clinical diagnosis obtained during
the imaging visit, and ‘prefix’ signifies the past or the future clinical
diagnoses of the same individual. Images associated with clinical di-
agnosis of NC, and a consistent diagnoses of NC during the entire ADNI
study period are termed as the stable NC (sNC) group. Images asso-
ciated with clinical diagnosis of NC, but convert to MCI in the future
visits are termed as unstable NC (uNC). Images associated with a clin-
ical diagnosis of NC and convert to DAT in their future visits are termed
as progressive NC (pNC). Similarly, images associated with MCI are
subgrouped as stable MCI (sMCI) and progressive MCI (pMCI) based on
persistent MCI diagnosis and conversion to DAT diagnosis respectively
in their subsequent followup. Images with a clinical diagnosis of DAT
who joined ADNI at the DAT stage, i.e., they converted to clinical di-
agnosis of DAT prior to ADNI recruitment, and remained DAT for the
future ADNI visits are termed as stable DAT (sDAT). Images with a
clinical diagnosis of DAT, with the recent past ADNI clinical diagnosis
of either NC or MCI, i.e., they converted to DAT within the ADNI visits
are termed as early DAT (eDAT). Note that a past or future clinical
diagnosis visit may or may not include neuroimaging, but the past or
future clinical diagnosis enables an enriched staging of each image
given the evolution of clinical diagnosis.

The proposed stratification provides key advantage, offers sub-
groups namely pNC, pMCI, eDAT and sDAT, that represent various
stages of DAT trajectory. The pNC subgroup is the earliest, the sDAT
subgroup is the most advanced and the pMCI and eDAT subgroups are
in-between these extremes along the DAT spectrum. These are denoted
as the DAT+ class of images indicating their trajectory towards DAT.
The subjects in the sNC, uNC and sMCI subgroups do not include a
followup clinical diagnosis of DAT during the ADNI window; so al-
though there is the possibility that post-ADNI these could progress to a
clinical diagnosis of DAT, for the purposes of analysis in this paper,
these subgroups are considered to not be on the DAT+ trajectory,
hence denoted as DAT−.

2.3. MRI processing

Pre-processing of the 3D structural MPRAGE T1-weighted MRI
images from ADNI included standard intensity normalization to remove
image geometry distortions arising from gradient non-linearity, B1 ca-
librations to correct for image intensity non-uniformities and N3 his-
togram peak sharpening (http://adni.loni.usc.edu/methods/mri-
analysis/mri-pre-processing). The pre-processed images were seg-
mented into the gray matter (GM), white matter (WM) and cere-
brospinal fluid (CSF) tissue regions (Dale et al., 1999) using the Free-
surfer software package (https://surfer.nmr.mgh.harvard.edu). A
rigorous quality control procedure was employed to manually identify
and correct any errors in the automated tissue segmentations following
Freesurfer's troubleshooting guidelines. Subsequently, the GM tissue
region was parcellated into 85 different anatomical ROIs using Free-
surfer's cortical (Desikan et al., 2006) and subcortical (Fischl et al.,
2002) labeling pipelines.
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2.4. FDG-PET processing

The ADNI FDG-PET images used in this study were pre-processed
using a series of steps to mitigate inter-scanner variability and obtain
FDG-PET data with a uniform spatial resolution and intensity range for
further analysis (http://adni.loni.usc.edu/methods/PET-analysis/pre-
processing). Briefly, the original raw FDG-PET frames were co-regis-
tered and averaged to obtain a single FDG-PET image, which was then
mapped from its native space to a standard 160× 160×96 image grid
with 1.5×1.5×1.5 mm3 voxels. After standardizing the spatial re-
solution and orientation, the intensity range of the FDG-PET image was
normalized such that average intensity of all the foreground voxels in
the image was exactly equal to one. The intensity normalized images
were then filtered using scanner-specific filter functions to obtain FDG-
PET data at a uniform smoothing level of isotropic 8mm full width at
half maximum (FWHM) Gaussian kernel.

2.5. Multi-scale patch-wise FDG-PET SUVR features

In order to better localize the average regional glucose metabolism
signal, each of the 85 GM ROIs obtained using Freesurfer were further
subdivided into smaller volumetric sub-regions or patches. Our pre-
viously proposed adaptive surface patch generation method (Raamana
et al., 2015), which is based on k-means clustering, was applied to the
3D image domain to obtain a patch-wise parcellation of the GM ROIs.
Instead of subdividing each GM ROI into a fixed number of patches, the
number of patches per ROI were adaptively determined using the patch
size parameter (m), denoting the number of voxels in each patch. This
achieves a patch density (patches in ROI/voxels in ROI) that is uniform
≈( )m

1 throughout the image domain, which is desirable, as it leads to a
compact yet rich description of the entire GM tissue region. The scale-
space theory framework (Witkin, 1984) argues for storing the signal at
multiple scales in the absence of a-priori knowledge regarding the

appropriate scale at which to analyze the signal. Motivated by this
scale-space idea, we generated 16 different levels of patch-wise par-
cellations, m = {100,150,200,250,300,350,400,450,500, 1000,1500,
2000,3000,4000,5000,10000} to obtain a fine to coarse multi-scale
representation of the GM region for capturing the regional glucose
metabolism signals at different scales. We note that the patch-wise
parcellations were initially generated on the standard MNI ICBM 152
non-linear average T1 template (Grabner et al., 2006) (http://nist.mni.
mcgill.ca/?p=858) and then were propagated to each of the target MRI
images in our dataset using the large deformation diffeomorphic metric
mapping (LDDMM) non-rigid registration (Beg et al., 2005). This tem-
plate-based parcellation approach ensures a one-to-one correspondence
between the target image patches, which is required for the construc-
tion of a valid multi-scale FDG-PET feature space in the next step.

