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ABSTRACT

This mini-review provides a perspective of traditional, emerging and future applications of lactic acid bacteria (LAB) and
how genome editing tools can be used to overcome current challenges in all these applications. It also describes available
tools and how these can be further developed, and takes current legislation into account. Genome editing tools are
necessary for the construction of strains for new applications and products, but can also play a crucial role in traditional
ones, such as food and probiotics, as a research tool for gaining mechanistic insights and discovering new properties.
Traditionally, recombinant DNA techniques for LAB have strongly focused on being food-grade, but they lack speed and the
number of genetically tractable strains is still rather limited. Further tool development will enable rapid construction of
multiple mutants or mutant libraries on a genomic level in a wide variety of LAB strains. We also propose an iterative
Design–Build–Test–Learn workflow cycle for LAB cell factory development based on systems biology, with ‘cell factory’
expanding beyond its traditional meaning of production strains and making use of genome editing tools to advance LAB
understanding, applications and strain development.

Keywords: genetic tool development; food fermentation; biotherapeutics; phytotherapeutics; synthetic biology; GMO
regulation

INTRODUCTION

Lactic acid bacteria (LAB) are a phylogenetically diverse but
functionally related group of bacteria comprising the families
Aerococcaceae, Carnobacteriaceae, Enterococcaceae, Lactobacillaceae,
Leuconostocaceae and Streptococcaceae. They are low-GC, Gram-
positive, facultatively anaerobic, non-sporulating bacteria and
have a highly fermentative lifestyle, converting a range of sugars
intomainly lactic acid. LAB have a long history in different forms
of food-related biotechnology and are gaining attention towards

novel uses due to their safety for human and animal consump-
tion, metabolic versatility and wide ecological niche adaptation
(including industrial-scale fermentations) (Fig. 1).

Genome editing tools for LAB are limited compared to species
like Saccharomyces cerevisiae and Escherichia coli, mostly due to re-
strictive legislations, and poor consumer acceptance of genet-
ically modified organisms (GMOs) in food. Although LAB were
a pioneer group studied for development of genetic tools, with
many cloning vectors derived from them still routinely used (De
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Figure 1. Overview of traditional, emerging and future applications of LAB with the most important contributions of genome editing tools for each, including current
regulatory requirements. For all applications, genome editing provides the possibility to make tailored design strains with desired properties, but the direct use of
GMO strains is currently limited; here we have depicted only possibilities within the current legislation. ∗For food ingredients and enzymes: mostly non-GMO via

self-cloning. ∗∗Currently not approved, but GMOs are needed to reach the desired application.

Vos 2011), their tools have mainly focused on being food-grade
and less on generating many mutants in a short time. Further-
more, laboratory evolution and random mutagenesis have been
widely applied for strain improvement in food applications, as
strains resulting from these methods are considered non-GMO.
However, such methods do not result in targeted modifications
and selection of the right strains is often laborious, despite
bioinformatics being highly instrumental to narrow down the
initial strain selection (Walsh et al. 2017). The expansion of LAB
genome editing tools with a focus on speed to enable fast, clean,
targeted and stable genomic modifications for a wide variety of
strains is crucial for both fundamental studies and applications.

In this mini-review, we provide a perspective of traditional,
emerging and future applications of LAB and how genome
editing can advance all these LAB fields, regardless the strain’s
GMO-status in the final application (Fig. 1). Furthermore, we
discuss available tools and suggest how these can be further
developed to enable or advance all these applications and fun-
damental studies, taking also current legislation into account.
Finally, we propose an iterative Design–Build–Test–Learn work-
flow cycle based on systems biology, similar to what is currently
used for industrial production platform strains (Palsson 2015;
Campbell, Xia and Nielsen 2017). The focus is on engineering
single/pure strains and not on microbial community engi-
neering, which has recently been reviewed elsewhere (Sheth
et al. 2016; Bober, Beisel and Nair 2018; Zerfaß, Chen and Soyer
2018).

APPLICATIONS OF LAB AND THE
CONTRIBUTION OF GENOME EDITING

Food fermentations

Fermentation of food and beverages has been carried out for
thousands of years (10 000 BC), most likely for food preserva-
tion (Prajapati and Nair 2003). The most recent trends in us-
ing LAB for food are related to improving properties like nutri-
tional value (e.g. vitamin production), organoleptic quality (e.g.
flavour formation) or technofunctionalities (e.g. polysaccharide
formation). LAB are also key in primary processing of ingre-
dients such as cocoa and coffee beans (De Vuyst and Weckx
2016; Pereira, Soccol and Soccol 2016) and significantly influ-
ence the final product quality (see also Agro-applications). With
the longest commercial use and an estimated market growth of
7.2% for the next five years (Mordor Intelligence 2018), fermented
food is one of the most important economical applications of
LAB.

