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Introduction

Human epidermal growth factor receptor 2 (EGFR2, also 
called as ERBB2 and HER2), a member of the epidermal 
growth factor receptor family of transmembrane receptor 
tyrosine kinases, is one of essential mediators of cell pro-
liferation and differentiation in embryonic and adult tissues 
[1]. Abnormal activation of HER2 is involved in develop-
ment and progression of various types of cancer [2, 3]; 
in particular, HER2 amplification is observed in 18–25% 
of human breast cancers [3], and is correlated with poor 
prognosis [4]. This family protein is comprised of three 
main domains, extracellular domain (ECD), transmem-
brane domain (TM), and intracellular domain (ICD). 

EGFR family proteins except HER2 bind to specific ligands 
through their ECD, and cause structural change to their 
activated forms, and then interact with a partner protein 
[5–7]. A HER2-specific ligand(s) has not been identified 
[8], but HER2 protein is known to make a homodimer 
or a heterodimer with a member of other EGFR proteins, 
and then drive autophosphorylation in C-terminal tyrosine 
residues, followed by activation of its downstream path-
ways [1, 9]. Thus, its dimer formation is essential for 
initiating the signaling. It has been reported that HER2 
homodimer is increased according to the increase in HER2 
molecules on the cell surface [10]. However, the regula-
tory mechanism of HER2 homodimerization is not fully 
understood.
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Abstract

HER2 is a receptor tyrosine kinase, which is amplified and overexpressed in a 
subset of human cancers including breast and gastric cancers, and is indicated 
in its involvement in progression of cancer. Although its specific ligand(s) has 
not been detected, HER2 homodimerization, which is critical for its activation, 
is considered to be dependent on its expression levels. Here, we demonstrate 
a significant role of HER2 methylation by protein lysine methyltransferase SMYD3 
in HER2 homodimerization. We found that SMYD3 trimethylates HER2 protein 
at lysine 175. HER2 homodimerization was enhanced in the presence of SMYD3, 
and substitution of lysine 175 of HER2 with alanine (HER2-K175A) reduced 
the formation of HER2 homodimers. Furthermore, HER2-K175A revealed lower 
level of autophosphorylation than wild-type HER2. We also identified that 
knockdown of SMYD3 attenuated this autophosphorylation in breast cancer 
cells. Our results imply that SMYD3-mediated methylation of HER2 at Lysine 
175 may regulate the formation of HER2 homodimer and subsequent autophos-
phorylation and suggest that the SMYD3-mediated methylation pathway seems 
to be a good target for development of novel anti-cancer therapy.
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SET and MYND domain-containing protein 3 (SMYD3) 
is a protein lysine methyltransferase, and is overexpressed 
in a wide range of cancers, including breast, colorectal, 
hepatocellular, lung, and pancreatic carcinomas [11–15]. 
Several lines of evidence have indicated that SMYD3 plays 
a pivotal role in human tumorigenesis through methyla-
tion of histone and nonhistone protein substrates [16–21]. 
In this study, we demonstrated trimethylation of a lysine 
175 residue of HER2 by SMYD3, which may affect the 
HER2 homodimerization and the activation of its down-
stream pathways. Our findings may suggest that SMYD3 
is likely to be an important target for development of a 
novel class of anti-cancer drugs.

Material and Methods

Cell lines

293T, HeLa, MCF7, and ZR-75-1 cell lines were obtained 
from American Type Culture Collection (ATCC; Manassas, 
VA), and authentication was tested by DNA profiling for 
polymorphic short tandem repeat (STR) markers (Table 
S1). All cell lines were grown in monolayers in appropri-
ate media supplemented with 10% fetal bovine serum 
and 1% antibiotic/antimycotic solution (Sigma-Aldrich; 
St. Louis, MO): Dulbecco’s modified Eagle’s medium (D-
MEM) for 293T cells; Eagle’s Minimum Essential Medium 
(E-MEM) for HeLa and MCF7 cells; RPMI-1640 medium 
for ZR-75-1 cells. Cells were transfected with FuGENE® 
HD (Promega; Madison, WI) transfection reagent accord-
ing to the manufacturer’s recommendations [22].