The FDG-PET images were co-registered with their respective MRI
images using the inter-modal linear registration facility (Jenkinson
et al., 2002) available as part of the FSL-FLIRT program (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). The quality of the co-registration
was visually checked and the detected failures were corrected by re-
running FSL-FLIRT with a narrower rotation angle search range para-
meter to avoid getting trapped in local minima. The estimated 9 degrees
of freedom (DOF) mapping was used to transfer the patch-wise par-
cellations from the MRI domain onto the FDG-PET domain. The mean
FDG-PET image intensity value in each of the mapped patches was used
to calculate the patch-wise standardized uptake value ratios (SUVRs) as,
the mean intensity in a given patch divided by the mean intensity in the
brainstem, chosen as the reference ROI (Herholz et al., 1990; Sanabria-
Diaz et al., 2013; Gray et al., 2012; Herholz et al., 2002). This resulted
in a total of M=17 (including the original Freesurfer parcellation)
patch-wise FDG-PET SUVR feature vectors that encoded the multi-scale
regional glucose metabolism information derived from a given target
FDG-PET image.

Table 1
Novel stratification of ADNI images and associated demographic, clinical & biomarker details. The stratification was based on two criteria, clinical diagnosis of subjects at the time of
FDG-PET image acquisition and their longitudinal clinical progression. Each image is assigned a membership of the form ‘prefixGroup’, where ‘Group’ is the clinical diagnosis at imaging
visit, and ‘prefix’ signals past or future clinical diagnoses. For e.g., an image is designated as pNC if the subject was assigned a NC diagnosis at that particular imaging visit, but the subject
converts to DAT at a future timepoint. The eDAT images are associated with the diagnosis of DAT, but the subject had received NC or MCI status during previous ADNI visits (conversion
within ADNI window). Whereas, the sDAT images belong to subjects with a consistent clinical diagnosis of DAT throughout the ADNI study window, hence these individuals have
progressed to DAT prior to their ADNI recruitment.

Dementia
trajectory

Group name Clinical diagnosis
at imaging

Clinical progression Nc [images] Aged [years] MMSEa,d

[Max. 30]
CSFa,d

[t-tau/Aβ1−42]

DAT−b sNC:stable NCe NCa NC → NC 753 75.44 (5.95) 29.08 (1.17) 0.37 (0.26)
DAT− uNC:unstable NC NC NC → MCI 110 78.93 (4.91) 29.05 (1.13) 0.47 (0.32)
DAT− sMCI:stable MCI MCIa NC → MCI or MCI → MCI 881 75.02 (7.77) 27.86 (1.95) 0.55 (0.47)
DAT+b pNC:progressive NC NC NC → MCI → DAT 58 78.20 (4.43) 28.90 (1.29) 0.59 (0.27)
DAT+ pMCI:progressive MCI MCI NC → MCI → DAT or MCI → DAT 486 74.87 (7.12) 26.77 (2.06) 0.88 (0.52)
DAT+ eDAT:early DAT DATa NC → MCI → DAT or MCI → DAT 232 76.59 (6.77) 22.25 (4.51) 0.94 (0.62)
DAT+ sDAT:stable DATf DAT DAT → DAT 464 75.80 (7.49) 22.02 (3.64) 1.03 (0.58)

a NC: normal controls, MCI: mild cognitive impairment, DAT: dementia of Alzheimer's type
MMSE: mini mental state examination, CSF: cerebrospinal fluid, t-tau: total tau, Aβ1−42: beta amyloid 1-42.

b DAT+: On DAT trajectory, i.e., at some point in time, these subjects will be clinically diagnosed as DAT
DAT−: not on the DAT trajectory and will not get a DAT diagnosis in the ADNI window.

c A total of 2984 FDG-PET images were taken from 1298 subjects.
Number of subjects corresponding to images in each of the groups:
sNC (360), uNC (52), sMCI (431), pNC (18), pMCI (205), eDAT (133), sDAT (238)
Number of subjects with images across multiple groups:
uNC & sMCI (18), pNC & pMCI (7), pNC & eDAT (6), pMCI & eDAT (110), pNC & pMCI & eDAT (2).

d The mean (standard deviation) age, MMSE score and CSF measure values within each group are given.
CSF measures were only available for a subset of images in each of the groups:
sNC (384), uNC (48), sMCI (470), pNC (24), pMCI (205), eDAT (66), sDAT (230).

e Baseline sNC: N=360, Age: 73.81 (6.07), MMSE: 29.05 (1.22), CSF: 0.36 (0.25)
follow-up sNC: N=393, Age: 76.93 (5.44), MMSE: 29.11 (1.11), CSF: 0.39 (0.28).

f Baseline sDAT: N=238, Age: 74.93 (7.87), MMSE: 23.22 (2.13), CSF: 1.02 (0.58)
follow-up sDAT: N=226, Age: 76.71 (6.97), MMSE: 20.76 (4.40), CSF: 1.06 (0.58).
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2.6. FDG-PET DAT score computation via supervised ensemble learning

A supervised classification framework following the well established
ensemble learning paradigm was used to calculate the proposed FDG-
PET DAT score from the multi-scale patch-wise SUVR feature vectors.
The main idea behind ensemble based supervised classification is to
combine several individually trained classifiers together to obtain a
single, more robust classification model (Dietterich, 2000). Accord-
ingly, in the proposed framework, classifiers were trained separately on
each of the individual multi-scale feature vector spaces to construct a
classifier ensemble. Then, a fusion of the multiple predictions from
individual classifiers in the ensemble was performed, yielding the en-
semble model estimate about the probability of the input multi-scale
feature vectors belonging to the DAT+ trajectory. This probabilistic
prediction output by the ensemble classification framework was taken
to be the proposed FDG-PET DAT score.

The training samples corresponding to the DAT− and DAT+ classes
needed for building the ensemble classification model were given by
the baseline sNC (N=360) and sDAT (N=238) images respectively
(Table 1, Footnotes 5 and 6). The proposed M multi-scale patch-wise
FDG-PET SUVR feature vectors were extracted from all the training
samples. To prevent over-fitting of the ensemble model to the chosen
training sample set, the subagging approach (Buhlmann, 2003) was
employed to randomly generate F=100 subsets of training samples.
The random sampling was performed using a sampling ratio of γ=0.8
in a stratified manner to avoid class imbalance, ensuring an equal
number of samples from both the DAT− and DAT+ classes, i.e.,
Ntrain=2 ×⌊0.8× 238⌋=380 samples in each of the F training sub-
sets. An ensemble of M× F probabilistic kernel (Damoulas and
Girolami, 2008) classifiers were individually trained on each of the M
feature spaces using the F different training subsets. The classifier
training was preceded by a t-statistic based feature selection step to
identify the k= ⌊Ntrain/10⌋=38 most discriminative features within
the feature vector and also to address the “curse of dimensionality”
issue (Raamana et al., 2015). Each of the M× F=1700 trained prob-
abilistic kernel classifiers output a continuous scalar pi ∈ [0 1],i={1,…
M× F}, that denotes the probability of an input feature vector be-
longing to the DAT+ class (1− pi being the DAT− class membership
probability). The FDG-PET DAT score is then simply defined as the
mean of the DAT+ class probability predictions obtained from each of
the M× F classifiers.