A primary strategy for research in food applications is screen-
ing microbial collections (Bourdichon et al. 2012). However, with
global access to microbial and genetic diversity now limited by
the Nagoya Protocol and uncertainties about its interpretation
(Darajati et al. 2013; Johansen 2017), achieving genetic varia-
tion through genomicmanipulation gains relevance. Due to poor
consumer acceptance of GMOs, and restrictive legislation, strain
development for food applications mainly relies on untargeted
and laborious methods based on evolution (Derkx et al. 2014;
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Bachmann et al. 2015; Johansen 2018), or on targeted but limited
non-GMO methods (Zeidan et al. 2017) (see GMO vs non-GMO).

Nevertheless, even without the final GMO-strain ending up
in the product, food applications can benefit from genome edit-
ing as a research tool (Fig. 1). For example, targeted mutagenesis
can be applied to predicted genes for a certain trait to evaluate
their function and phenotype (Derkx et al. 2014). This is espe-
cially important for compounds of which the production is not
yet fully understood, such as expolysaccharides (Zeidan et al.
2017). It can also aid in guiding more targeted selection and re-
duced screening size to select for naturally evolved strains to-
wards the desiredmodification(s), such aswas shown for phage-
resistance factor YjaE in Lactococcus lactis (Stuer-Lauridsen and
Janzen 2006). Altogether, improved understanding of compound
formation and microbial metabolism will aid in more rational
and accelerated efforts to achieve superior properties in food
products. Advancing genome editingmethods for a wide variety
of strains will enable for example screening of mutant libraries,
which will further accelerate these processes.

Probiotics

The World Health Organisation (WHO) has defined probiotics as
live organisms that, when administered in adequate amounts,
confer a health benefit on the host. Especially Lactobacillus
species have attracted attention as probiotics, which are used
as adjuvant or prophylaxis against many different diseases
(Reid 2017; Mays and Nair 2018), as well as in a range of ani-
mal husbandries (Syngai et al. 2016). The market for probiotics
is ever-expanding, with a projected world-wide size of $46.55
billion by 2020 (Salvetti and O’Toole 2017). Nevertheless, the
complex molecular mechanistics of modes of action of both
probiotics and LAB–host–pathogen interactions are poorly un-
derstood (Lebeer et al. 2018).

After implementation of EU legislation on health claims in
2009, no probiotics have been granted the right to claim health
benefits in the EU. A vast amount of scientific literature indi-
cates beneficial effects of probiotics, but so far in all cases the
European Food and Safety Authority (EFSA) considered the sci-
entific substantiation insufficient and rejected all health claims
(Dronkers et al. 2018). The most important aspects for this are
the lack of molecular and mechanistic knowledge of probiotic
modes of action, irreproducibility of trials, as well as strong in-
dividual responses of the hosts, and strain-specificity (Glanville
et al. 2015; Salvetti and O’Toole 2017; van Pijkeren and Barrangou
2017).

Improving molecular insight into the (dis)functionality of
probiotics and observed strain-specificity will be instrumen-
tal in achieving the right to health claims and hence fur-
ther secure markets. Although genomics-, transcriptomics- and
metabolomics-based studies are valuable tools (also termed
‘probiogenomics’ in this context) (Guinane, Crispie and Cotter
2016) for identification of potential biomarkers, combining these
with genome editing can provide molecular mechanistic insight
(Fig. 1) (Lebeer et al. 2018). Similar to food, GMOs are not allowed
in probiotics, and despite a few examples (Bron et al. 2007; Lebeer
et al. 2018), using GMOs/genome editing as research tool is still
relatively underexploited. Advancing genome editing tools to be
less time-consuming andmore suitable for rapid screening (with
suitable fast readoutmethods) and applicable to a larger number
of strains, would potentially enable identification of novel, un-
predicted factors. Furthermore, once regulations allow, genome
editing could be used to create GMO-/improved probiotics that

could for example be combined with biotherapeutics (van Pijk-
eren and Barrangou 2017).

Industrial production platforms for green chemicals,
fuels and enzymes

A wide range of products can be made through bio-based pro-
duction via microbial fermentation of biomass-derived sugars
to replace fossil resources, such as (building blocks for) plas-
tics, nylons, solvents, fuels, pharmaceuticals and food and cos-
metic ingredients. Traditional work horses for this type of cell
factories are E. coli and S. cerevisiae, mostly because their ge-
netic tools are well-developed and their metabolism is relatively
well-understood. LAB are gaining interest as alternative hosts
for many reasons, which have been extensively reviewed else-
where (Gaspar et al. 2013; Boguta et al. 2014; Mazzoli et al. 2014;
Bosma, Forster and Nielsen 2017; Sauer et al. 2017; Hatti-Kaul
2018).