Antibodies

The following primary antibodies were used: anti-FLAG 
(rabbit, F7425; Sigma-Aldrich; dilution used in WB: 
1:1000), anti-HA (rabbit, Y-11; Santa Cruz Biotechnology; 
Santa Cruz, CA; dilution used in ICC: 1:1000), anti-SMYD3 
(rabbit, D2Q4V; Cell Signaling Technology; Danvers, MA; 
dilution used in WB: 1:1000), anti-HER2 (rabbit, 29D8; 
Cell Signaling Technology; dilution used in WB: 1:1000), 
anti-phospho HER2 (Tyr 1248) (rabbit, #2247; Cell 
Signaling Technology; dilution used in WB: 1:500), anti-
EGFR (rabbit, D38B1; Cell Signaling Technology; dilution 
used in WB: 1:1000), anti-ACTB (rabbit, #4967; Cell 
Signaling Technology; dilution used in WB: 1:1000), anti-
histone H3 (rabbit, ab1791; Abcam; Cambridge, UK; diluted 
used in: 1:1000), anti-AKT (rabbit, C67E7; Cell Signaling 
Technology; dilution used in WB: 1:1000), anti-phospho 
AKT (Ser 473) (mouse, 587F11; Cell Signaling Technology; 
dilution used in WB: 1:1000), anti-PLCγ1 (rabbit, D9H10; 
Cell Signaling Technology; dilution used in WB: 1:1000), 
anti-phospho PLCγ1 (Tyr 783) (rabbit, #2821; Cell 

Signaling Technology; dilution used in WB: 1:1000), anti-
p44/42 MAPK (Erk1/2) (rabbit, #9102; Cell Signaling 
Technology; dilution used in WB: 1:1000), anti-phospho 
p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (rabbit, 
D13.14.4E; Cell Signaling Technology; dilution used in 
WB: 1:1000).

In vitro methyltransferase assay

Recombinant GST-HER2 (H00002064-P01, Novus biologi-
cals, Littleton, CO) was incubated with SMYD3 enzyme 
and 2  μCi S-adenosyl-l-[methyl-[3]H]-methionine (SAM; 
PerkinElmer, Branchburg, NJ) in a mixture of methylase 
activity buffer (50 mmol/L Tris-HCl at pH 8.8, 10 mmol/L 
dithiothreitol (DTT), and 10  mmol/L MgCl2), for 3  h at 
30°C. After denaturation, samples were subjected to SDS-
PAGE, and visualized by fluorography using EN3HANCE™ 
Spray Surface Autoradiography Enhancer (PerkinElmer). 
Loading proteins were visualized by MemCode™ Reversible 
Stain (Thermo Fisher Scientific, Waltham, MA).

Mass spectrometry

The reaction samples of in vitro methyltransferase assay 
were subjected to SDS-PAGE and stained with Simply 
Blue Safe Stain (Thermo Fisher Scientific). The bands 
corresponding to HER2 were excised and digested in 
gel with trypsin. Then the digested peptides were ana-
lyzed by nano liquid chromatography–tandem mass 
spectrometry (LC-MS/MS) using Q Exactive mass spec-
trometer (Thermo Fisher Scientific). The peptides were 
separated using nano ESI spray column (75  μm 
[ID] × 100 mm [L], NTCC analytical column C18, 3 μm, 
Nikkyo Technos; Tokyo, Japan) with a linear gradient 
of 0–35% buffer B (100% acetonitrile and 0.1% formic 
acid) at a flow rate of 300  nL/min over 10  min (Easy 
nLC; Thermo Fisher Scientific). The mass spectrometer 
was operated in the positive-ion mode, and the MS and 
MS/MS spectra were acquired with a data-dependent 
TOP10 method. The MS/MS spectra were searched against 
the in-house database using local MASCOT server (ver-
sion 2.5; Matrix Sciences; Tokyo, Japan).