In summary, given an unseen “test” sample containing a FDG-PET/
MRI image pair, we first extract the M multi-scale patch-wise SUVR
features vectors from the images, and then reduce the dimensionality of
each of these feature vectors by retaining only the kmost discriminative
features that were identified during the training phase. The pruned
feature vectors are fed to the previously trained M× F classifier en-
semble to obtain M× F probability predictions regarding the DAT+
class membership, which are then averaged to obtain the FDG-PET DAT
score corresponding to the given test sample.

3. Results

Our study dataset consisted of 2984 FDG-PET images (with corre-
sponding structural MRI images), belonging to 1294 ADNI subjects,
who have undergone imaging and clinical evaluations at one or more
longitudinal time points. The images were stratified into one of the 7
study groups based on the clinical diagnosis received at the time of
image acquisition and the clinical diagnosis received previously and/or
during subsequent follow-up time points (Table 1).

In the proposed stratification scheme, we distinguish among the
images that have a clinical diagnosis of NC (sNC, uNC, pNC) at the
imaging visit. Within this NC group, there are NC that will stay NC, i.e.,
stable NC (sNC, N=753 images), convert to MCI, i.e., unstable NC
(uNC, N=110 images) or convert to DAT, i.e., progressive NC (pNC,
N=58 images), and hence even though all are NC, the images are

treated as distinct subgroups of the NC group given their future di-
vergent evolution of clinical diagnosis. In a similar fashion, we distin-
guish among the images with clinical diagnosis of MCI as consisting of
those who will continue to stay MCI, i.e., stable MCI (sMCI, N=881
images) throughout ADNI, or convert to AD, i.e., progressive MCI
(pMCI, N=486 images) at a future visit. Finally, we distinguish among
those images that have an associated clinical diagnosis of DAT. Those
DAT that had a previous clinical diagnosis of NC or MCI, i.e., joined
ADNI as either NC or MCI and converted to DAT during ADNI are de-
noted as the early DAT group (eDAT, N=232 images) given their recent
conversion, whereas those that joined ADNI with a clinical diagnosis of
DAT and hence their conversion was prior to their ADNI recruitment
and remained DAT throughout the ADNI window are designated as the
stable DAT (sDAT, N=464 images). There are 110 individuals with
FDG-PET images at both the pMCI and the eDAT stages, i.e., these in-
dividuals underwent conversion from MCI to DAT during the ADNI
window and this conversion was sampled with neuroimaging.

3.1. Demographic, clinical & biomarker values across groups

The 7 stratified image sets were compared for group-level differ-
ences in their associated age, mini mental state exam (MMSE) score and
CSF t-tau/Aβ1−42 measure (ratio of total tau to beta amyloid 1-42)
values. Pairwise significance testing of the group mean value differ-
ences was performed between all the groups, using the t-test in the case
of normally distributed data and the Wilcoxon rank sum test for the
non-parametric data distribution case. The p-values obtained from each
of the pairwise significance tests are reported in Table 2. The statistical
significance threshold was set at p<0.001. The mean age was observed
to be statistically similar across all the groups except for the uNC and
pNC groups which exhibited significantly higher ages. The mean MMSE
scores were significantly higher among the sNC, uNC and pNC groups
when compared to either the sMCI and pMCI groups or the eDAT and
sDAT groups. The DAT− (sNC, uNC, sMCI) groups had significantly
lower mean CSF t-tau/Aβ1−42 measures when compared to the DAT+
(pNC, pMCI, eDAT, sDAT) groups apart from the two cases where pNC
showed statistically similar CSF t-tau/Aβ1−42 measures compared to
uNC and sMCI respectively.

Table 2
The p-values corresponding to the significance of the pairwise group differences in the
age, MMSE score and CSF t-tau/Aβ1−42 measure values among the 7 stratified groups.
The t-test or Wilcoxon ranksum test was used depending on if the data followed a normal
distribution or not. The cases where the group mean values were significantly (p<0.001)
different are highlighted in bold and the cases where data followed a normal distribution
are underlined.

Groups Age MMSE CSF

sNC-uNC < 0 . 0 0 0 1 0.5276 0.0046
sNC-sMCI 0.8034 < 0 . 0 0 0 1 < 0 . 0 0 0 1
sNC-pNC < 0 . 0 0 0 1 0.3760 < 0 . 0 0 0 1
sNC-pMCI 0.4997 < 0 . 0 0 0 1 < 0 . 0 0 0 1
sNC-eDAT 0.0211 < 0 . 0 0 0 1 < 0 . 0 0 0 1
sNC-sDAT 0.0932 < 0 . 0 0 0 1 < 0 . 0 0 0 1
uNC-sMCI < 0 . 0 0 0 1 < 0 . 0 0 0 1 0.5432
uNC-pNC 0.3340 0.6900 0.0170
uNC-pMCI < 0 . 0 0 0 1 < 0 . 0 0 0 1 < 0 . 0 0 0 1
uNC-eDAT 0.0003 < 0 . 0 0 0 1 < 0 . 0 0 0 1
uNC-sDAT < 0 . 0 0 0 1 < 0 . 0 0 0 1 < 0 . 0 0 0 1
sMCI-pNC 0.0028 < 0 . 0 0 0 1 0.0555
sMCI-pMCI 0.6312 < 0 . 0 0 0 1 < 0 . 0 0 0 1
sMCI-eDAT 0.0149 < 0 . 0 0 0 1 < 0 . 0 0 0 1
sMCI-sDAT 0.1029 < 0 . 0 0 0 1 < 0 . 0 0 0 1
pNC-pMCI 0.0005 < 0 . 0 0 0 1 0.0029
pNC-eDAT 0.0290 < 0 . 0 0 0 1 0.0055
pNC-sDAT 0.0181 < 0 . 0 0 0 1 < 0 . 0 0 0 1
pMCI-eDAT 0.0046 < 0 . 0 0 0 1 0.8320
pMCI-sDAT 0.0424 < 0 . 0 0 0 1 0.0047
eDAT-sDAT 0.2709 0.0945 0.1072
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Automatic salient ROI selection for FPDS computation