One main advantage of LAB is their food-grade safety and
adaptation to food-related environments, enabling their use as
production platforms in food-related processes. A recent exam-
ple is the use of metabolically engineered L. lactis for ethanol
production from lactose in whey, showcasing an alternative of
waste valorisation in cheese-making (Liu et al. 2016). Attempts
have been made to ferment the whey-lactose with yeasts, but
these suffer from low robustness and slow fermentation; using
L. lactis proved a promising solution on which the company Al-
cowhey was founded (Liu et al. 2016; Jensen et al. 2017). Another
LAB-suitable application would be the in-process production of
proteins or enzymes for food products by starter or adjunct
strains (Matthews et al. 2004). LAB enzymes are also employed
for production of food-grade speciality chemicals, pharmaceuti-
cal intermediates and nutraceuticals, mostly as whole cell cat-
alysts (Hatti-Kaul 2018). Cofactor regeneration is a challenge in
such processes but ingenious solutions using natural substrates
have been employed as source of reducing equivalents (Perna
et al. 2016).

Except for L. lactis, no extensive metabolic engineering has
been performed to obtain economically competitive LAB plat-
form organisms (Gaspar et al. 2013; Mazzoli et al. 2014; Bosma,
Forster and Nielsen 2017; Sauer et al. 2017). This is largely due
to underdeveloped genome editing tools for industrially rele-
vant strains. For example,many Lactobacillus and Pediococcus spp.
have been shown to be more tolerant to several stresses com-
pared to L. lactis, but lack widely applicable high-throughput ge-
netic tools (Boguta et al. 2014; Bosma, Forster and Nielsen 2017).
Advancing tools for such organisms is important to make use of
the wide variety of LAB and their metabolic capacities.

Agro-applications

To feed the ever-growing world population, crop health is cru-
cial. The use of pesticides is increasingly regarded as undesired,
creating the need for organic solutions. Traditionally, research
on plant health-promoting microorganisms has focused on
Rhizobia, Bacillus and Pseudomonas; LAB also form a part of
the phytomicrobiome of several plant species, but have yet
been underexplored (Axel et al. 2012; Lamont et al. 2017). Ex-
amples of LAB biocontrol activities are production of reactive
oxygen species, bacteriocins (see Biotherapeutics), competitive
colonisation (overgrowing pathogens) and alteration of the
plant immune response (Gajbhiye and Kapadnis 2016; Konappa
et al. 2016; Lamont et al. 2017). In many cases, the identity of
the antimicrobial compound and which genes encode for it
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is unknown. Moreover, little is known about the molecular
interactions between LAB and plants. Similar to described
above for probiotics, genome editing will aid in increasing un-
derstanding, which will lead to new possibilities for biocontrol
and improvement of plant growth and health (Lamont et al.
2017), expanding LAB to a type of plant probiotics.

Moreover, plant health is related to food and feed for
organoleptic and technofunctional properties in the final prod-
uct. The presence of LAB in the phytomicrobiome has shown
to influence for example the processes and tastes of sourdough
fermentation of durum wheat flour (Minervini et al. 2015) and
milk derived from silage-fed cows (Kalač 2011). A better under-
standing of the dynamics of the phytomicrobiome in raw mate-
rial and food processing could guide new applications or tech-
nofunctionalities in the food industry.

Altogether, the agro-industry is a promising LAB application
field and whereas the use of GMOs in organic farming is cur-
rently out of the question, genome editing can be beneficial as a
research tool (Fig. 1).

Biotherapeutics

One of the most promising novel applications of LAB is their
medical use in therapeutics, prevention anddiagnosis (Mays and
Nair 2018). Especially their use as delivery agents of drugs and
vaccines is gaining attention. LAB are particularly suitable as
they are already generally recognised health-improving agents
and safe for human consumption. Efforts using LAB as biother-
apeutics have mostly focused on gastrointestinal tract-related
ailments using the strains as oral vectors, leveraging their ca-
pacity to survive stomach acids and adhere to the intestinal ep-
ithelium (De Moreno De Leblanc et al. 2015; Hwang et al. 2016;
Carvalho et al. 2017; Durrer, Allen and Hunt von Herbing 2017).
LAB are also being developed for mucosal (vagina and mouth)
delivery of molecules and as vaccines (Wang et al. 2016), as well
as for wound treatment (Vågesjö et al. 2018). Many LAB natu-
rally produce antimicrobial peptides (e.g. bacteriocins), which
are currently commercialised in the purified form for veterinary
use (Ahmad et al. 2017). These compounds have demonstrated
high specificity and potency in vivo; they are a potential alterna-
tive to fight the rising antimicrobial resistance, and also have ap-
plications in food preservation and probiotics (Yang et al. 2014;
Mathur et al. 2017). Targeted delivery via synthetic biology can
potentiate their use as antimicrobial agents of the future. Also,
CRISPR-based antimicrobials hold great promise (Pursey et al.
2018) and would be highly interesting to develop also using LAB.
Another attractive field is the use of LAB for diagnosis by act-
ing as biosensors inside or outside of the body (Lubkowicz et al.
2018).

