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Abstract
Background and Objectives
EEG is widely used for prediction of neurologic outcome after cardiac arrest. To better understand the
relationship between EEG and neuronal injury, we explored the association between EEG and neurofilament
light (NfL) as a marker of neuroaxonal injury, evaluated whether highly malignant EEG patterns are reflected
by high NfL levels, and explored the association of EEG backgrounds and EEG discharges with NfL.

Methods
We performed a post hoc analysis of the Target Temperature Management After Out-of-Hospital Cardiac Arrest
trial. Routine EEGs were prospectively performed after the temperature intervention ≥36 hours postarrest. Patients
who awoke or died prior to 36 hours postarrest were excluded. EEG experts blinded to clinical information classified
EEG background, amount of discharges, and highly malignant EEG patterns according to the standardized
American Clinical Neurophysiology Society terminology. Prospectively collected serum samples were analyzed for
NfL after trial completion. The highest available concentration at 48 or 72 hours postarrest was used.

Results
A total of 262/939 patients with EEG andNfL data were included. Patients with highly malignant EEG patterns had
2.9 times higherNfL levels than patients withmalignant patterns andNfL levels were 13 times higher in patients with
malignant patterns than those with benign patterns (95% CI 1.4–6.1 and 6.5–26.2, respectively; effect size 0.47; p <
0.001). Both background and the amount of discharges were independently strongly associated with NfL levels (p <
0.001). The EEG background had a stronger association with NfL levels than EEG discharges (R2 = 0.30 and R2 =
0.10, respectively). NfL levels in patients with a continuous background were lower than for any other background
(95% CI for discontinuous, burst-suppression, and suppression, respectively: 2.26–18.06, 3.91–41.71, and
5.74–41.74; effect size 0.30; p < 0.001 for all). NfL levels did not differ between suppression and burst suppression.
Superimposed discharges were only associated with higher NfL levels if the EEG background was continuous.

Discussion
Benign, malignant, and highly malignant EEG patterns reflect the extent of brain injury as measured by NfL in
serum. The extent of brain injury is more strongly related to the EEG background than superimposed
discharges. Combining EEG and NfL may be useful to better identify patients misclassified by single methods.
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Trial Registration Information
ClinicalTrials.gov NCT01020916.

EEG is the most commonly used method for predicting neuro-
logic outcome after cardiac arrest (CA).1 Within seconds of cir-
culatory arrest, the EEG becomes suppressed and after return of
circulation, if recovery occurs, neuronal activity progresses grad-
ually from a suppressed to amore continuous background.2,3 The
specific time point of EEG examination is therefore considered
crucial for its prognostic relevance. An early recovery of a con-
tinuous and normal voltage background within the first 12–24
hours is associated with good neurologic outcome.4-6

A classification of EEG patterns into benign, malignant, and
highly malignant was proposed based on the terminology
from the American Clinical Neurophysiology Society
(ACNS).7,8 This classification concerns routine EEGs
obtained after the first 36 hours postarrest. It has been ex-
ternally validated and found to predict neurologic outcome
after CA with high specificity and substantial interrater
reliability.4,9,10 Two background patterns are considered
highly malignant; suppression (all EEG activity <10 μV) and
burst-suppression (suppression periods alternate with bursts
of cortical activity).7,10 Either of these background patterns
≥24 hours after CA, regardless of the presence of discharges, is
considered a strong predictor of poor neurologic outcome
according to recent guidelines.11,12

The presence of abundant rhythmic/periodic discharges is
considered a criterion of a malignant EEG and outcome is
often poor.7,10 Discharges may reflect severe ischemic damage
and antiepileptic treatment might not improve outcome.13 In
a number of patients, however, neuronal injury is less exten-
sive and anticonvulsant treatment may be beneficial.14