Western Blot

Samples were prepared from the cells lysed with CelLytic™ 
M mammalian cell lysis reagent (Sigma-Aldrich) contain-
ing a complete protease inhibitor cocktail (Roche Applied 
Science; Bavaria, Germany) and a phosphatase inhibitor 
cocktail (Roche Applied Science), and whole cell lysates 
or IP products were transferred to nitrocellulose mem-
brane. Protein bands were detected by incubating with 
horseradish peroxidase-conjugated antibodies (GE 
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Healthcare; Buckinghamshire, UK) and visualizing with 
Enhanced Chemiluminescence (GE Healthcare).

Immunoprecipitation

Transfected 293T and HeLa cells were lysed with CelLytic™ 
M supplemented with a complete protease inhibitor cocktail 
(Roche Applied Science) and a phosphatase inhibitor cock-
tail (Roche Applied Science). Cell extracts were incubated 
with anti-FLAG® M2 affinity gel or anti-HA-agarose over-
night. After the beads were washed three times with PBS, 
proteins bound to the beads were eluted by elution buffer 
(3X FLAG® peptide (Sigma-Aldrich) or HA peptide (Sigma-
Aldrich) in PBS) containing a complete protease inhibitor 
cocktail (Roche Applied Science) and a phosphatase inhibi-
tor cocktail (Roche Applied Science). Eluted samples were 
boiled with Lane Marker Sample Buffer (Thermo Fisher 
Scientific), and used for western blot analysis.

siRNA transfection and cell growth assay

siRNA oligonucleotide duplexes were purchased from 
Sigma-Aldrich for targeting the human SMYD3 transcripts 
(SASI Hs01_00188121 and SASI Hs01_00188125). siNega-
tive control (siNC), which consists of three different oli-
gonucleotide duplexes, was used as a control siRNA (Cosmo 
Bio; Tokyo, Japan)[23, 24]. siRNA sequences are described 
in Table S2. siRNA duplexes (100 nmol/L final concentra-
tion) were transfected into ZR-75-1 and MCF7 cells with 
Lipofectamine® RNAiMax Reagent (Thermo Fisher 
Scientific). After 96  h of incubation, cell extracts are frac-
tionated into cytoplasmic protein and nuclear protein 
using NE-PER Nuclear and Cytoplasmic Extraction 
Reagents (Thermo Fisher Scientific).

Results

SMYD3 methylates lysine residue in the ECD 
of HER2

To investigate whether HER2 could be a substrate of any 
protein methyltransferase(s), we first performed an in vitro 
methyltransferase assay using several protein methyltrans-
ferases for an initial screening, and found that SMYD3 
possibly methylates HER2 protein. To validate this pos-
sibility, we further conducted an in vitro methyltransferase 
assay and observed dose-dependent HER2 methylation by 
SMYD3 (Fig.  1A). To identify a methylation site(s) of 
HER2 mediated by SMYD3, we performed liquid chro-
matography–tandem mass spectrometry (LC-MS/MS) 
analysis of in vitro-methylated HER2 protein and identified 
that a lysine 175 (Lys 175) residue in the ECD of HER2 
was trimethylated by SMYD3 (Fig.  1B and C). Lys 175 

was previously suggested as an ubiquitination site, but 
was not well characterized including whether this site is 
monoubiquitinated or polyubiquitinated [25]. To inves-
tigate the biological significance of this methylation, we 
performed an ubiquitination assay as well as cycloheximide 
(CHX)-chase analysis using the methods reported previ-
ously [26, 27], but we were unable to confirm polyubiq-
uitination at this residue or found no evidence indicating 
the importance of this methylation on the protein stability 
(data not shown).

