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Abstract: We characterized the stationary points along the nucleophilic substitution (SN2), oxidative
insertion (OI), halogen abstraction (XA), and proton transfer (PT) product channels of M− + CH3X
(M = Cu, Ag, Au; X = F, Cl, Br, I) reactions using the CCSD(T)/aug-cc-pVTZ level of theory. In
general, the reaction energies follow the order of PT > XA > SN2 > OI. The OI channel that results in
oxidative insertion complex [CH3–M–X]− is most exothermic, and can be formed through a front-side
attack of M on the C-X bond via a high transition state OxTS or through a SN2-mediated halogen
rearrangement path via a much lower transition state invTS. The order of OxTS > invTS is inverted
when changing M− to Pd, a d10 metal, because the symmetry of their HOMO orbital is different. The
back-side attack SN2 pathway proceeds via typical Walden-inversion transition state that connects
to pre- and post-reaction complexes. For X = Cl/Br/I, the invSN2-TS’s are, in general, submerged.
The shape of this M− + CH3X SN2 PES is flatter as compared to that of a main-group base like F−

+ CH3X, whose PES has a double-well shape. When X = Br/I, a linear halogen-bonded complex
[CH3−X···M]− can be formed as an intermediate upon the front-side attachment of M on the halogen
atom X, and it either dissociates to CH3 + MX− through halogen abstraction or bends the C-X-M
angle to continue the back-side SN2 path. Natural bond orbital analysis shows a polar covalent
M−X bond is formed within oxidative insertion complex [CH3–M–X]−, whereas a noncovalent
M–X halogen-bond interaction exists for the [CH3–X···M]− complex. This work explores competing
channels of the M− + CH3X reaction in the gas phase and the potential energy surface is useful in
understanding the dynamic behavior of the title and analogous reactions.

Keywords: C−X bond activation; oxidative insertion; nucleophilic substitution reaction; natural
bond orbital; halogen-bonded complex

1. Introduction

The activation of C−X bonds has an essential role in many catalytic industrial pro-
cesses involving organic substrates, generating value-added compounds [1–3]. Extensive
experimental and theoretical research has been conducted, mainly focusing on the oxidative
addition of C−X bond by the meal [4–6]. A variety of mechanisms were proposed for the
oxidative addition. Crespo et al. categorized the mechanisms into the ionic, bimolecular
nucleophilic substitution (SN2), concerted, and atom transfer types [7]. Efforts were put
to understanding the mechanisms and search for suitable catalysts for C−X bond activa-
tion [8–13]. The discovery of catalytic gold by Haruta et al. stimulated the development
of gold catalysts in the form of surfaces, nanoparticles, embedded clusters, and single
atoms [14–18]. The nucleophilicity of gold is important in oxidative reactions, the Au−

anion is more nucleophilic than Au(0), Au(I), and Au(III) species, and thus reactions of
atomic Au− anions with hydrocarbons in the gas phase were studied [14,19]. The study
of gas-phase ion-molecule reactions provides mechanistic insights into the bond-breaking
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and -making steps that are often obscured under condensed-phase environments, which
are complicated by solvents, counterions, and ligands [14,20–29]. Although gas-phase ob-
tained information cannot replace that of the condensed phase, understanding the intrinsic
unit makes it more feasible to improve chemical reactions or catalysts from a bottom-up
approach [20,22,26,30,31].

In the gas-phase reaction of Au− + CH3I, Wilkins’ group observed the formation of
I− via a nucleophilic substitution (SN2) reaction [14]. Tsukuda’s group recently isolated
an AuCH3I− adduct by collision cooling under high helium pressure, and combined
photoelectron spectroscopy and computational studies confirmed the adduct is an oxidative
insertion complex [CH3−Au−I]−, which is formed via an SN2-mediated mechanism [19].
Later, Tsukuda’s group extended their studies to Ag and Cu, and the Grignard reagent-
like [CH3−M−I]− complex was also found [30]. It is known that the dynamics of gas-
phase reactions are complex for a system that may deviate from the stationary PES [31].
In previous studies of gas-phase Y− + CH3X reactions, where Y refers to non-metallic
anions such as halogen anions, HO−, HS−, NH2

−, CN−, etc., in addition to multiple
product channels, multiple dynamical mechanisms for the major SN2 product channel were
discovered, including roundabout, double-inversion, hydrogen/halogen-bonded complex
mediated mechanisms [24,25,31–33]. Hence, it is intriguing to explore the competing
product channel and mechanisms for metallic nucleophile M− reacting with CH3I reactions.