The feature selection phase of the ensemble classification model
training identified several ROIs that contained strong discriminatory
FDG uptake information useful for separating the DAT− and DAT+
classes. Specifically, each of the individual 1700 classifiers in the en-
semble model automatically selected a set of 38 most discriminative
ROIs from which the multi-scale patch-wise FDG-PET SUVR features
were taken and used to compute the FPDS. In Table 3, selection fre-
quencies of the ROIs chosen by the classifier ensemble are listed. The
selection frequency of a ROI is defined as the fraction of the classifiers
in the ensemble that chose the particular ROI. Interestingly, ROIs from
the left hemisphere exhibited much higher selection frequencies com-
pared to the corresponding right hemisphere ROIs. Further, the cortical
ROIs had far greater selection frequencies than the subcortical ROIs. In
particular, the isthmus and posterior parts of the cingulate gyrus, the
precuneus and the inferior and middle temporal gyri had very high
(> 90%) total (left and right averaged) selection frequencies.

3.2. FPDS distribution among training (sNC and sDAT) groups

In Fig. 1, the distribution of FPDS values among the baseline and
follow-up images from the sNC and sDAT groups are shown. As the
baseline images were used for training the ensemble model, the FPDS
values for the baseline images were determined via the out-of-bag
prediction approach to avoid biased estimates. In this approach, the
FPDS for a given baseline image was computed by only fusing predic-
tions from classifiers in the ensemble that did not have the given
baseline image as part of their subagging training subset. The follow-up
images were not involved in the ensemble model training, so they were
treated as unseen test samples and their FPDS values were computed
using the standard approach of fusing predictions from all the classifiers
in the ensemble. It can be seen from Fig. 1 that the FPDS distributions of
the sNC and sDAT groups are very well separated with an excellent
(> 0.95) area under the curve (AUC) of the receiver operating

characteristic (ROC) in both the baseline and follow-up image cases.
Moreover, high specificities and sensitivities (∼ 0.90 balanced ac-
curacies) were achieved when using a FPDS threshold of 0.5 to classify
the baseline and follow-up images as belonging to either the DAT− or
the DAT+ trajectory.

3.3. FPDS distribution among the validation image groups

Imaging data from the uNC and sMCI groups that belong to the
DAT− trajectory, along with images from the pNC, pMCI and eDAT
groups that are on the DAT+ trajectory constituted the independent
validation set used for evaluating the proposed ensemble model fra-
mework for FPDS computation. In Fig. 2, FPDS distributions across
these independent validation image groups are shown. In general, the
mean FPDS values among the DAT− trajectory groups (< 0.4) were
much lower compared to the FPDS group means across the DAT+
trajectory groups (> 0.6), except for the pNC group which had a mean
FPDS value of 0.35 which was similar to that of the DAT− groups. It
should however also be noted that the pNC group contained far fewer
images (N=58) in comparison to the other groups. Overall, there was a
good degree of separation between the DAT− and DAT+ FPDS dis-
tributions resulting in an AUC of 0.78. Further, this separability
translated into a balanced accuracy of 0.70 when the images were
classified into either the DAT− or the DAT+ trajectory using a 0.5
FPDS threshold.

Table 3
Most discriminative ROIs chosen by the ensemble classification model. The ROIs are
listed in descending order of their total (left and right averaged) selection frequency.
Note that only ROIs with a non-zero selection frequency (selected at least once) are
shown.

ROI name Frequency (%) [Left | Right]

Isthmuscingulate 100.00 | 99.65
Precuneus 100.00 | 83.88
Inferiortemporal 99.82 | 83.35
Posteriorcingulate 96.12 | 85.06
Middletemporal 99.35 | 80.71
Inferiorparietal 99.18 | 64.94
Supramarginal 67.41 | 26.06
Entorhinal 57.94 | 32.53
Hippocampus 47.82 | 32.00
Bankssts 27.76 | 15.82
Rostralmiddlefrontal 24.94 | 17.18
Amygdala 22.18 | 17.29
Parahippocampal 28.00 | 10.06
Caudalmiddlefrontal 22.76 | 13.18
Fusiform 24.29 | 0.53
Medialorbitofrontal 12.76 | 10.29
Superiorfrontal 14.29 | 5.94
Superiortemporal 11.94 | 5.24
Lateralorbitofrontal 12.18 | 2.24
Superiorparietal 11.41 | 3.00
Parsopercularis 9.88 | 1.06
Temporalpole 9.35 | 0.18
Rostralanteriorcingulate 5.18 | 0.00
Frontalpole 0.82 | 0.82
Caudate 0.71 | 0.00
Parstriangularis 0.35 | 0.00
Parsorbitalis 0.18 | 0.00

Fig. 1. FPDS distribution among the sNC and sDAT images and classification perfor-
mance obtained in assigning images to either the DAT− or DAT+ trajectory using a 0.5
FPDS threshold. The top row presents the out-of-bag predictions on the baseline images,
which were used for training the ensemble model. The bottom row shows ensemble
model predictions on the follow-up subgroup. The follow-up images were not part of
training and hence were considered as unseen test samples for the purpose of FPDS
computation. The (number of images: mean FPDS) is shown for each subgroup. Balanced
accuracy is the mean of the sensitivity and specificity measures.
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3.4. FPDS trend across age ranges in validation image groups