SMYD3-mediated methylation at Lys 175 
affects the phosphorylation level of HER2

We previously reported that molecular functions of lysine 
methylation are classified into at least five different classes 
including one class to regulate further modification(s) of a 
substrate protein [13]. To examine whether SMYD3-mediated 
methylation influences the phosphorylation status of HER2 
protein, we knocked down SMYD3 in breast cancer cell 
lines using specific siRNAs and compared autophosphoryla-
tion levels of HER2 at Tyr 1248 that was indicated to be 
essential for HER2 activity [28]. We found that siSMYD3 
treatment clearly attenuated the phosphorylation level of 
HER2 in both ZR-75-1 and MCF7 cells (Fig.  2A and B).

To gain insight into possible effects of the methylation, 
we examined the known three-dimensional structure of 
the ECD of HER2 (Fig.  2C). The ECD consists of four 
structural domains I, II, III, and IV. Of them, domain 
II is known to form the dimerization interface. Lys 175 
is located in domain I, and its side-chain amino group 
makes a hydrogen bond with the backbone carbonyl group 
of a glycine 223 (Gly 223) residue in domain II. The 
methylation of Lys 175 can disrupt the hydrogen bond. 
It is possible that the disruption may allow the domains 
to change their interdomain spatial relationship and then 
affect the dimerization event.

SMYD3-mediated Lys 175 methylation 
affects the formation of HER2 homodimer

To assess the effect of SMYD3-mediated HER2 methylation 
on the formation of HER2 homodimer, we transfected 
both FLAG-tagged HER2 (FLAG-HER2) and HA-tagged 
HER2 (HA-HER2) together with mock vector or SMYD3-
expressing vector into HeLa cells, followed by immuno-
precipitation using anti-FLAG® M2 affinity gel. Subsequent 
western blot analysis showed that coimmunoprecipitation 
of HA-HER2 was significantly increased in the presence 
of SMYD3 regardless of EGF stimulation (Fig.  3A). In 
contrast, coimmunoprecipitation of EGFR was unchanged 
in either the absence or presence of SMYD3 overexpres-
sion, indicating that SMYD3 enhances the HER2 
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homodimerization but not heterodimerization with other 
EGFR family members. To further verify this possibility, 
we prepared a vector-expressing FLAG-tagged HER2 with 
a substitution of Lys 175 with an alanine residue (FLAG-
HER2-K175A). We transfected HA-tagged wild-type HER2 
(HA-HER2-WT) vector and SMYD3 expression vector into 
293T cells together with FLAG-tagged wild-type HER2 
(FLAG-HER2-WT) vector or FLAG-HER2-K175A vector. 
After immunoprecipitation with monoclonal anti-HA-
agarose, we performed western blot analysis and found 
that the coimmunoprecipitated FLAG-HER2-K175A protein 
level was significantly lower than that of FLAG-HER2-WT, 
indicating that this methylation site is critically important 
for HER2 homodimerization (Fig. 3B). We also transfected 
same vectors into 293T cells, and reversely immunopre-
cipitated cell extracts with anti-FLAG® M2 affinity gel and 
obtained a similar result as Figure  3B (Fig.  3C).

Subsequently, to verify the biological significance of 
HER2-K175 methylation with SMYD3, we transfected 
FLAG-HER2-WT vector or FLAG-HER2-K175A vector 
into 293T cells with SMYD3 vector or mock vector, and 
compared the autophosphorylation level of HER2. As 
shown in Figure  3D, the phosphorylation level of WT-
HER2 was clearly elevated under the SMYD3-
overexpression condition, suggesting that SMYD3-mediated 
methylation at Lys 175 may affect the formation of the 
HER2 homodimer and autophosphorylation status of 
HER2.