In this study, a complicated PES is constructed for the M− + CH3X reaction, where
M = Cu, Ag, and Au. As shown in Scheme 1, four product channels including the nucle-
ophilic substitution (SN2) channel, the oxidative insertion (OI) channel, the proton transfer
(PT) channel, and halogen-abstraction (XA) channels were considered. Depending on
the attack direction of M−, the front-side attack on C−I bond and on the I atom and the
back-side attack on C atom mechanisms were addressed in detail. We also investigated
the role of leaving the group by changing CH3I to CH3Br, CH3Cl, and CH3F. Comparisons
were made between the PES properties of the current reaction and analogue reactions with
the d10-metal atom Pd and main-group base nucleophiles F− [25,34,35].
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Scheme 1. The potential energy profile scheme for the M− + CH3X reaction in the gas phase that
displays the proton transfer, halogen abstraction, nucleophilic substitution, and oxidative addi-
tion pathways.
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2. Computational Methods

The structures were optimized with hybrid functional M06-2X [36], with the aug-cc-
pVTZ basis set for the H, C, F and Cl atoms and the aug-cc-pVTZ-PP basis set for the Br, I, Cu,
Ag, and Au atoms [37]. Vibrational frequencies were computed to confirm the stationary
point nature of the local minimum (no imaginary frequency) and the transition states (one
imaginary frequency) on the potential energy surface. Intrinsic reaction coordinates (IRC)
were performed on each transition state to confirm their minimum energy path. On top of
the M06-2X optimized structures, single point energies were calculated using the CCSD(T)
method [34,35] with the same basis set. We denote this combined method as the CCSD(T)//
M06-2X/aug-cc-pVTZ(-PP) method. If not specified, the values reported in this work
refer to CCSD(T) corrected enthalpies at 298.15 K, where additional energetic values are
available in the Supplementary Materials. A few structures were optimized with functionals
other than M06-2X due to the failure of convergence, and they are also specified in the
Supplementary Materials [38,39]. Energetic values given by M06-2X/aug-cc-pVTZ(-PP)
method are also provided in the Supplementary Materials, Tables S1 and S2, for interested
readers. Atomic charges were evaluated by natural population analysis (NPA) (Table S3)
based on the natural bond orbital (NBO) scheme [40,41]. T1 diagnostic [42] and CASSCF [43]
calculations were applied to selected species and confirmed the single reference nature of
the metal-involved species (Table S4, Figure S1). CASSCF calculation methods [43–51] and
results are provided in the Supplementary Materials. All computations were performed
using Gaussian 09 software [52].

3. Results and Discussion
3.1. Reaction Enthalpies

Table 1 lists the reaction enthalpies of four product channels of titled reactions. Take
the Cu− + CH3I reaction, for example, the reaction enthalpies are in a decreasing order
of proton transfer (PT, 41.4 kcal/mol) > halogen abstraction (XA, −9.1 kcal/mol) > nu-
cleophilic substitution (SN2, −37.6 kcal/mol) > oxidative insertion (OI, −82.1 kcal/mol).
The proton transfer (PT) product channel is highly endothermic, implying that only high
collision energy or photoexcitation can induce this channel. The halogen abstraction (XA)
channel is slightly exothermic (−9.1, −7.2, −5.1 kcal/mol) when the substrate is CH3I,
CH3Br, or CH3Cl, but when the substrate is CH3F this channel becomes endothermic by
12.3 kcal/mol. Similarly, the SN2 channel is exothermic for X = Cl, Br, and I, and becomes
slightly endothermic for X = F (4.2 kcal/mol). As for the OI channel, it is highly exothermic
for all the leaving groups, i.e., −64.3, −79.8, −81.2, −82.1 kcal/mol for X = F, Cl, Br, and
I, respectively. The order of reaction enthalpies, being PT > XA > SN2 > OI, applies to the
case of Ag− and Au− being the nucleophiles. When Ag−/Au− anions are the nucleophiles,
the reaction enthalpy values of each product channel are higher than in the case of Cu−.

Table 1. Calculated reaction enthalpies at 298.15 K of M− + CH3X (M = Cu, Ag, Au; Y = F, Cl,
Br, I) reactions. Values (in kcal/mol) are calculated with the CCSD(T)//M06-2X/aug-cc-pVTZ(-
PP) method.