The microbial therapeutics and diagnostics market is esti-
mated to occupy close to 79% of the therapeutics segment by
2030 with annual growths over 80% from 2019 onwards, attract-
ing boosts in funding and investment (Microbiome Therapeutics
and Diagnostics Market (2nd Edition), 2017–2030 2017). As a new
field, there are no commercially available LAB-biotherapeutics
yet, besides the non-GMO ones composing the community in
human faecal transplantations approved by the FDA (FDA 2016).
This is expected to change soon, as the first clinical trials by
pharmaceutical companies with live-engineered biotherapeu-
tics are on-going (Bron and Kleerebezem 2018). Although more
research is required regarding efficiency, fundamental questions
and safety, LAB as biotherapeutics can bring a revolution in per-
sonalised and precise medicine (Mays and Nair 2018).

Stable and tuneable modifications via genome editing and
synthetic biology are crucial in this field for the addition of the
therapeutic compounds to the microbial delivery host, as well
as for the insertion of regulation mechanisms, delivery strate-
gies and biocontainment systems (Mays and Nair 2018) (Fig. 1).
The absence of genetic markers, such as antibiotics, in the final
strain is essential to avoid risk of transferring antibiotic resis-
tance to pathogens inhabiting the host. Furthermore, the cur-
rent tools are mostly limited to a few strains (L. lactis) while sev-
eral Lactobacillus spp. have proven amore promising target group
due to prolonged survival and colonisation of the gastroin-
testinal tract. Currently, their limited genetic accessibility and
toolbox restrain their use (Allain et al. 2015; van Pijkeren and
Barrangou 2017; Bron and Kleerebezem 2018). Finally, as with
probiotics, better understanding of the interactions with the
host on a molecular and cellular level is needed to enable full
development of LAB as biotherapeutics (Fig. 1) (van Pijkeren and
Barrangou 2017).

OVERVIEW OF LAB GENOME EDITING TOOLS:
CURRENT AND FUTURE

Several methods have been developed for making genomic
modifications in LAB, including food-grade ones that result in
strains labelled as non-GMO (see also GMO vs non-GMO). These
are still very useful for the many LAB applications where GMOs
are not allowed, and continue to gain interest (Bron et al. 2019).
However, to further expand LAB applications as described above,
the following advancements are required: (i) increase editing
speed, (ii) methods for multiplexing (i.e. simultaneous modi-
fication of several genomic loci in one editing round) and (iii)
broaden the range of strains that can be transformed and edited.
This section discusses how these can be achieved via existing
methods and future developments, following the different steps
of the editing process from transformation to mutant construc-
tion (Fig. 2). We focus on methods that can be targeted to any
desired place in the genomewith stable andmarker-free results.
Also, screening/readout systems for the generated mutants are
required, but as this is a field in itself and out of the scope of this
review, the reader is referred to other recent publications (Chen
et al. 2017; Duarte, Barbier and Schaerli 2017; Emanuel, Moffitt
and Zhuang 2017; Longwell, Labanieh and Cochran 2017).

Transformation (DNA transfer) and genetic accessibility

Transformation (the process to introduce DNA) is the critical
first step towards any genome editing and can be achieved via
naturally occurring or artificial methods (Fig. 2A). Natural meth-
ods, particularly conjugation, have been exploited to achieve
non-GMO LAB strains (Pedersen et al. 2005; Derkx et al. 2014;
Bron et al. 2019). Conjugative plasmids and transposons are very
common in LAB, but the details of conjugative mechanisms are
not fully understood and this field needs improvement to widen
its applicability (Kullen and Klaenhammer 2000; Dahmane et al.
2017; Bron et al. 2019). Phage transduction is a wide-spread
phenomenon in LAB but not yet frequently harnessed for
targeted DNA exchange (Bron et al. 2019). It also is a potential
tool for human microbiome engineering (Sheth et al. 2016).
Natural competence, in which exogenous DNA translocates
through a native DNA uptake machinery, is well-known in
Streptococcus (Gardan et al. 2009; Muschiol et al. 2015), but only
recently identified and achieved in Lactococcus (David et al. 2017;
Mulder et al. 2017). The abundance of natural competence is
likely underestimated (Blokesch 2016; Bron et al. 2019) and the
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Figure 2. Schematic overview of transformation and genome editing methods currently available for LAB. Only methods that result in clean mutations (or silencing)
and that can be targeted to any desired site in the genome are shown. The grey arrow on the chromosomes represents the target gene of interest. Abbreviations:

Chr.: chromosome; str.: strand; ABR: antibiotic resistance; ssDNA: single stranded DNA; dsDNA: double stranded DNA; gRNA: guide RNA, which can be either a single
guide (sgRNA) or a dual crRNA:tracrRNA. (A), Transformation methods. For electroporation/chemical/heat shock transformation, the yellow flash indicates any of
these external treatments (electrical pulse, chemical treatment or heat shock). For the protoplast-based method, the left arrow indicates protoplast fusion of two
different cells and the right arrow indicates transformation of protoplasts. (B), Integration/homologous recombination (HR) methods. Plasmid-based HR uses the native

recombination machinery. dsDNA recombineering requires the expression of a phage λ- or Rac prophage-derived exonuclease (Exo or RecE) and an ssDNA binding
protein (Beta or RecT), whereas ssDNA recombineering only requires the single-stranded binding protein. In the case of the λ-Red system, also Gam can be added,
which inhibits host DNA exonucleases (Van Pijkeren and Britton 2012; Pines et al. 2015). A marker can be introduced within the homologous regions but this does not
result in clean mutations. Without marker insertion (as depicted here), the result can be either wild-type or mutant, which need to be verified by PCR, and for which

Cas9 can be used as counter-selection as depicted in C. (C), CRISPR-Cas-based editing and silencing tools. The two methods on the left could be used in combination
with any of the integration methods shown in B. For endogenous systems, a type II system is depicted here with Cas9 as effector molecule, but also other endogenous
systems could be used for both editing and silencing, although this has not yet been shown in LAB (Luo et al. 2015; Rath et al. 2015; Li et al. 2016). Repurposing endogenous
systems to target the organism’s own genome can be achieved by plasmid-based expression of the native minimal CRISPR array (leader and two repeats), or a synthetic

single guide RNA based on the native system, together with desired spacer(s) to target a (or multiple) gene(s) of interest. Prerequisites are that the native system
is active under the in vivo editing conditions and that the different components and the PAM recognised by the system are characterised (Crawley et al. 2018). Gene
silencing using catalytically inactive Cas9 (‘dead’ Cas9, dCas) has only been shown as proof of principle in L. lactis (Berlec et al. 2018) but the tuneable nature has not yet

been exploited in LAB, but several methods for this are available and have been shown in other organisms (Mougiakos et al. 2016).
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new findings might pave the way for natural transformation in
other LAB that are so far considered non-genetically accessible.

In artificial methods, cells need to be made competent
through for example washing with cell envelope-weakening
solutions, after which external agents are used for cell per-
meabilisation and transformation. Electroporation is the most
suitable method for high-throughput purposes due to its
simplicity, efficiency and wide applicability (Landete 2017).
Generalised electroporation protocols have been successfully
used to transform a wide range of LAB strains. Although
these studies indicate that the majority of LAB is genetically
accessible through electroporation, efficiencies varied strongly
among strains and protocols need to be optimised (Landete
et al. 2014; Bosma, Forster and Nielsen 2017). A method with
low efficiencies and less suitable for targeted modification but
suitable for the large-scale exchange of genomic DNA for e.g.
evolutionary engineering via genome shuffling, is protoplast
fusion (Mercenier and Chassy 1988; Patnaik et al. 2002).

Bacteria, including LAB, have evolved defence strategies
against foreign DNA, such as restriction modification (RM) and
CRISPR-Cas systems or combinations thereof (Dupuis et al.
2013). In RM-systems, a set of enzymes discriminates self from
non-self DNA by methylating it and cleaving the invading
DNA (Vasu and Nagaraja 2013). Recent reports have shown the
existence of ‘phase-variable’ RM-systems in LAB, which result
in variable methylation patterns (De Ste Croix et al. 2017), and
as of yet ununderstood restriction-like factors that mutate
during the editing process (Ortiz-Velez et al. 2018). Limitations
for introducing and maintaining foreign DNA have been mainly
related to RM-systems and to further develop any genome
editing method, it is often required to bypass these (Teresa
Alegre, Carmen Rodrı́guez and Mesas 2004; Spath, Heinl and
Grabherr 2012; Joergensen et al. 2013).