Studies for prediction of neurologic outcome often permit
clinical decision-making based on the results from the same
examinations, and the risk of self-fulfilling prophecies cannot
be excluded. In contrast, highly sensitive blood biomarkers for
brain injury have been used as surrogate markers in clinical
studies.15,16 Brain injury markers have the advantage of being
objective and quantitative indicators, especially if not available
upon clinical decision-making. The most accurate blood
biomarker of brain injury after CA described to date is the
neuroaxonal injury marker neurofilament light (NfL), which
is superior to S100B, neuron-specific enolase (NSE), and
tau.17,18 Analysis of NfL is not standardized nor do validated

cutoff values exist for its use in neuroprognostication after CA.
Nonetheless, using an early quantitative measure such as NfL
levels as a surrogate marker for neuroaxonal injury could give
unique insights into whether EEG abnormality is directly
associated with brain injury and not only neurologic outcome,
which may be biased by self-fulfilling prophecies.

We hypothesized that the hierarchy of benign, malignant, and
highly malignant EEG patterns is reflected by increasing NfL
levels as a measure of acute brain injury after CA. We further
explored associations between NfL and 2 fundamental ele-
ments of the EEG: background and superimposed discharges.
Based on the prognostic accuracies of the highly malignant
pattern to predict poor outcome after CA, we hypothesized
that the EEG background is more strongly associated with
brain injury than EEG discharges.

Methods
Patients
This is a post hoc analysis of the Target Temperature Man-
agement After Out-of-Hospital Cardiac Arrest trial (TTM-trial),
an international multicenter trial randomizing patients ≥18 years
of age with CA of a presumed cardiac origin to a temperature
control intervention of either 33°C or 36°C, as previously pub-
lished (clinicaltrials.gov; NCT01020916).19,20 A total of 939
patients were included in the modified intention-to-treat pop-
ulation.19 Detailed information on neurologic prognostication
and decisions on level of care have been reported previously.21-23

Neurologic outcome was assessed at 6 months postarrest
according to the Cerebral Performance Category (CPC) Scale.
Poor outcomewas defined as CPC 3–5 (severe cerebral disability,
vegetative state, or death). The presence of any clinical seizures
was prospectively documented by the treating physician.24

Standard Protocol Approvals, Registrations,
and Patient Consents
The protocol of the trial was approved by the ethics committees in
the participating countries in accordance with national require-
ments and the principles of theDeclaration ofHelsinki.19,25,26 A list
of participating sites and ethics approvals for each country has been
published.19 Inclusion in the study was considered an emergency
procedure due to the time-sensitive intervention studied. Partici-
pants in the study were per eligibility criteria unconscious at the

Glossary
ACNS = American Clinical Neurophysiology Society; ANOVA = analysis of variance; CA = cardiac arrest; CPC = Cerebral
Performance Category;NfL = neurofilament light;NSE = neuron-specific enolase; ROSC = return of spontaneous circulation;
TTM-trial = Target Temperature Management After Out-of-Hospital Cardiac Arrest trial; WLST = withdrawal of life-
sustaining therapy.
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time of inclusion and therefore could not consent to inclusion.
Consent from a legal surrogate was obtained as soon as possible or
was waived (next of kin only informed about the trial) as per
decision of the ethics committees in each country. Written in-
formed consent was obtained as soon as possible from all partic-
ipants who regained mental capacity.19

NfL Biomarker Measurements
Within TTM-trial, 29/36 trial sites prospectively collected
serum samples at 24, 48, and 72 hours after return of
spontaneous circulation (ROSC), which were subsequently
frozen and stored in a central biobank.27 In this study, the
highest level of NfL at 48 or 72 hours (peak NfL) was used
for the analyses because median NfL concentrations were
twice as high at 48–72 hours postarrest compared with 24
hours.17 Serum NfL concentrations were measured using an
in-house ultrasensitive Single molecule array (Simoa) assay
on an HD-1 Analyzer (Quanterix). The measurements were
performed after trial completion in 1 round of experiments
using 1 batch of reagents by board-certified laboratory
technicians who were blinded to clinical data.17 The results
were not part of the prognostication algorithm used to guide
patient management.