Products X F Cl Br I

M = Cu
OI [CH3–Cu–X]− −64.3 −79.8 −81.2 −82.1

SN2 CuCH3 + X− 4.2 −27.1 −31.9 −37.6
XA CuX− + CH3 12.3 −5.1 −7.2 −9.1
PT HCu + CH2X− 62.5 49.8 46.3 41.4

M = Ag
OI [CH3–Ag–X]− −37.5 −57.8 −61.0 −63.9

SN2 AgCH3 + X− 18.1 −13.1 −18.0 −23.6
XA AgX− + CH3 26.4 4.3 0.6 −3.0
PT HAg + CH2X− 73.1 60.4 56.8 52.0
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Table 1. Cont.

Products X F Cl Br I

M = Au
OI [CH3−Au−X]− −38.0 −57.3 −60.4 −63.6

SN2 AuCH3 + X− 21.8 −9.5 −14.3 −20.0
XA AuX− + CH3 43.7 20.7 15.9 10.5
PT HAu + CH2X− 77.8 65.1 61.5 56.6

3.2. Potential Energy Profiles

Figure 1 depicts the potential energy surfaces (PESs) for Cu− + CH3F and Cu− + CH3I
reactions with back-side attack, front-side attack at the C−X bond and front-side attack
at X atom mechanisms. Values for M = Ag/Au are also listed. Additional PESs for M−

+ CH3Cl/CH3Br and selected structures are presented in the Supplementary Materials,
Figures S2–S4, and the bond metrics are provided in Table S5. In the following, we will use
Cu− + CH3Cl and CH3I for illustration.

3.2.1. The Back-Side Attack Pathway

The traditional back-side attack proceeds with M− anion approaches C atom and
forms a prereaction complex, M−···CH3X (RC). Then, it crosses a Walden-inversion transi-
tion state [M··CH3··X]−‡ (invTS), which connects to a postreaction complex MCH3···X−
(PC) before it dissociates to the SN2 products MCH3 and X−. All the RCs are ion-dipole
complexes that adopt a linear M-C-X shape and are lower in energy than reactants. When
the nucleophile is Cu−, the depth of the RC wells increases from 5.0 (X = F) to 6.5 (Cl),
7.2 (Br), and 8.7 (I) kcal/mol. For the transition state invTS, the barriers decrease from
positive to submerged values, as leaving group X changes from F to I, with respective
values of 12.1 (F), −3.1 (Cl), −6.8 (Br), and −9.3 (I) kcal/mol. The vibrational mode of the
imaginary frequency of invTS involves the umbrella-inversion of the CH3-group, and the
corresponding imaginary frequencies are i501, i413, i320, and i31 cm−1, respectively. We
noted that the imaginary frequency of invTS of the Cu− + CH3I reaction, being i31 cm−1,
representsinga half umbrella-inversion of CH3-group, is too low, and attempts to search for
the correct invTS were not successful using multiple DFT and basis sets. The corresponding
imaginary frequency values for the cases of Ag− and Au− as nucleophiles are provided in
Table S6.

Similar to the RCs, the PCs are also ion-dipole complexes with linear M-C-X shapes,
and the only exceptions are CuCH3···I− and AgCH3···I−, whose M-C-I angles are 160◦ and
166◦ (Table S5). As listed in Table 2, when M = Cu/Ag and X = Cl, Br, I, the enthalpies of PCs
are slightly higher than those of SN2 products. For instance, CuCH3···I− (−35.9 kcal/mol)
is 1.7 kcal/mol higher than products CuCH3 + I− (−37.6 kcal/mol). In other cases, when
X = F for all metals and the combination of M = Au and X = Cl, Br, I, the PCs are lower
in energy than SN2 products, forming a shallow well before the products. For instance,
AuCH3···I− (−24.5 kcal/mol) is 4.5 kcal/mol lower than the products of AuCH3 + I−

(−20.0 kcal/mol).
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Figure 1. Potential energy profile of (a) a M− + CH3F reaction, and (b) a M− + CH3I reaction.
Enthalpy values (in kcal/mol) at 298.15 K are reported. Selected bond distances (Å) and angles (◦)
are displayed for stationary points of the Cu− + CH3F/CH3I system.