The mean FPDS values and classification accuracies (based on 0.5
FPDS threshold) obtained from the validation image subsets taken
across different age ranges within the uNC and sMCI groups (DAT−
trajectory), and the pNC, pMCI and eDAT groups (DAT+ trajectory) are
presented in Fig. 3. The FPDS means in the sMCI group gradually in-
creased from less than 0.2 in the younger age ranges (55–70 years) to
greater than 0.5 among the older age ranges (85–95 years). This wide
and gradual variation of FPDS values manifested as a steady decrease in
the accuracy of identifying the sMCI images as DAT− from above 0.85
in the younger age ranges (55–70 years) to below 0.5 in the older age
ranges (85–95 years). The eDAT group exhibited uniformly high FPDS
mean values across all the age ranges lying in a short interval of 0.74
–0.9. Consequently, a majority of the eDAT images were correctly
classified as DAT+, leading to a high overall accuracy of 0.89. In
contrast to the sMCI and eDAT groups, no consistent age-related pat-
terns of FPDS mean values and classification accuracies were observed
among the uNC, pNC and pMCI groups. The pMCI group displayed
relatively high FPDS mean values (> 0.67) in three disjoint age ranges
55–60, 70–75 and 85–90 years, and accordingly the classification ac-
curacies of 0.85, 0.71 and 0.81 respectively observed in these age
ranges, were considerably higher than the overall pMCI group average
of 0.68. Surprisingly, the pNC and uNC groups were found to have a
similar FPDS mean in the 70–75 years range, and further in the fol-
lowing 75–80 and 85–90 years ranges the pNC group had lower FPDS
means relative to the uNC group. This lead to mis-labeling of most pNC
images as DAT−, yielding a very poor overall classification accuracy of
0.28.

3.5. FPDS versus time to conversion in progressive image groups

In Fig. 4, the mean FPDS values and classification accuracies (based
on 0.5 FPDS threshold) computed from image subsets taken across
different ranges of time to conversion within the the pNC and pMCI
groups are shown. The time to conversion is defined as the number of
years from the image scan date to the earliest future timepoint at which
the subject associated with the image was given a clinical diagnosis of
DAT. The pMCI group exhibited relatively high mean FPDS values (0.64
–0.71) among the 0–3 years to conversion range. But, in the later time
to conversion ranges, especially beyond the 4 years to conversion range,
a considerable decrease (0.26 –0.46) in the FPDS means was observed.

Therefore, for the pMCI group, good classification accuracies (0.7
–0.78) were only observed in the 0–3 years to conversion range, past
which the pMCI images were frequently misclassified as DAT−, redu-
cing the overall accuracy to 0.68. The pNC group showed low FPDS
mean values (0.17 –0.52) across all the time to conversion ranges,
leading to incorrect labeling of more than 72% of the pNC images as
DAT− (0.28 overall classification accuracy).

3.6. Correlation between FPDS and CSF t-tau/Aβ1−42

To investigate the causal association of FPDS with established ADP
measures, Pearson correlation analysis was performed between the CSF
t-tau/Aβ1−42 and FPDS values. The correlation results obtained across
the training (Fig. 5) and independent validation (Fig. 6) image groups
are reported. In the case of training image groups, correlation analysis
was performed using the combined set of baseline and follow-up images
in each of the sNC and sDAT groups respectively. The spread of t-tau/
Aβ1-42 values in the sNC group (0.1 –1.54) was relatively narrow as
compared to sDAT group (0.15 –3.6). Both the sNC and sDAT groups
showed a weak yet positive correlation between the t-tau/Aβ1−42 and
FPDS, with the sDAT group showing a relatively stronger correlation
coefficient (r=0.13) that was also statistically significant (p=0.0489).

Fig. 2. The FPDS distribution among validation image groups and the classification
performance obtained in determining dementia trajectories (DAT− or DAT+) for these
images using a 0.5 FPDS threshold. The FPDS histograms corresponding to the groups on
the DAT− (uNC, sMCI) and the DAT+ (pNC, pMCI, eDAT) trajectories are stacked to-
gether respectively. The (number of images: mean FPDS) is shown for each group.
Balanced accuracy is mean of sensitivity and specificity.

Fig. 3. Age-based analysis of FPDS score: heat map plots showcasing the trend of mean
FPDS (top) and classification accuracy (bottom) obtained across different age ranges
within each of the validation image groups. The classification accuracies were calculated
using a 0.5 FPDS threshold. The number of images in a (image group, age range) is
printed on the corresponding heat map cell, while the total number of images within a
group is shown in parentheses under each column of the heat maps. The overall mean
FPDS and classification accuracy within a group are given above respective heat map
columns.
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Among the validation image groups, the t-tau/Aβ1−42 values of the NC
groups (uNC and pNC) had a relatively narrow range (0.11 –1.47)
compared to the other DAT− (sMCI) and DAT+ (pMCI and eDAT)
groups. In general, the FPDS was weakly, but positively correlated with
t-tau/Aβ1−42. The correlation coefficient ranged between 0.13 and 0.31
among the various groups considered. However, correlation coefficients
exhibited by DAT− groups (uNC and sMCI) were found to be statisti-
cally significant (p=0.0380 and p<0.0001), whereas the DAT+ (pNC,
pMCI and eDAT) groups only exhibited a trend of positive correlations
with r-values in the 0.13 –0.24 interval.

The potential influence of t-tau/Aβ1−42 on FPDS was further

characterized by generating the FPDS distributions among the sub-
groups associated with low and high t-tau/Aβ1−42 values respectively.
A previously published t-tau/Aβ1−42 cut-off of 0.52 (Duits et al., 2014)
was used to define the τ/Aβ − (low-risk AD: t-tau/Aβ1−42<= 0.52)
and τ/Aβ + (high-risk AD: t-tau/Aβ1−42> 0.52) sub-groups within
each of the 7 stratified image groups. In Fig. 5, it can be seen that, for
both the sNC and sDAT, the mean FPDS value is lower among the τ/Aβ
− compared to the τ/Aβ +. Accordingly, for the sNC which belong to
the DAT− trajectory, the classification accuracy (using a 0.5 FPDS
threshold) in the τ/Aβ − is higher compared to τ/Aβ +. On the other
hand, for the sDAT which are on the DAT+ trajectory, the classification
accuracy is higher among the τ/Aβ + instead. A similar trend can also
be observed among the validation groups (uNC, sMCI, pNC, pMCI,
eDAT), as shown in Fig. 6, where all the groups show lower mean FPDS
values among the τ/Aβ − in comparison to τ/Aβ +. Furthermore, the
classification accuracies are higher in the τ/Aβ − for the DAT− groups
(uNC, sMCI) compared to τ/Aβ +, whereas they are higher in the τ/Aβ
+ for the DAT+ groups (pNC, pMCI, eDAT).