EEG Procedures
Full montage routine EEGs were prospectively recorded in
patients who were still comatose after the 36 hours temper-
ature control intervention as previously reported and a local
interpretation was available to the treating physician.7,10,28

EEG was mandated as part of the neurologic evaluation in
patients still unconscious after the temperature intervention.
Patients who died or were awake and following commands
prior to neuroprognostication were excluded from this study.
After study completion, EEGs were collected to a central
database and reviewed systematically by blinded investigators.
EEG patterns were classified according to the grading system
described by Westhall et al.7 using the standardized ACNS
terminology.7,8,10

c Benign EEG–continuous or nearly continuous back-
ground without malignant features is described below

c Malignant EEG—discontinuous background, reversed
anterio-posterior gradient or low-voltage background,
abundant (≥50% of the recording) rhythmic or periodic
discharges or unequivocal seizures

c Highly malignant EEG—burst-suppression or suppres-
sion background with or without discharges

Background activity was categorized into 4 groups according
to continuity:

c Continuous or nearly continuous background (suppres-
sion periods <10%)

c Discontinuous background (suppression periods 10–<50%)
c Burst-suppression background (suppression periods ≥50%)
c Suppressed background (all background activity sup-

pressed <10 μV)

The amount of electrographic discharges was categorized into
3 groups:

c None/rare—no discharges or rare rhythmic/periodic
discharges (<1% of the recording) or sporadic epilepti-
form discharges <1/10 seconds

c Intermediate—occasional to frequent rhythmic/periodic
discharges (1–<50% of the recording) or sporadic
epileptiform discharges >1/10 seconds

c Abundant—abundant to continuous rhythmic/periodic
discharges (≥50% of the recording) or at least 1
unequivocal electrographic seizure

Statistical Analysis
Variables are presented as numbers, percentages, and median
valueswhere applicable. For all statistical analyses, peakNfL values
were log10-transformed. One-way analysis of variance (ANOVA)
was used for the tests of associations between NfL levels and
different EEG features. t Tests and 1-way ANOVA with a Tukey
honestly significant difference was used for the between-group
analyses. To assess the association between EEG background and
discharges with the NfL levels, we used a 2-way ANOVA. The
effect measures presented are the mean difference of log10 NfL
between the groups transformed back to the original scale dem-
onstrating the multiplicative difference between the groups. A p
value of <0.05 was considered significant.We used R version 3.6.0
and SPSS Statistics version 25 for the statistical analyses.

Data availability
Anonymized data not published within this article may be
shared at the request of any qualified investigator for purposes
of replicating procedures and results.

Results
Patients
We included all patients who were still unconscious at 36
hours postarrest who had a routine EEG after rewarming and
at least 1 NfL measurement at 48 or 72 hours (n = 262)
(Figure 1). Included patients had longer duration from CA to
ROSC, longer hospital stays, more often a poor neurologic
outcome, higher NfL levels, and withdrawal of life-sustaining
therapy (WLST) were more often performed compared with
patients excluded from the study (Table 1). Eligible patients
with true missing data (n = 70) had similar characteristics as
included patients.

EEG recordings had aminimum duration of 10minutes with a
median time fromCA to EEG of 74 hours (interquartile range
58–100 hours). During EEG registration, 101/262 (39%)
patients had ongoing sedation, of whom 67/101 (66%) had
no electrographic discharges.

NfL inHighlyMalignant,Malignant, andBenign
EEG Patterns
Twenty-eight percent of patients fulfilled criteria of a highly
malignant EEG pattern, 38% had a malignant EEG, and 34%
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had a benign EEG with no malignant features (Table 2). NfL
levels were 2.9 times higher in patients with highly malignant
compared with malignant EEG patterns (95% CI 1.4–6.1, p <
0.001) and 13 times higher in patients with malignant com-
pared with benign EEG patterns (95% CI 6.5–26.2, p < 0.001;
effect size 0.47) (Figure 2). When categorizing EEGs, 20
patients with a malignant pattern were classified to have a
continuous background without discharges due to a reversed
anterio-posterior gradient, low voltage, or a combination of
both. Furthermore, 13 patients with a benign pattern were
classified to have a continuous background with intermediate
discharges because the amount of discharges did not fulfill the
criteria for a malignant pattern. WLST due to neurologic
reasons was performed in 8/88 (9%) patients with benign,
55/100 (55%) patients with malignant, and 50/74 (68%)
patients with highly malignant EEG patterns.