As for X = F, besides the traditional linear ion-dipole PC, a hydrogen-bonded postreac-
tion complex (HPC) can be formed. As shown in Figure 1a, a hydrogen bond is formed
between the H atom and F atom in the CuH2CH···F− (HPC) complex, with a ∠C-H-F
angle of 173.2◦ and an H-F distance of 1.696 Å. Almost all the PCs and HPCs for X = F
are higher in energy than the reactants. For the Cu− + CH3F system, CuCH3···F− (PC,
3.4 kcal/mol) can convert to CuH2CH···F− (HPC, −2.5 kcal/mol) via the rotation of the F
atom to cross transition state MTS (2.7 kcal/mol). Then, by continuing the rotating of F
atom, the HPC will finally convert to an oxidative insertion complex (OC) product [CH3–
Cu–F]−. A transition state that we denoted as HPTS can be located on the exit channel,
and the barrier of 0.4 kcal/mol is almost neglectable in comparison to the sharp drop in
energy to the OC complex [CH3–Cu–F]− (−64.3 kcal/mol). Notably, the OC complex is
formed after nucleophilic substitution via Walden-inversion, so the stereo geometry of
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the CH3-group is inverted, and we denote this mechanism as the SN2-mediated oxidative
insertion mechanism.

Table 2. Calculated electronic energies (E) and enthalpies at 298.15 K (H) of the stationary points on
the potential energy profiles of M− + CH3X reactions. Energy values (kcal/mol) are calculated with
the CCSD(T)//M06-2X/aug-cc-pVTZ(-PP) method.

X
F Cl Br I

E H E H E H E H

M = Cu
Cu− + CH3X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RC −6.6 −5.0 −8.0 −6.5 −8.7 −7.2 −9.8 −8.7
invTS 13.4 12.1 −2.9 −3.1 −6.9 −6.8 −9.8 −9.3

PC 4.7 3.4 −25.6 −25.9 −31.1 −31.0 −36.4 −35.9
XC - - - - −1.8 −0.5 −11.8 −11.3
XTS - - - - 1.3 2.1 0.4 1.5

OxTS 33.3 31.7 24.3 23.5 19.3 18.8 14.3 14.1
MTS 4.6 2.7 −25.7 −26.5 - - - -
HPC −0.7 −2.5 - - - - - -
HPTS 0.0 −2.1 - - −32.6 −33.0 −38.2 −38.3

M = Ag
Ag− + CH3X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RC −6.4 −4.8 −7.7 −6.1 −8.3 −6.8 −9.3 −7.8
invTS 19.6 18.2 −0.1 −0.4 −4.6 −4.6 −8.5 −8.3

PC 17.9 16.8 −11.5 −11.6 −17.0 −16.7 −22.9 −22.4
XC - - - - -1.4 0.0 −7.9 −6.9
XTS - - - - 1.1 2.4 0.3 1.5

OxTS 42.0 40.4 23.7 22.8 18.2 17.7 13.6 13.3
MTS 17.9 16.3 - - - - - -
HPC 13.3 13.2 - - - - - -
HPTS 16.1 14.1 −13.8 −14.5 −17.7 −18.1 −24.6 −24.6

M = Au
Au− + CH3X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RC −8.6 −7.0 −10.0 −8.4 −10.6 −9.0 −11.1 −9.6
invTS 14.2 13.6 −2.7 −2.5 −6.7 −6.3 −9.6 −9.1

PC 12.5 12.0 −15.1 −14.5 −20.2 −19.3 −25.6 −24.5
XC - - - - −3.3 −1.8 −11.0 −10.0
XTS - - - - 0.7 1.9 −0.3 0.8

OxTS 48.2 47.2 36.2 35.8 31.1 31.0 27.2 27.1
MTS 12.9 11.7 −14.7 −14.8 - - - -
HPC 10.3 9.0 −14.7 −14.2 - - - -
HPTS 13.1 11.7 −14.0 −14.1 −19.2 −18.9 −24.4 −23.8

Although we were unable to locate HPC for systems with M = Cu/Ag and X = Cl, Br,
I, a small perturbation may drive the linear PC complex MCH3···X− from its equilibrium
geometry. Provided additional collisions remove energies from the PC complex before it
dissociates to the SN2 products MCH3 + X−, it will convert to the more stable oxidative
insertion products, [CH3–M–X]−. In fact, during our optimization, the search for some PCs
and HPCs produced the OCs [CH3–M–X]−.