Genome editing (DNA integration)

Detailed descriptions of traditional and currently available LAB
genome editing methods are provided in several recent reviews
(Bosma, Forster and Nielsen 2017; Landete 2017; Hatti-Kaul
2018). Here, we outline the main steps and bottlenecks in LAB
genome editing and focus on how recent advancements can be
further developed to improve this. Classically, LAB genome edit-
ing for targeted genomic modifications is based on integrative
plasmids to insert or remove a gene of interest via two crossover
events using the cells’ native recombinationmachinery (Fig. 2B).
Steps in this procedure that can be time-consuming are the se-
lection of integrants (i.e. cells that have correctly integrated the
exogenous DNA over the homologous regions) and the curing of
the integrative plasmid after homologous recombination (HR).
Several tools have traditionally been used to make these pro-
cesses more efficient, such as thermo-sensitive and suicide vec-
tors and counter-selectable markers. Instead, the more recently
developed method of recombineering enables direct integration
of linear ssDNA or dsDNA oligos into the genome with the help
of phage-derived recombination systems (Fig. 2B). This avoids
curing integrative plasmids from the cells and cloning of HR re-
gions, making this method more suitable for high-throughput
purposes. However, recombineering requires identification of
phage-derived proteins and optimisation of the system for each
new strain, and hence has been developed for less strains than
plasmid-based systems. Recombineering has been established
in Lactococcus lactis, Lactobacillus reuteri, Lactobacillus gasseri (Van
Pijkeren and Britton 2012), Lactobacillus casei (Xin et al. 2018) and
Lactobacillus plantarum (Yang, Wang and Qi 2015; Leenay et al.

2018). Also, site-specific recombination systems based on phage
integrases and phage attachment sites have been developed for
LAB, often as food-grade systems (Alvarez, Herrero and Suárez
1998; Brøndsted and Hammer 1999; Grath, van Sinderen and
Fitzgerald 2002). Although these systems are very valuable and
applicable to a wide range of strains for stable integrations, we
will not go into detail here as they are limited to integrations
into specific locations in the genome (i.e. in the phage attach-
ment sites only).

For both plasmid-based and recombineering methods, a crit-
ical bottleneck step is the selection of correctly edited mutants.
Plasmid-based editing can result in either mutants or wild-
type revertants (Fig. 2B), and recombineering efficiencies are
inherently low, resulting in large amounts of wild-type cells:
for ssDNA recombineering in L. reuteri, efficiency was 0.4%–19%
(Pijkeren and Britton 2014). This creates an often laborious
and time-consuming PCR-based screening process. Marker
insertion-and-removal systems such as Cre-lox have been em-
ployed in some LAB to overcome this, but such methods leave
small scars and hence are not fully clean (Yang, Wang and
Qi 2015; Xin et al. 2018). To increase efficiencies of clean edit-
ing systems, it is necessary to establish selection tools for
mutants, or counter-selection tools against wild-types. Most re-
cently, CRISPR-Cas9-technology has proven a powerful counter-
selection tool in bacteria (Fig. 2C) and to significantly speed up
and advance engineering (Mougiakos et al. 2016, 2018).

CRISPR-Cas-based genome editing

CRISPR-Cas systems in nature function as prokaryotic adaptive
immune systems (Barrangou et al. 2007; Brouns et al. 2008)
and although a wide variety exists (Koonin, Makarova and
Zhang 2017), Cas9—the endonuclease of Type II CRISPR-Cas
systems—has gained most fame as a versatile genome editing
tool. When directed to its target DNA by a provided guide RNA
and recognising its target next to a short DNA motif called
protospacer adjacent motif (PAM), Cas9 creates blunt dsDNA
breaks (Fig. 2C). Whereas eukaryotes can repair such breaks by
non-homologous end joining (NHEJ), this system is absent or
inactive in most bacteria (Bowater and Doherty 2006). Hence,
they are unable to repair Cas9-induced breaks, which creates a
powerful counter-selection tool against wild-type cells as these
will be killed due to Cas9 cleavage (Fig. 2C) (Mougiakos et al.
2016). In L. reuteri, Cas9-based selection of mutants after ssDNA
recombineering increased the efficiency from 0.4%–19% to 100%
(Oh and Van Pijkeren 2014). Cas9-based editing has now been
established in L. reuteri together with ssDNA recombineering
(Oh and Van Pijkeren 2014), in L. plantarum with dsDNA recom-
bineering and plasmid-based HR (Leenay et al. 2018), and with
plasmid-based HR in L. lactis (van der Els et al. 2018). Cas9 has
also been used for removal of large mobile genetic elements in
Streptococcus thermophilus (Selle, Klaenhammer and Barrangou
2015) and L. lactis (van der Els et al. 2018).