EEG Background Continuity and NfL
EEG background was continuous in 57%, discontinuous in 15%,
burst-suppression in 11%, and suppression in 17% (Table 2).
NfL concentrations for patients with a continuous background
were lower than for any other background (discontinuous, 95%
CI 2.26–18.06; burst-suppression, 95% CI 3.91–41.71; and
suppression, 95% CI 5.74–41.74; effect size: 0.30, p < 0.001 for
all) (Figure 3A). NfL levels did not differ between discontinuous
and burst-suppression background (p = 0.42) or between burst-
suppression and suppressed background (p = 0.97).

Electrographic Discharges and NfL
Most EEGs (63%) were classified as without discharges; 9%
had an intermediate amount and 28% had abundant dis-
charges (Table 2). NfL levels were higher in patients with
abundant discharges than in patients without discharges (p <
0.001) (Figure 3B). Overall, 24% of patients had ongoing
antiseizure medication during EEG recordings (Table 1).

Only 27/165 (16%) patients without electrographic dis-
charges were treated with antiseizure medication, in contrast
to 11/23 (48%) with an intermediate amount and 44/74
(59%) patients with abundant discharges. We found that 127/
262 (48%) patients had any type of clinical seizures during the
first 3 days after CA or during the EEG recording. Of these
127 patients, 53 (42%) had no discharges, 14 (11%) had an
intermediate amount of discharges, and 60 (47%) had
abundant discharges on the EEG. When excluding patients
with clinical seizures from our model, NfL levels remained
higher in patients with abundant discharges than in patients
without discharges (p = 0.002; data not shown).

NfL When Combining EEG Background
and Discharges
When evaluating the EEG background and the presence of
discharges together, both the background (p < 0.001) and
discharges (p < 0.001) were independently associated withNfL
levels (Figure 4), the background explaining a larger proportion
of variance than discharges (R2 = 0.30 and R2 = 0.10, re-
spectively). Discharges were associated with higher NfL levels
only in the group of patients with a continuous EEG back-
ground (p < 0.001). Hence, when the background was burst-
suppression or suppression, there was no difference in NfL
levels among patients with discharges compared with patients
without discharges (p = 0.43 and p = 0.06, respectively). No-
tably, no patient with a discontinuous background survived to
6-month follow-up if discharges were present, and NfL levels in
patients with this combination were high.

Discussion
We confirmed that the standardized classification of post-CA
EEGs into benign, malignant, and highly malignant patterns7

Figure 1 Flow Chart of Patient Inclusion

The modified intention-to-treat population in the Target
Temperature Management After Out-of-Hospital Cardiac
Arrest trial (TTM-trial) consisted of 939 patients. Nine study
sites were excluded due to technical issues in providing EEGs
for export in sufficient quality required for centralized eval-
uation. EEG: routine EEG performed after rewarming but
<14 days postarrest. *21/274 (7.6%) patients who were
awake prior to prognostication still had poor neurologic
outcome at 6 months. NfL = neurofilament light.
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is reflected by increasing NfL concentrations, indicating the
degree of neuroaxonal injury. EEG background and electro-
graphic discharges at 36 hours or later postarrest were in-
dependently associated with blood NfL levels, where the
background had the stronger association with NfL.

The highly malignant EEG pattern, which includes any
background with ≥50% suppression, has very high specificity
for prediction of poor neurologic outcome.11 Substantially
elevated NfL levels in most of these patients quantitatively
confirm that highly malignant backgrounds are indeed asso-
ciated with extensive neuroaxonal injury.7,10

Benign EEG patterns ≥36 hours postarrest indicate a good prog-
nosis, whereas malignant EEG patterns represent an intermediate
group with both good and poor clinical outcomes.7,10,11 In com-
mon with other classifications of EEG patterns, the classification

that we used includes combinations of background patterns and
superimposed discharges. To better understand which elements
are more related to the extent of neuronal injury, we chose to
evaluate EEG background and discharges separately.