3.2.2. The Front-Side Attack at C Atom Pathway

In the second mechanism, the nucleophile M− attacks the front-side of CH3X at the
carbon atom by crossing a transition state denoted as OxTS, resulting in an oxidative
insertion [CH3–M–X]− product. Within the OxTS structure, the incoming nucleophile M−

and the leaving group X are on the same side of CH3-group, while the CH3-group has a
nearly planar shape and the ∠M-C-X angle is less than 90◦. Taking the Cu− + CH3X system,
for example, the respective ∠Cu-C-X angles are 51.4◦ (F), 75.6◦ (Cl), 78.0◦ (Br), and 82.8◦

(I). The vibrational mode of the imaginary frequency involves the CH3 shift from X to M,
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along with X-C bond elongation and M-C bond shrinking, and the imaginary frequencies
were i538 (F), i429 (Cl), i371 (Br), i326 (I) cm−1, respectively. Unlike the SN2-mediated OI
mechanism, this front-side attack (FSA) pathway retains the stereo geometry of CH3 group,
as illustrated in the IRC calculation in Figure S5.

However, this FSA path has much higher barrier than the back-side attack path. For
the OxTS transition state of the Cu− + CH3X system, the barrier heights were 31.7 (F),
23.5 (Cl), 18.8 (Br), and 14.1 (I) kcal/mol, respectively. Figure 2 depicts the comparison
of barrier heights between back-side attack and front-side attack for all the metal anions
under study. Bickelhaupt et al. (1995) [53] reported the oxidative insertion of the Pd +
CH3Cl reaction as a front-side SN2 substitution, and the oxidative insertion transition state
(OxTS) was much lower than the SN2/Cl-rearrangement transition state, TS(SN2/Cl-ra).
Energetic comparison at the CCSD(T)//M06-2X/aug-cc-pVTZ(-PP) level of theory also
predicts the same order (Table S7 for details). This order was inverted in our M− + CH3X
case. This was because in the Pd + CH3Cl system, the d-type HOMO of Pd was suitable for
front-side interaction with the σ*C-Cl orbital of the substrate CH3Cl. However, the HOMO
of M− (M = Cu, Ag, Au) is s-orbital, and the interaction between this s-type HOMO and
σ*C-X orbital is poor because the HOMO lobe approaches on a nodal surface of σ*C-X, i.e., a
front-side attack. On the contrary, this s-type HOMO favors interactions with the backside
of the σ*C-X orbital of the substrate (Figure 3). This means that Cu−/Ag−/Au− anions
behave more like a main group base, such as F−, that has p-type HOMO, and the backside
attack is favored over frontside attack.
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3.2.3. The Halogen-Bonded Complex Pathway

Alternatively, the incoming nucleophile can attack the leaving group X from the front-
side. When X = Br and I, a halogen-bonded complex [CH3–X···M]− can be formed with a
linear C-X-M bond, it is known that when halogen atom, especially I and Br, binds to an
electron withdrawing group, such as CF3 or CH3 in our case, a σ-hole that carries positive
charge appears on the other side of halogen atom along the axis of the C–X bond. Although
theory predicted the existence of the σ-hole in 2007 by Politzer’s group [54] and strategies
were developed to stabilize anions with halogen bonding [55], the σ-hole has been observed
by experiments in 4BrPhM molecules only recently [56]. As a result, the σ-hole attracts
negatively charged species to form a halogen bond. Attempts to locate the halogen-bonded
complex for X = Cl and F were unsuccessful. Because the radius of the Cl atom and the F
atom are much smaller than Br and I, they are difficult to polarize, so they are less likely to
form a halogen-bonded complex.
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To characterize the interaction between CH3X and M within the halogen-bonded
complexes [CH3−X···M]−, we performed natural bond orbital (NBO) calculations and
analyzed the donor-acceptor charge transfer properties. Figure 4a depicts the interaction
for [CH3−I···Cu]− as an example. The donor orbital is the Cu 4s orbital and the acceptor
orbital is the σ* anti-bonding orbital of the C–I bond. Both orbitals align in the C–X bond
direction and the donor-acceptor interaction is a σ-type interaction. Due to the charge
transfer, the σ* anti-bonding orbital of the C–I bond becomes partially occupied, resulting in
an elongation of the C-I bond in [CH3−I···Cu]− (2.350 Å) as compared with CH3I (2.140 Å).
The halogen-bond interaction energy, which is evaluated as charge transfer stabilization
energy under the NBO scheme (Table S8), was 56.6 kcal/mol for [CH3−I···Cu]−.