A major challenge of using Cas9 in bacteria is that its activity
must be tightly controlled to allow HR-based genome editing be-
fore killing wild-type cells, requiring tightly controllable expres-
sion systems or multiple plasmids and transformation rounds.
A nickase-variant of Cas9 makes single stranded nicks instead
of double stranded breaks due to a mutation in one of the two
active sites of Cas9. These nicks are less lethal, and are further-
more suggested to enhance HR (Song et al. 2017). The nickase
was used together with an integrative plasmid in L. casei with
an efficiency up to 65%, requiring only a single transformation
round (Song et al. 2017).
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Establishing HR/Cas9-based editing methods is not trivial
due to strong and yet ununderstood strain-specific differences.
A direct comparison of recombineering- and plasmid-based
methods in L. plantarum showed several strain-specific differ-
ences in efficiencies (Leenay et al. 2018). Moreover, Cas9 has
shown to be toxic in certain bacteria, for which subsequently
alternative CRISPR-Cas systems such as Cas12a (formerly Cpf1)
have been successful (Jiang et al. 2017). Several alternative Cas9s
and other CRISPR-Cas-systems are now being characterised for
genome editing in other microorganisms, showing advantages
such as wider applicability, specificity, stability or less toxic-
ity (Jiang et al. 2017; Mougiakos et al. 2017; Nakade, Yamamoto
and Sakuma 2017). Evaluating such alternative systems in LAB
might open new possibilities for CRISPR-Cas-based editing in a
wider range of LAB. Furthermore, the repurposing of endoge-
nous CRISPR-Cas systems, which are abundantly present in LAB
(Sun et al. 2015), into counter-selection systems is a promis-
ing recent approach for broadening the number of engineerable
species (Fig. 2C) (Crawley et al. 2018).

All reported genome modifications in LAB so far only make
one modification at a time, while multiplexing would be crucial
for many applications including fundamental studies. Mul-
tiplexing is complicated with plasmid-based HR and would
strongly benefit from establishing recombineering methods for
more strains. Another interesting option in this regard is the re-
cently developed base editing, in which a catalytically impaired
Cas9-variant is coupled to a cytidine deaminase that does not
make DNA breaks, but C to T (or G to A) substitutions (Kim et al.
2017). This can be used to make targeted point mutations to
create premature stop codons and inactivate genes without the
need for HR. It has only been used in few bacteria (Kim et al.
2017; Eid, Alshareef and Mahfouz 2018; Zheng et al. 2018) and
not yet for LAB.

Gene silencing and synthetic biology

A catalytically ‘dead’ Cas9-variant (dCas9) can be used for high-
throughput and tuneable gene silencing instead of gene edit-
ing: mutating both Cas9-active sites creates a catalytically in-
active Cas9 that binds DNA but does not cleave it (Bikard
et al. 2013; Qi et al. 2013). This has not been exploited for
LAB other than as proof of principle in L. lactis (Berlec et al.
2018) and would be a highly valuable addition to the tool-
box. No HR is needed, creating an easy screening tool with
high potential for multiplexing. Although not yet used for
this purpose in LAB, its tuneable nature creates a powerful
tool for investigating downregulation of essential genes (Fig.
2C) (Peters et al. 2016; Mougiakos et al. 2018; Rousset et al.
2018).

Regarding synthetic biology developments, improving
regulatory control systems is highly desirable, especially for
bio-therapeutic applications. Particularly, promoters that can
be induced in e.g. the gut by the host metabolites to control
gene expression in vivo at the targeted location (Bober, Beisel
and Nair 2018), as well as bio-containment strategies, which
are crucial for safety (Wegmann et al. 2017). Systems based
on quorum-sensing or reciprocal transcriptional repression
systems have been used for inducing autolysis in E. coli (Chan
et al. 2016; Hwang et al. 2017) and could be adapted to LAB.
Gene circuits construction is also important for the develop-
ment of bacterial biosensors, where engineered strains can
detect certain molecules related to a disease in the human
host.

GMO vs non-GMO

Regulations surrounding GMOs are complex and consumer ac-
ceptance plays an important role in the reluctance to use GMOs,
especially in food. In the EU, GMOs are not allowed in the final
product (i.e. as food, probiotics or bio- and phytotherapeutics),
but are allowed as contained production hosts (i.e. as produc-
ers of chemicals, fuels and enzymes in which the organism re-
mains within a factory/reactor) (Johansen 2018). Even if the mi-
croorganism does not end up in the final product but is used to
produce food ingredients (e.g. enzymes), lack of consumer ac-
ceptance of GMO-products puts pressure on food and also in-
gredient companies to use GMO-free enzymes (Derkx et al. 2014).
Therefore, even containedmicroorganisms in such cases should
be non-GMO.

For these reasons, genome editing tools for LAB traditionally
focus on systems labelled as non-GMO. Next to strains created
via random mutagenesis or laboratory evolution, the current EU
legislation considers strains generated by natural gene trans-
fer methods (e.g. conjugation; transduction) as non-GMO, pro-
vided none of the involved strains is a GMO (Sybesma et al. 2006;
Johansen 2017). For contained use, microorganisms are also
considered non-GMO if they are made by ‘self-cloning,’ which
means modification of a strain with DNA taken from the strain
itself or from a very close relative. This may involve recombi-
nant vectors as long as these consist of DNA from this same
or closely related strain (Meacher 2000; Verstrepen, Chambers
and Pretorius 2006; Landete 2017). By definition, this also means
that clean deletion mutants created with such LAB-vectors are
considered non-GMO (De Vos 1999). Self-cloning and its ‘non-
GMO’ label is only allowed for contained use and the organisms
created by such methods are not allowed in the final product
(Sybesma et al. 2006; Johansen 2018), or should be inactivated at
the end of the process.