Background activity was divided into 4 groups according to the
amount of suppression periods. We did not detect any differ-
ence in NfL levels between suppressed and burst-suppression
backgrounds. Both backgrounds could have different patho-
physiologic correlates but demonstrate similar degrees of
neuroaxonal injury, where a suppressed background may in-
dicate severe functional damage to pyramidal cells or inter-
neurons and burst-suppression a severely damaged cortex with
less affected subcortical areas.29-31 A histopathologic study
found severe hypoxic-ischemic encephalopathy in 96% of pa-
tients with suppression or burst-suppression backgrounds.29

On a group level, suppression of EEG background through

Table 1 Patient Characteristics

Eligible

All excluded patients (n = 677)Included (n = 262) True missing data (n = 70)

Age, y 65 (58–73) 65 (57–73) 65 (56–73)

Male 214 (81.7) 54 (77.1) 547 (80.8)

Minutes to ROSC 27 (20–42) 30 (25–51) 25 (16–37)

Peak NfL, pg/mL 2,316 (159–7,638) 2,726 (482–8,779) 95 (40–585)a

Hours from cardiac arrest to EEG 74 (58–100) — —

Antiseizure medication 82 (31.3) — —

Ongoing sedation 101 (38.5) — —

CPC at 6 monthsb

1: Good cerebral performance 56 (21.4) 14 (20.0) 322 (48.0)

2: Moderate cerebral disability 15 (5.7) 2 (2.9) 47 (7.0)

3: Severe cerebral disability 12 (4.6) 5 (7.1) 25 (3.7)

4: Coma or vegetative state 7 (2.7) 0 (0) 0 (0)

5: Dead 172 (65.6) 49 (70.0) 277 (41.3)

WLST performed 132 (50.4) 34 (48.6) 184 (27.2)

WLST neurologic 113 (85.6) 25 (73.5) 98 (53.3)

Presumed cause of death

Neurologic 125 (72.7) 34 (69.4) 142 (51.3)

Cardiac 26 (15.1) 8 (16.3) 82 (29.6)

Multiorgan failure 10 (5.8) 7 (14.3) 46 (16.6)

Other 11 (6.4) 0 (0) 7 (2.5)

Abbreviations: CPC = Cerebral Performance Category score at 6months follow-up; NfL = neurofilament light; ROSC = return of spontaneous circulation;WLST
= withdrawal of life-sustaining therapy.
Presumed cause of death as per treating physician. Characteristics of included patients with both EEG and peak NfL (highest available NfL concentration in
serum at either 48 or 72 hours postarrest) (n= 262), eligible patients with true missing data (n = 70), and all patients excluded from the analysis (n = 677) as
described in the flowchart in Figure 1. Results are presented as numbers (percentages) or median (interquartile range) as appropriate.
a Data available for 394 patients.
b Missing CPC (included patients, n = 0; excluded patients, n = 6).
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sedatives has not been found to influence the reliability of poor
outcome prediction; nonetheless, false-positive cases have been
reported.7,10,32 In our cohort, 1 patient had a good outcome
despite a burst-suppression background, presumably due to
ongoing significant sedation, as previously reported.10 The
peak NfL concentration in this patient was within age-
dependent normal values of our laboratory, illustrating how the
combination of EEG and a quantitative biomarker may reduce
the risk of falsely pessimistic predictions.33

In patients with a discontinuous background, we found a
broad range of NfL levels, indicating that an isolated finding
of a discontinuous background does not reliably indicate
severe brain injury. This is in accordance with the 2021
guidelines of the European Resuscitation Council and the
European Society of Intensive Care Medicine stating that a
discontinuous background has low prognostic performance
within the first 24 hours postarrest and inconsistent per-
formance thereafter.12

Table 2 EEG Findings and Peak NfL Levels

N (%) Peak NfL, pg/mL Poor outcome, n (%)

EEG patterns

Benign 88 (33.6) 106 (43–854) 34/88 (38.6)

Malignant 100 (38.2) 3,141 (851–7,780) 84/100 (84.0)