Relative to the reactants, the enthalpies of the halogen-bonded complexes [CH3–
I···M]− (XC) were −11.3 (M = Cu), −6.9 (Ag), and −10.0 kcal/mol (Au), respectively. The
stability of the XCs were comparable to the prereaction complex RCs, but were much
weaker than the oxidative insertion complexes [CH3–M–I]− (OCs). For comparison, we
also plotted the NBOs of the OCs. As shown in Figure 4b, an I-Cu bonding orbital is
available within [CH3–Cu–I]−, showing a highly polarized nature towards the I atom.
Orbital composition analysis shows that the I atom contributes ~90% and Cu contributes
the remaining 10% to the I-Cu bond. For other X–M bonds in the OCs, the contributions of
Cl, Br, I were almost the same, ~90%, and the contributions of F were higher, ~95%. See
Table S9 for details.
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Starting from the halogen-bonded complex [CH3–X···M]−, the system can either break
the C–X bond to form CH3 + XM−, or bend the C-X-M angle to proceed to the SN2-path.
The halogen abstraction product channel is highly endothermic (as discussed in Section 3.1),
and the latter path is more feasible. The transition states (XTS) that feature the bending of
the C-X-M angle are found to be only slightly higher in energy than those of the reactants.
For X = I, the enthalpies of XTSs are 1.5 (M = Cu), 1.5 (Ag), 0.8 kcal/mol (Au), respectively.
However, the corresponding imaginary frequencies, i.e., i65 cm−1 (Cu), i63 cm−1 (Ag), and
i66 cm−1 (Au), are very small, implying that exciting this mode is difficult. The system may
dissociate to reactants instead of crossing the XTS. The IRC calculation shows that the XTS
connects to the RC on the other side so that it will continue the SN2-path.

Overall, as shown in Figure 2, the order of barrier heights for the three pathways was
OxTS > XTS > invTS for all three M− and the four substrates when XTS is available. For
each nucleophile M−, varying the leaving group from F to I decreases the barrier heights of
all three transition states, consistent with the decreasing order of electronegativity of F > Cl
> Br > I. The barrier heights of XTS and invTS were similar for M = Cu, Ag, and Au, but
the values of OxTS were higher for Au− than for Cu− and Ag−. For instance, the barrier
heights of OxTS for Cu− + CH3X were 31.7 (X = F), 23.5 (Cl), 18.8 (Br), and 14.1 (I) kcal/mol,
respectively, and the corresponding values for Au− + CH3X were 47.2 (X = F), 35.8 (Cl),
31.0 (Br), and 27.1 (I) kcal/mol. Consequently, the barrier difference between OxTS and
invTS enlarged greatly from ~23.8 kcal/mol for M = Cu to ~36.4 kcal/mol for M=Au.

3.2.4. Comparison between Metallic Nucleophiles M− and Main Group Nucleophiles F−

There appears to be a similarity between the M− and main group base B as a nucle-
ophile toward a reaction with CH3X substrate, as discussed in Section 3.2.2. Below, we
use F− as an example of a main group base, to compare with the PES of M− reacting with
CH3Cl.

As shown in Figure 5, the SN2 product channels of both F− + CH3Cl and Cu− + CH3Cl
have comparable exothermicity, and the submerged invTS connects RC and PC. Clearly, the
PES of F− + CH3Cl has a double-well shape, but for the Cu− + CH3Cl reaction the PC-well
is flattened. A change of the substrate to CH3Br and CH3I further flattens the RC-well. This
is one distinct feature among their SN2 PESs. As for the front-side attack transition state,
IRC calculations show it connected to the oxidative insertion product [CH3–M–Cl]− for
Cu− reactions with CH3Cl, but it connected to the SN2 products CH3F + Cl− for the F−

reactions with CH3Cl. The outer p and d orbitals were available for M− anions, making the
formation of an oxidative insertion product [CH3–M–Cl]− easy and favorable. However,
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this was not the case for the main group base B, which, like F, obeys the octet rule and is
singly-valent. Dynamically, the OxTS of the Cu− + CH3Cl system may end up with an
SN2 product at high collision energy, when CuCH3 and Cl− separate fast enough before
forming Cu–Cl bond. It is anticipated that an ab initio molecular dynamics simulation
would give more information on the dynamics of the reactions.
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4. Conclusions

A comprehensive potential energy surface study has been completed for reactions of
M– + CH3X in the gas phase, where M refers to the coinage metals Cu, Ag, Au, and X = F, Cl,
Br, and I. Four product channels including oxidative insertion (OI), nucleophilic substitution
(SN2), halogen abstraction (XA), and proton transfer (PT) were considered. Both the
front-side and back-side attack mechanisms were investigated. The key conclusions are
listed below.