Regarding advanced genome editing tools (e.g. recombineer-
ing; CRISPR-Cas), if the tool vectors come from species related
to the target strain, they could be considered as ‘self-cloning,’
having the added advantage of being clean/marker-free if using
appropriate methods (Fig. 2). Targeted genomic modifications
would result in a similar genotype as the wild-type strain, plus
or minus a specific gene that could also have been edited by a
classical method like random mutagenesis (Johansen 2017). It
has been argued by several players in the field that it is ques-
tionable whether a strain obtained via random mutagenesis
(currently allowed for human consumption) is safer than if that
same strain was obtained via targeted and clean self-cloning
methods (Johansen 2017; Bron et al. 2019). However, the EU-
court has recently ruled against allowing such new genome
editing methods (including CRISPR-Cas) as ‘non-GMO,’ whereas
in the USA Cas9-edited plants have recently been allowed
(Callaway 2018; Court of Justice of the European Union 2018).
This does not change the current situation, but it does mean
that allowance of any form of non-contained GMOs, including
via clean methods, is unlikely in the near future in the EU.
Nevertheless, information dissemination for public awareness
and further investigation of potential long-term effects of GMOs
is still needed (Sybesma et al. 2006; Fears and Ter Meulen 2017;
Johansen 2017; Csutak and Sarbu 2018).

CONCLUSIONS AND OUTLOOK

In the long term, genome editing could be used to create tai-
lored LAB strains for properties on demand for any given ap-
plication. This is currently done for e.g. production platforms.
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Figure 3. Iterative Design–Build–Test–Learnworkflow for cell factory development. Proposedworkflow generally applicable to all forms of cell factories discussed in this
review based on systems biology for rational and advanced strain development. Adapted for LAB from the ‘classical’ industrial workflow described elsewhere (Palsson
2015; Campbell, Xia and Nielsen 2017). In a full cycle, strains that pass through Build are manipulated by genome editing methods that result in GMO or non-GMO
strains (see GMO vs non-GMO). For targeted engineering, the desired genotypes are planned in the Design step. The same workflow can be applied to a collection of

strains where no genetic modification is performed, but rather goes directly to experimental screening (Test). In this case, in silico work can aid in the pre-selection
of the strains to be tested experimentally based on genomic information (Design). This can also be a second cycle after a first one which included genome editing
to determine targets. In all cases, experimental data analysis and computer integration on e.g. genome scale models (Learn) will bring information that can be used
for planning and designing the next iterative cycle. ∗In the EU, self-cloning is allowed for contained use, but not for non-contained applications such as food and

probiotics.

For more traditional applications related to human consump-
tion, this possibility is restrained by regulations and consumer
opinion. Nevertheless, genome editing can be applied for strain
advancement in an indirect way as a research tool, by improving
knowledge on the strain itself and the relations with its hosts,
aswell as provide guidance towards targets formodifications us-
ing ‘natural’ or accepted editing methods avoiding a GMO label.
To enable such developments, more advanced genome editing
tools need to be developed, for a wider range of LAB. This in-
cludes making more strains genetically accessible for transfor-
mation and establishing recombineering and CRISPR-Cas-based
methods, including multiplex genome editing and silencing.

For all applications described here, whether the final strain
is a GMO or not, the LAB can be considered as microbial cell fac-
tories, and an iterative Design–Build–Test–Learn workflow could
be applied similar to that used in the development of traditional
industrial biotechnology strains for green chemical production
(e.g. E. coli; S. cerevisiae) (Palsson 2015) (Fig. 3). Such a systems
biology-based workflow has been shown to significantly speed
up the process of cell factory development by combining
genome editing and synthetic biology, in silico prediction and
models, and high-throughput methods/automation (Campbell,
Xia and Nielsen 2017). To be applied to the wide variety of LAB
applications described here, this workflow could be used as in
a classical metabolic engineering approach, generating GMO or
non-GMO strains depending on the modification method used,
but also as a research tool for fundamental understanding of the
strains by designing mechanistically targeted experiments with
non-GMOs as final result (Figs 1 and 3). Accelerated methods for
strain construction, selection and screening/readout tools are

crucial for advancing this strategy. Also, expanding and improv-
ing genome-scale metabolic models is needed to strengthen
the in silico part (Stefanovic, Fitzgerald and McAuliffe 2017; Rau
and Zeidan 2018). An ever-increasing interest in LAB and the
advances in genome editing and biotechnological developments
will undoubtedly provide breakthrough solutions for innovation
in the wide and ever-expanding applications of LAB.
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