4. Discussion

In this paper we report the development and validation of a novel
FDG-PET DAT score (FPDS). We computed the FPDS using a multi-scale
supervised ensemble learning approach on FDG-PET images. The FPDS
is a single scalar value between 0 and 1. It indicates the probability of
the brain metabolism profile captured in a subject's FDG-PET image to
be belonging to the DAT+ trajectory. The FPDS was developed in an
ensemble machine-learning paradigm trained on FDG-PET images be-
longing to sNC and sDAT subjects from the ADNI database. FPDS as a
DAT biomarker was then comprehensively validated on a large number
of ADNI FDG-PET images (N=2984) across the sNC, uNC, sMCI, pNC,
pMCI, eDAT and sDAT stratification.

4.1. Real-world stratification scheme

The proposed stratification of imaging data into the 7 groups
(Table 1) provided a clinically relevant perspective for the development
of the FPDS framework. Particularly, the stratification scheme helped
establish a clear delineation between images taken from subjects on the
DAT− and DAT+ trajectories, and thus formulating DAT biomarker

Fig. 4. Heat maps showing variation of mean FPDS (left) and classification accuracy
(right) across different time to conversion ranges in the progressive image groups (pNC
and pMCI). The time to conversion indicates the number of years from the image scan
date to the first clinical diagnosis of DAT for the subject associated with the image. A
FPDS threshold of 0.5 was used to calculate the classification accuracies. The number of
images in a (image group,time to conversion range) is printed on the corresponding heat
map cell, while the total number of images within a group is shown in parentheses under
each column of the heat maps. The overall mean FPDS and classification accuracy within
a group are given above respective heat map columns.

Fig. 5. Pearson correlation between CSF t-tau/Aβ1−42 and FPDS across the sNC and sDAT images (baseline and follow-up combined). The CSF t-tau/Aβ1−42 measures were only available
for a subset of images and their numbers are shown in parentheses. The statistical significance threshold for correlation coefficient (r) was set at p<0.05. The FPDS distribution and
classification accuracy obtained using a 0.5 FPDS threshold within the τ/Aβ − (t-tau/Aβ1−42<= 0.52) and τ/Aβ + (t-tau/Aβ1−42> 0.52) sub-groups is also shown.
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discovery as a supervised machine learning problem of building a
classification model that can predict the probability of an image be-
longing to either the DAT− or DAT+ class. Most previous studies on
imaging biomarkers were limited to stratifying images based on the NC,
MCI and DAT diagnostic labels assigned at the time of image acquisition

(Rathore et al., 2017). However, in recent years there has been interest
in developing early stage DAT biomarkers adopting a sMCI/pMCI
stratification of images associated with a clinical diagnosis of MCI
(Tong et al., 2017). Our novel approach extends this MCI image stra-
tification idea to the entire DAT spectrum by also stratifying the NC and

Fig. 6. Pearson correlation between CSF t-tau/Aβ1−42 and FPDS values across the independent validation image groups. Number of images with CSF t-tau/Aβ1−42 measures available are
given in parentheses. Correlation coefficient (r) was considered significant at p<0.05. The FPDS distribution and classification accuracy obtained using a 0.5 FPDS threshold within the
τ/Aβ − (t-tau/Aβ1−42<= 0.52) and τ/Aβ + (t-tau/Aβ1−42> 0.52) sub-groups is also shown.
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DAT images into the sNC/uNC/pNC and eDAT/sDAT groups respec-
tively. This enabled the validation of the FPDS in a realistic experi-
mental setting that is quite close to a practical clinical setup, where
images from the uNC, sMCI, pNC, pMCI and eDAT groups were com-
pletely blinded from the trained ensemble classification model. We put
forth our stratification approach as an ideal benchmark to evaluate
future DAT biomarker methods.

4.2. Characteristics of the stratified groups

The training and validation image sets used in our analysis were
found to be unbiased with respect to the associated relevant non-ima-
ging phenotypic information, justifying the ignoring of non-imaging
covariates in the proposed supervised learning framework. The age,
MMSE and CSF t-tau/Aβ1−42 values observed across the stratified
groups did not reveal any anomalous group difference patterns
(Tables 1 and 2) that could potentially confound the proposed FDG-PET
imaging based analysis. Most importantly, the sNC and sDAT groups
used for training the FPDS model had similar mean ages, and further as
expected the sNC group had a significantly higher MMSE but a sig-
nificantly lower t-tau/Aβ1−42 compared to the sDAT group. Moreover,
mean ages among the sMCI, pMCI and eDAT groups in the validation
image set were also comparable to the training groups. The other two
validation groups namely uNC and pNC had slightly, yet statistically
significantly higher mean ages (∼ 3 years older) than the training
groups. However, this significant group difference might just be re-
flective of a sampling bias given that the uNC (N=110) and pNC
(N=58) groups have considerably fewer images compared to the
training groups, sNC (N=753) and sDAT (N=464). The group differ-
ences in MMSE and t-tau/Aβ1−42 values between the validation and
training groups followed known patterns, where the DAT− groups
(uNC and sMCI) showed significantly higher mean MMSE but sig-
nificantly lower mean t-tau/Aβ1−42 when compared to the sDAT group,
whereas the DAT+ groups (pNC, pMCI and eDAT) had significantly
lower mean MMSE but significantly higher mean t-tau/Aβ1−42 in
comparison to the sNC group.

4.3. FPDS computation model characteristics

Two aspects of the trained ensemble classification model warrant
further discussion, viz., the ROIs chosen by the model for FPDS com-
putation (Table 3), and the model's predictive performance on the sNC
and sDAT groups (Fig. 1).