(1) In general, the reaction enthalpies of the four product channels are in a decreasing
order of PT > XA > SN2 > OI, given that the oxidative insertion products [CH3–M–X]– are
thermodynamically most stable, and that the SN2 products CH3M + X– the next-most stable.

(2) The oxidative insertion products [CH3–M–X]– (OC) can be formed via two path-
ways. One is the front-side attack of M– at the C-X bond that direct leads to OC and has a
high barrier (OxTS). The other is an SN2-mediated halogen rearrangement pathway, which
has a much lower barrier that crosses the typical back-side attack transition state (invTS).
The latter path is kinetically favored. The order of OxTS > invTS is inverted when M– is
changed to a d-metal atom like Pd. Molecular orbital analysis illustrates the difference is
raised from the differential symmetry of the attacking HOMO orbital, which is s-type for
M– and d-type for Pd.

(3) The front-side attack of M– on the halogen atom of CH3I/CH3Br gives rise to a
halogen-bonded complex [CH3–X···M]–, which can bend the C-X-M bond to proceed along
the SN2 path. Although there is M–X interaction within both the [CH3–M–X]– (OC) and
[CH3–X···M]– (XC) complexes, NBO analysis shows that the former represents a covalent
bond, whereas the latter is a noncovalent interaction.
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(4) Varying the leaving group from F to I decreases the reaction energy and barrier,
consistent with the order of electronegativity of F > Cl > Br > I. No uniform trend is
observed for when M changes from Cu to Ag and Au.

(5) Although the M– nucleophile resembles a main-group base, like F–, as it reacts with
CH3X, some differences were observed. The typical Walden-inversion PES is much flatter
when the nucleophile is M– than when it is F–. The most stable oxidative insertion complex
[CH3–M–X]– can only be formed for M– thanks to the available outer orbitals.

This current study focuses on the stationary points on the PES of M– + CH3X reaction.
It is known that the reaction dynamics may deviate from the stationary PES and result in
numerous dynamic mechanisms. It would be interesting to compare current studies with
further dynamics simulations to expand our understanding of the atomistic mechanisms of
titled reactions.

Supplementary Materials: The following are available online, Computational Methods, Figure S1:
Natural orbitals of the singlet Cu− anion obtained from the CASSCF calculation with an active space
of (12e, 9o). Figure S2: The potential energy profile of the M− + CH3Cl reaction, Figure S3: The
potential energy profile of the M− + CH3Br reaction, Figure S4: Structures of the selected stationary
points along the potential energy profiles of Cu− + CH3X (X = Cl, I) reactions, Figure S5: The intrinsic
reaction coordinates (IRC) path scan of the oxidation addition transition state (OxTS) of a Cu– +
CH3F system. Table S1: Calculated reaction energies and enthalpies of M− + CH3X reactions by
M06-2X functionals, Table S2: Calculated electronic energies and enthalpies of the stationary points
on the potential energy profiles of M− + CH3X reactions with the M06-2X/aug-cc-pVTZ(-PP) method,
Table S3: Natural population analysis (NPA) charges for stationary points of M– + CH3X reactions,
Table S4: T1 diagnostic of selected stationary points calculated by the CCSD(T) method, Table S5:
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Imaginary vibrational frequencies of transition states, Table S7: Energetic comparison of selected
transition states of Pd + CH3Cl reactions at different level of theories, Table S8: The charge transfer
stabilization energy between a lone pair of nucleophiles M− and C-X antibonding the σ* orbital of
halogen-bonded complexes [CH3–X···M]− as calculated under the NBO scheme, X = Br, I, Table S9:
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[CH3–M–X]– under the NBO scheme, Table S10: Harmonic vibrational frequencies; coordinates of all
computed structures.
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