Highly malignant 74 (28.2) 7,712 (4,016–14,391) 73/74 (98.6)

EEG background

Continuous/nearly continuous 148 (56.5) 567 (62–2,925) 83/148 (56.1)

Discontinuous 40 (15.2) 4,423 (1,876–7,757) 35/40 (87.5)

Burst suppression 29 (11.1) 7,277 (4,048–11,866) 28/29 (96.6)

Suppression 45 (17.2) 7,713 (4,134–19,151) 45/45 (100)

EEG discharges

None 165 (63.0) 967 (68–7,573) 100/165 (60.6)

Intermediate 23 (8.8) 2,244 (743–5,501) 19/23 (82.6)

Abundant 74 (28.2) 4,462 (1,980–7,907) 72/74 (97.3)

Background Discharges

Continuous None 95 (36.3) 98 (42–929) 36/95 (37.9)

Intermediate 17 (6.5) 1,023 (444–3,020) 13/17 (76.5)

Abundant 36 (13.7) 3,295 (1,532–9,029) 34/36 (94.4)

Discontinuous None 15 (5.7) 2,801(237–7,573) 10/15 (66.7)

Intermediate 2 (0.8) 11,361 (6,765–15,957) 2/2 (100)

Abundant 23 (8.8) 4,658 (2,253–7,768) 23/23 (100)

Burst suppression None 16 (6.1) 8,965 (4,426–15,144) 15/16 (93.8)

Intermediate 4 (1.5) 4,327 (2,715–10,738) 4/4 (100)

Abundant 9 (3.4) 7,142 (3,918–8,243) 9/9 (100)

Suppression None 39 (14.9) 9,279 (4,537–21,939) 39/39 (100)

Intermediate 0 (0) — —

Abundant 6 (2.3) 3,461 (1,548–6,931) 6/6 (100)

Abbreviation: NfL = neurofilament light.
Overview of EEG background and discharges, combinations of EEG findings, and classifications of EEG patterns according toWesthall et al.7 EEG findings and
poor outcome at 6 months follow-up (Cerebral Performance Category 3–5) are presented as numbers (percentages). Peak NfL (the highest available NfL
serum levels at 48 or 72 hours postarrest) in pg/mL is presented in median (interquartile range). Poor neurologic outcome was defined as Cerebral
Performance Category Scale 3–5 (severe cerebral disability, vegetative state, or death) at 6 months follow-up.
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The lowest NfL levels in our cohort were found in patients
with a continuous EEG background. However, there were also
a substantial amount of patients with poor outcome with

highly elevated levels of NfL in this group. An early return of a
continuous background within the first 12–24 hours post-
arrest is often predictive of a good neurologic outcome.34,35 In

Figure 2 Highly Malignant, Malignant, and Benign EEG Patterns and Serum NfL

Boxplot demonstrating logarithmic peak neuro-
filament light (NfL) levels (highest serum neuro-
filament levels at either 48 or 72 hours
postarrest) for EEG patterns as defined by
Westhall et al.7: “highly malignant”: burst-sup-
pression or suppression with or without dis-
charges; “malignant”: discontinuous, reversed
anterio-posterior gradient or low-voltage back-
ground, abundant rhythmic or periodic dis-
charges or unequivocal seizures; “benign”:
continuous background without malignant fea-
tures. Neurologic outcome for each patient is
indicated through “X” (poor outcome, Cerebral
Performance Category [CPC] 3–5) or “O” (good
outcome, CPC 1–2) at 6 months’ follow-up. Peak
NfL was increasingly higher in more malignant
EEG patterns (p < 0.001).