The ROIs selected by the ensemble model included parieto-temporal
regions along with precuneus and cingulate gyrus. Recent studies have
demonstrated the hypometabolism of parieto-temporal regions in-
cluding precuneus and posterior cingulate as the earliest evidences for
MCI progression to DAT (Arbizu et al., 2013; Ewers et al., 2014). Fur-
ther, left hemisphere regions were chosen more often compared to their
corresponding contralateral regions. Similar, preferential left sided
hypometabolism was reported during early stages of DAT (Brown et al.,
2014). Hence, the ROIs chosen by the ensemble model for FPDS com-
putation are consistent with established spatial hypometabolism pat-
terns in DAT.

The ensemble model's FPDS predictions on the sNC and sDAT
images were consistent with the fact that these images belong to in-
dividuals who are at the extremities of the DAT spectrum, i.e., the FPDS
distributions of sNC and sDAT were skewed and only had a small
overlap with AUCs of 0.95 and 0.98 for the baseline and follow-up
subgroups respectively. Interestingly, among the sNC images with
FPDS>0.5 (misclassified as DAT+), the mean t-tau/Aβ1−42 was found
to be slightly higher (0.42 vs 0.36, p=0.2463) than the sNC images
with FPDS<=0.5 (correctly identified as DAT−). Whereas, in sDAT
images with FPDS<=0.5 (misclassified as DAT−), the mean t-tau/
Aβ1−42 was statistically significantly lower (0.84 vs 1.06, p=0.0073)
when compared to sDAT images with FPDS> 0.5 (accurately labeled as

DAT+). These observations agree with the positive correlations found
between the t-tau/Aβ1−42 and FPDS values among the sNC and sDAT
groups respectively (Fig. 5). The occurrence of DAT like metabolism
patterns (higher FPDS) among the misclassified sNC might be owing to
their increased t-tau/Aβ1−42 values and in a similar manner the shift
away from DAT metabolism patterns (lower FPDS) among the mis-
classified sDAT could be attributed to their relatively lower t-tau/
Aβ1−42 values.

The predictive performance of the ensemble model is on par with
(or better than) the sNC vs sDAT classification results published in the
latest FDG-PET imaging based studies, which showed AUCs ranging
from 0.93 on a cohort of 52 sNC and 51 sDAT images (Ye et al., 2016) to
0.97 on a 117 sNC and 113 sDAT cohort (Li et al., 2017). These studies
evaluated their classification models using a 10-fold cross-validation
scheme, which is known (Bylander, 2002) to produce generalization
error estimates (measure of predictive performance on unseen data)
similar to that of the out-of-bag prediction scheme, that was used for
evaluation of the ensemble model on baseline sNC and sDAT images.
However, arguably the ensemble model's performance on the follow-up
images gives a much better estimate of the generalization error, as the
follow-up images were completely hidden during the ensemble model
training process and hence can be considered as unseen data, despite
their implicit relation to the corresponding baseline images. It's also
important to highlight the relatively large sample size of the follow-up
image set (393 sNC and 226 sDAT images) in comparison to the cohorts
used in previous FDG-PET studies (Ye et al., 2016; Li et al., 2017;
Weiner et al., 2017). This further underscores the confidence in the
reported predictive performance of the ensemble model on sNC and
sDAT groups.

Comprehensive evaluation of the FPDS computation model

The ensemble classification model's predictive performance eval-
uated on a large independent validation set of images (N=1767), taken
from individuals at different stages of AD spectrum, provided a rigorous
and a realistic way to assess the potential of using FPDS for DAT di-
agnosis (Fig. 2). The ensemble model achieved an AUC of 0.78 in dis-
criminating the DAT− (uNC and sMCI) and the DAT+ (pNC, pMCI and
eDAT) groups, strongly advocating the consideration of FPDS as a DAT
biomarker. A more detailed analysis of the FPDS predictions across the
DAT− and DAT+ groups revealed a non-trivial association between
the t-tau/Aβ1−42 and FPDS values. The DAT− images with FPDS> 0.5
(misclassified as DAT+) had statistically significantly higher mean t-
tau/Aβ1−42 (0.71 vs 0.49, p<0.0001) compared to the DAT− images
with FPDS<=0.5 (correctly labeled as DAT−). While, the mean t-
tau/Aβ1−42 among the DAT+ images with FPDS<=0.5 (misclassified
as DAT−) was found to be significantly lower (0.74 vs 0.94, p=0.0015)
compared to the DAT+ images with FPDS>0.5 (correctly labeled as
DAT+). In light of these findings, along with the positive correlations
observed between t-tau/Aβ1−42 and FPDS within each of the DAT−
and DAT+ groups (Fig. 6), it can be speculated that the relatively
higher t-tau/Aβ1−42 values might be triggering the presence of DAT like
metabolism patterns (higher FPDS) in misclassified DAT−. Similarly,
the comparatively lower t-tau/Aβ1−42 values could be the underlying
cause behind the lack of DAT like metabolism patterns (lower FPDS)
among the misclassified DAT+.

The predicted FPDS values for the sMCI images were observed to
increase with age (Fig. 3), i.e., images corresponding to older subjects
tended to have higher FPDS values compared to images taken from
younger subjects. In particular, when comparing the two subgroups of
sMCI images whose age ranges were above and below the average sMCI
age of ∼ 75 years (Table 1) respectively, the mean FPDS for the images
in the older subgroup was found to be significantly greater than the
mean FPDS among the images from the younger subgroup (0.45 vs
0.22, p<0.0001). Further, as could be expected based on the statisti-
cally significant positive correlation observed between FPDS and t-tau/
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Aβ1−42 in sMCI (r=0.2526 with p<0.0001, Fig. 6), the older subgroup
also showed a significantly higher mean t-tau/Aβ1−42 compared to the
younger subgroup (0.61 vs 0.51, p<0.0001). Apart from the sMCI
group, none of the other uNC, pNC, pMCI and eDAT groups displayed
any apparent age specific FPDS patterns (Fig. 3). Nevertheless, among
these groups a trend of positive correlations between t-tau/Aβ1−42 and
FPDS was observed (Fig. 6). This suggests a possible age independent
causal relationship between t-tau/Aβ1−42 and the occurrence of DAT
like metabolism patterns.