Effects of SMYD3-mediated methylation on 
downstream pathways

Three growth signaling pathways, PI3K-AKT, RAS-MAPK, 
and PLCγ-PKC pathways, are known to be mediated by 

Figure 1. SMYD3 trimethylates HER2 at Lys 175. (A) In vitro methyltransferase assay of HER2. Recombinant GST-HER2 protein was incubated with 
different concentration of SMYD3 in the presence of 3H-SAM, and methylation signal was detected by autoradiography (upper panel). Amounts of 
loading proteins were evaluated by staining with MemCode™ Reversible Protein Stain (lower panel). *: nonspecific signals of SMYD3 automethylation. 
(B) MS chromatograms of unmodified and the trimethylated HER2 171-188 peptide. (C) The MS-MS spectrum corresponding to the trimethylated 
HER2 171-188 peptide. The 42 Da increase of the Lys175 was observed. (D) LC-MS/MS analysis showed trimethylation of Lys 175. Theoretical values 
of MS fragments are summarized.
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HER2 activation. MAP3K2 was previously reported as a 
substrate of SMYD3 and the SMYD3-mediated methyla-
tion was suggested to affect the phosphorylation status 
of ERK1/2 [17]. Since phosphorylation levels of these 
downstream genes are enhanced by HER2 overexpression 
[29], we introduced WT- or K175A- HER2 vector into 
HeLa cells and compared the phosphorylation levels of 
downstream genes. Expectedly, phosphorylation levels of 
AKT and PLCγ1 were much higher in the cells transfected 
with WT-HER2 than those with K175A-HER2 (Fig.  4A).

Discussion

HER2 is well known to play an essential role in tumori-
genesis in several types of cancer through activation of 
its downstream signaling pathways involved in cell pro-
liferation, differentiation, angiogenesis, and apoptosis [3]. 
Dimer formation is considered to be an essential process 
to activate these downstream signaling pathways. Since 

HER2-specific ligand has never been identified, overex-
pression of HER2 is thought as the only mechanism to 
regulate homodimerization [10].

In this study, we have demonstrated that HER2 was 
trimethylated at Lys 175 by SMYD3, and that SMYD3-
mediated HER2 methylation enhanced HER2 homodimeri-
zation and HER2-downstream pathways. In addition, we 
showed that knockdown of SMYD3 reduced the HER2 
phosphorylation level and concordantly overexpression of 
SMYD3 increased its phosphorylation level, indicating that 
SMYD3-induced HER2 methylation is likely to enhance 
HER2 phosphorylation. The structural analysis implied 
that Lys 175 on domain I makes a hydrogen bond with 
Gly 223 on domain II and SMYD3-mediated methylation 
at Lys 175 could disrupt the hydrogen bond. Hence, the 
interdomain interaction between domain I and domain 
II might be influenced and then the formation of HER2 
dimer could be enhanced. Indeed, we confirmed that the 
interaction of HA-HER2 and FLAG-HER2 was significantly 

Figure 2. Knockdown of SMYD3 attenuates HER2 activity. (A and B) Effects of SMYD3 knockdown on HER2 phosphorylation levels in ZR-75-1 cells 
(A) and MCF7 cells (B). Cells were transfected with one control siRNA (siNC) or either of two SMYD3 siRNAs (#1 and #2). After incubation for 96 h, 
cell extracts were fractionated into cytoplasmic and nuclear proteins, then samples were immunoblotted with anti-phospho HER2 (Tyr 1248) (#2247), 
anti-HER2 (29D8), anti-SMYD3 (D2Q4V), anti-ACTB (#4967), and anti-Histone H3 (ab1791). (C) The known three-dimensional structure of the ECD 
of HER2. Only part of domain I (blue) and domain II (orange) is shown. The side-chain amino group of Lys 175 in domain I makes a hydrogen bond 
with the backbone carbonyl group of Gly 223 in domain II. The drawing was prepared from the Protein Data Bank (entry code, 3WLW)[33] using 
Molecular Operating Environment (MOE), 2015.10 (Chemical Computing Group Inc.).
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higher in the presence of SMYD3. In addition, HER2-
K175A protein, in which a methylation lysine site in HER2 
was substituted with an alanine residue, showed a very 
low interaction with HER2-WT protein, compared to the 
interaction between HA-HER2-WT and FLAG-HER2-WT, 
indicating that SMYD3 may play a pivotal role on HER2 
activation through enhancement of HER2 homodimeriza-
tion (Fig.  4C). Moreover, the other important finding of 
this study is that the methylation site of HER2 is located 
in the ECD. Indeed, ECDs in some chemokine receptors 
are also posttranslationally modified. For instance, human 
chemokine receptors CCR2b, CCR5, CX3CR1, and CXCR4 
are reported to be sulfated and/or glycosylated at the 
ECDs [30–32]. These modifications seem to have diverse 
consequences for receptor ligand-binding activities, which 
may affect their functions as coreceptors of the human 
immunodeficiency virus infection. In addition, current 