Figure 3 EEG Background, Discharges, and Serum NfL

Boxplots demonstrating logarithmic peak neurofilament light (NfL) according to EEG background (A) or the presence of discharges (B). Neurologic outcome
for each patient is indicated through “X” (poor outcome, Cerebral Performance Category [CPC] 3–5) or “O” (good outcome, CPC 1–2) at 6 months’ follow-up.
The highest peak NfL levels were seen in patients with burst-suppression or suppression. In patients with a continuous background, patients with poor
outcome had higher NfL levels than did patients with good outcome (median 60.7 [interquartile range (IQR) 32.8–118.7] pg/mL vs median 998.3 [IQR
366.0–3,449.7] pg/mL; p < 0.005). Peak NfL was higher in patients with an abundant amount of discharges than in patients without discharges (p < 0.001). In
patients without discharges, NfL levelswere higher in patientswith poor outcome than in patientswith good outcome (median 60.7 [IQR 32.9–128.4] pg/mL vs
median 5,305.5 [IQR 1,064.8–12,926.6] pg/mL; p < 0.005).
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analogy with brainstem reflexes, a continuous background
may recover later than 24 hours postarrest despite extensive
brain injury and is therefore not automatically predictive of
good outcome.4,23 At relatively long latency after arrest, this
pattern could still be associated with severe histopathologic
brain damage.29 Whether the patients in our cohort restored a
continuous background late cannot be determined, as con-
tinuous EEG monitoring was not used. We hypothesize that
this may have been the case in patients with poor outcome
with severely elevated NfL levels. Furthermore, a continuous
background can also display malignant features such as a re-
versed anterio-posterior gradient.7

The presence of abundant discharges (>50% of the recording)
is also a criterion for a malignant EEG and indicates a poor
prognosis.7,10 We found that when evaluating discharges irre-
spective of EEG background, patients with an abundant load
had higher median NfL concentrations than patients without
discharges. The group of patients with an intermediate amount
of discharges did not differ in NfL levels compared with the
other 2 groups. In another substudy from the TTM-trial using

continuous EEG monitoring with a reduced montage, NfL
levels were elevated at 72 hours postarrest in patients with
electrographic status epilepticus compared with patients with-
out.36 Another study compared EEG and NSE and found no
difference in levels between patients with or without discharges,
possibly due to lack of separation between different amounts
of discharges.37 Electrographic discharges are considered a
sign of increased excitatory activity of the pyramidal cells due
to the loss of inhibitory interneurons, caused by either severe
encephalopathy or injury to specific brain areas only.38 On
neuroimaging, discharges can be associated with both cor-
tical and subcortical lesions, but MRI was reported as normal
in 20% of patients with generalized periodic discharges.39 In
a proposed model, a 5% reduction in cortical disinhibition
was sufficient to induce generalized periodic discharges.40

Whether normal EEG patterns can be reestablished may
depend on the extent of injury to cortical networks and
reversibility of synaptic failure.38 It is unclear whether dis-
charges induce additional injury through excitotoxicity or if
they are solely the result of the hypoxic-ischemic injury
caused by the arrest.11

Figure 4 EEG Background, Superimposed Discharges, and Serum NfL

Boxplot demonstrating logarithmic peak neurofilament light (NfL) in patients with continuous, discontinuous, burst-suppression, and suppressed EEG
background and the presence of superimposed discharges. Neurologic outcome for each patient is indicated through “X” (poor outcome, Cerebral Perfor-
mance Category [CPC] 3–5) or “O” (good outcome, CPC 1–2) at 6 months’ follow-up. In patients with a continuous background, NfL levels were higher in
patientswith an intermediate or abundant amount of discharges than in patientswithout discharges (p< 0.001). No other differences could be found between
noncontinuous backgrounds and the presence of discharges.
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Discharges on a burst-suppression or suppressed background
were not associated with a change in NfL levels in our study. A
recent study with 7 patients also described higher NfL levels in
patients with a suppressed background than in patients with
generalized periodic discharges.41 A small histopathologic
study reported similar findings.29 This supports the assumption
that neurons unable to produce either background activity or
discharges are more injured than neurons generating them.

In our study, NfL levels did not differ whether discharges were
present or not on a discontinuous background. Nonetheless,
no patient with a discontinuous background survived to 6-
month follow-up if discharges were present and NfL levels in
patients with this combination were high.