In the pMCI group, the predicted FPDS values were found to de-
crease with longer time to conversion (Fig. 4). Notably, the mean FPDS
for the subgroup of images that were within 4 years to conversion was
significantly higher than that of the image subgroup whose conversion
times exceeded 4 years (0.67 vs 0.43, p<0.0001). Moreover, in con-
cordance with the positive correlation observed between t-tau/Aβ1−42

and FPDS among the pMCI (r=0.1312 with p<0.0609, Fig. 6), the
mean t-tau/Aβ1−42 for the within 4 years to conversion subgroup was
also significantly higher compared to the subgroup with longer than 4-
year conversion times (0.91 vs 0.66, p=0.0229). Based on these find-
ings it is conceivable that, from around 4 years prior to a clinical di-
agnosis of DAT there might be a noticeable increase in the t-tau/Aβ1−42

causing a prevalence of DAT like metabolism patterns among the pMCI.
While beyond the 4-year conversion window, it can be expected that
there would be a considerable reduction in the appearance of DAT like
metabolism patterns in pMCI. In fact, metabolic disruptions in an ear-
lier NC stage of pMCI were found to be virtually undetectable as evi-
denced by the significantly lower mean FPDS of the pNC group com-
pared to the pMCI (0.35 vs 0.63, p<0.0001) and also indicated by the
extremely low classification accuracy (0.28, Fig. 4) achieved on pNC
images.

MCI conversion prediction - comparison with state-of-the-art

Several FDG-PET image analysis methods have previously been
considered for addressing the task of predicting MCI to DAT conversion
(Young et al., 2013; Zhu et al., 2014; Cheng et al., 2015a,b; Lange et al.,
2015; Wang et al., 2016; Pagani et al., 2017; Inui et al., 2017; Liu et al.,
2017). In these methods, the main idea is to train a binary classification
model for separating the MCI into two groups, the sMCI which remain
stable and the pMCI that convert to DAT in the future. Aside from the
standard approach of using images from the sMCI and pMCI groups as
training data (Wang et al., 2016; Pagani et al., 2017; Zhu et al., 2014),
some of the methods have augmented the training process with in-
formation derived from the sNC and sDAT images as well (Liu et al.,
2017; Lange et al., 2015; Cheng et al., 2015a,b). Further, akin to the
proposed approach for training the FPDS computation model, there
were a few methods that solely employed the sNC and sDAT images
during the training phase (Young et al., 2013; Inui et al., 2017).

In Table 4, the sMCI vs pMCI classification results reported in the
aforementioned works are summarized. Table 4 also shows the AUC
achieved when using the FPDS to discriminate between the sMCI and
the pMCI that are within 2, 3 and 5 years to conversion respectively.
The proposed FPDS based approach outperformed almost all of the
state-of-the-art methods achieving an AUC of more than 0.77 in each of
the three time to conversion cases. Only Wang et al. (2016) and Pagani
et al. (2017) reported higher AUCs than the proposed approach.
However, these two methods reported the cross-validated AUC,
whereas a more challenging independent validation experiment was
used to evaluate the performance of the FPDS approach. Moreover, in
Wang et al. (2016) and Pagani et al. (2017), the classification model
parameter tuning was done using the testing subsets of the cross-vali-
dation splits which leads to inflated estimates of the classification
performance. In fact to avoid such an optimistic performance evalua-
tion, the other methods reporting cross-validated AUCs (Zhu et al.,
2014; Cheng et al., 2015a; Cheng et al., 2015b) used “nested” cross-
validation, where the classification model parameters were tuned on
the training subsets of the cross-validation splits rather than the testing
subsets. Last, it should be highlighted that the better performance of the
FPDS approach was demonstrated on a considerably larger sample size
(> 5x more images) compared to the other methods.

4.4. Limitations and future directions

The results reported in this paper are understandably limited by the
ADNI data characteristics. In general, the final (at time of death) clin-
ical diagnosis for ADNI subjects is not known, this is because either the
subjects are surviving or they were not followed-up around their de-
mise. Consequently, it is possible that some subjects currently de-
termined to be on the DAT− trajectory, i.e., with images belonging to
the sNC/uNC/sMCI groups, might receive a clinical diagnosis of DAT in
the future. While this is a limitation in our current results, in case the
final diagnosis for such subjects becomes available, it would be inter-
esting to review if the ensemble model had actually correctly predicted
the sNC/uNC/sMCI images of these subjects as belonging to the DAT+
trajectory (FPDS> 0.5). Another limitation of the reported results, as
mentioned before, is that the correlation analysis between the FPDS and
t-tau/Aβ1−42 values was reported only on a subset of the images owing
to partial availability of CSF measures in the ADNI database. In spite of
these ADNI data related limitations, it is important to note that both the
novel stratification scheme and the ensemble classification framework
proposed in our work have a more general applicability and are not
specific to the ADNI cohort used in this study. In fact, as part of future
work we plan to extend our methodology to incorporate multimodal
imaging data and validate it on other relevant AD neuroimaging data-
bases.

Table 4
Comparison of sMCI vs pMCI classification performance obtained using FPDS with the state-of-the-art FDG-PET based methods.

Study sMCI:pMCI [images] Time to conversion Evaluation scheme AUC

Zhu et al. (2014) 56:43 0–2 years 10-fold CVa 0.774
Cheng et al. (2015a) 56:43 0–2 years 10-fold CV 0.734
Cheng et al. (2015b) 56:43 0–2 years 10-fold CV 0.741
FPDS 881:254 0–2 years Independent validation 0.806
Young et al. (2013) 96:47 0–3 years Independent validation 0.767
Lange et al. (2015) 181:60 0–3 years Independent validation 0.746
Wang et al. (2016) 65:64 0–3 years LOOCVa 0.802
Liu et al. (2017) 108:126 0–3 years Prediction on training set 0.736
FPDS 881:362 0–3 years Independent validation 0.796
Pagani et al. (2017) 27:95 0–5 years 21-fold CV 0.911
Inui et al. (2017) 19:49 0–5 years Independent validation 0.712
FPDS 881:442 0–5 years Independent validation 0.772

a CV: cross-validation, LOOCV: leave-one-out cross-validation.
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