bioinformatics analysis and subcellular localization analysis 
using high-quality antibody indicate that SMYD3 appears 
to be localized into the Golgi apparatus beside the nucleus 
and cytoplasm, implying that the ECD of HER2 may be 
methylated in the Golgi apparatus by SMYD3. Although 
the diverse functions of posttranslational modifications at 
ECDs of transmembrane receptor tyrosine kinases such 
as the epidermal growth factor receptor family still remain 
to be elucidated, further studies may unveil their physi-
ological importance besides our current findings.

As mentioned above, we and other groups reported 
that SMYD3 was highly expressed in various types of 
human cancer [11–15], and is implicated to have an 
oncogenic function [18–21]. However, the biological sig-
nificance of nonhistone protein methylation by SMYD3 
has not been well characterized. In recent years, VEGFR1 
and MAP3K2 were reported as substrates of SMYD3 and 

Figure 3. SMYD3-mediated methylation enhances the formation of HER2 homodimer. (A) HeLa cells were transfected with FLAG-HER2 and HA-
HER2, with Mock vector or SMYD3-expressing vector. After 24 h of incubation, cells were treated with 0 or 100 ng/mL of EGF. Cell extracts were 
immunoprecipitated with anti-FLAG® M2 affinity gel, and immunoblotted with anti-HA (Y-11), anti-FLAG (F7425), anti-HER2 (29D8), anti-EGFR 
(D38B1), anti-SMYD3 (D2Q4V), and anti-ACTB (#4967). (B and C) 293T cells were transfected with HA-HER2-WT, and FLAG-HER2-WT or FLAG-HER2-
K175A in the presence of SMYD3 expression vector and incubated for 48 h. Cell lysates were immunoprecipitated with anti-HA-agarose. (B) or anti-
FLAG® M2 affinity gel. (C), then immunoblotted with anti-FLAG (F7425), anti-HA (Y-11), anti-SMYD3 (D2Q4V), and anti-ACTB (#4967). (D) 293T cells 
were cotransfected with FLAG-HER2-WT or FLAG-HER2-K175A, and Mock vector or SMYD3-expressing vector. After 48 h of incubation, cell lysates 
were immunoprecipitated with anti-FLAG® M2 affinity gel and immunoblotted with anti-FLAG (F7425), anti-phospho HER2 (Tyr 1248) (#2247), anti-
SMYD3 (D2Q4V), and anti-ACTB (#4967). The signal intensities of phosphorylated HER2 were quantified, and normalized by each FLAG level.
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the possible functions of methylation on these proteins 
were discussed [16, 17]. These findings imply that the 
protein lysine methyltransferase SMYD3 is thought to have 
unique methylation functions that influence known signal-
ing pathways.

In summary, we have demonstrated that SMYD3 may 
play its oncogenic role through HER2 methylation. This 
study is the first report indicating the high correlation 
between SMYD3-mediated methylation and HER2 homodi-
merization, supporting that the development of specific 
inhibitors targeting SMYD3 methylation pathway will be 
a promising approach for development of a novel class 
of anti-cancer therapy.
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