In cases with a continuous background,NfLwas higher in those
with discharges than without. Our data imply that discharges
may only provide additional prognostic information when
superimposed on a continuous or discontinuous background
and that they are not necessarily associated with poor outcome.
Previous studies after CA report that in patients with good
outcome, status epilepticus evolved from a continuous
background.13,42 The design of our study cannot confirm
whether discharges cause further NfL elevation in addition to
the primary hypoxic-ischemic injury. Further research is re-
quired to identify those patients where anticonvulsant treat-
ment may improve outcome and repeated NfL sampling at
later time points could be valuable. We recently reported that
low levels of brain injury markers are predictors of a favorable
neurologic outcome, indicating that EEG patterns and bio-
markers together may help guide clinical decision-making.43

Strengths of our study include the international multicenter
design, a conservative approach to neurologic prognostication,
and strict criteria for WLST.19,44 As previously published, se-
rum samples were prospectively collected from all patients at
sites participating in the biobank substudy and the number of
missing samples was low.17 In contrast to the guideline-
recommended biomarker NSE, which is also present in
erythrocytes and neuroendocrine tumors, NfL levels are not
falsely elevated in the presence of hemolysis.17,27

The TTM-trial included adult patients with a presumed car-
diac cause of arrest, and because we evaluated the extent of
brain injury, we suspect that results would be similar in pa-
tients with anoxic brain injuries due to other causes. However,
our results should be validated in a broader CA population.

Although EEGs were mandatory in the TTM-trial, examina-
tions were still subject to selection bias, because patients awake
or dead prior to the time point of prognostication were ex-
cluded from this study. Our patient population had a higher
rate of poor outcome than the patients who were excluded, as
patients who awoke prior to examination were excluded.7,10We
do not consider this a limitation because neurologic prognos-
tication is only relevant in this group of comatose patients.

Small sample sizes in some subgroups resulted in limited
power in subgroup analyses, which may be regarded as
hypothesis-generating. The cohort included in this study was
previously evaluated when validating highly malignant pat-
terns as reported previously.7,10 EEG reactivity was not in-
cluded in this study as not all collaborating sites performed
reactivity testing. The ACNS criteria have been updated after
the analysis performed in this study.45 However, ACNS def-
initions used in our study have undergone only minor
changes, which we consider insignificant for the interpretation
of our results.

The EEGs were performed >36 hours postarrest and we
assume that our results could differ in EEGs performed
earlier. Our findings need to be validated for EEGs per-
formed <36 hours postarrest. We cannot exclude that pa-
tients had electrographic seizures, potentially affecting NfL
levels, not detected by routine EEG, which might have been
detected with continuous EEG monitoring. The rate of pa-
tients with ongoing antiseizure medication was higher with
increasing amounts of discharges on the EEG. Nonetheless,
16% of patients without electrographic discharges were also
treated with anticonvulsant drugs and 39% of patients had
ongoing sedation during the EEG recording. It is possible
that if left untreated, some patients would otherwise have
demonstrated electrographic discharges, which may have
influenced our results. We previously reported that the
prognostic ability of EEG on the group level in the TTM-
trial cohort was not significantly affected by ongoing seda-
tion, but acknowledge that individual false-positive cases
may occur; for instance, the good outcome patient with
burst-suppression during significant sedation described
above.7,10

The only prespecified EEG criterion allowing WLST in the
TTM-trial was a therapy-refractory status epilepticus ≥108
hours postarrest.19,44 Results of local EEG reviews were
available to treating physicians and therefore we cannot ex-
clude the risk of a self-fulfilling prophecy on neurologic out-
come. In contrast, NfL was analyzed after trial completion,
thus levels were not available upon clinical decision-making,
minimizing risk for bias. NfL has been validated for clinical use
in some European countries but is not yet widely clinically
available and there is no reference standard or international
normal reference limit for serum NfL.46

EEG patterns >36 hours after cardiac arrest reflect the ex-
tent of brain injury as measured by NfL in serum. The EEG
background is more strongly related to the extent of brain
injury compared with superimposed discharges. A clinical
scenario with unexpected combinations of high NfL levels
with a continuous EEG pattern >36 hours could help
identify patients with potentially poor outcome, and low
NfL levels in patients with malignant or highly malignant
patterns could help identify patients with potentially fa-
vorable outcome.
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