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Population numbers at local levels are fundamental data for many applications, including the delivery and
planning of services, election preparation, and response to disasters. In resource-poor settings, recent and
reliable demographic data at subnational scales can often be lacking. National population and housing
census data can be outdated, inaccurate, or missing key groups or areas, while registry data are generally
lacking or incomplete. Moreover, at local scales accurate boundary data are often limited, and high rates
of migration and urban growth make existing data quickly outdated. Here we review past and ongoing
work aimed at producing spatially disaggregated local-scale population estimates, and discuss how new
technologies are now enabling robust and cost-effective solutions. Recent advances in the availability of
detailed satellite imagery, geopositioning tools for field surveys, statistical methods, and computational
power are enabling the development and application of approaches that can estimate population
distributions at fine spatial scales across entire countries in the absence of census data. We outline the
potential of such approaches as well as their limitations, emphasizing the political and operational hurdles
for acceptance and sustainable implementation of new approaches, and the continued importance of
traditional sources of national statistical data.
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Accurate population data at local levels are fundamen-
tal for a broad range of applications by governments,
nongovernmental organizations, and companies, in-
cluding the planning and delivery of services, election
preparation, estimation of populations at risk for in-
fectious disease or hazards, and disaster relief opera-
tions (1–6). The main sources for such demographic
data are the national population and housing census,
typically conducted once every 10 y (7), as well as
national registers of births and deaths (8). However,
in resource-poor settings, national registers are gen-
erally lacking or incomplete (9, 10). In many countries
the reliability of population and housing census data
has been questioned due to the accuracy of projections

required from long delays between enumeration and
data release (Fig. 1), the omission or undercounting of
certain marginalized groups (e.g., those in informal
settlements, ethnic minorities, and nomadic popula-
tions), insecurity and conflict limiting enumeration in
certain regions, and corruption driving inflated esti-
mates where population numbers are linked to resource
allocation.

At local scales, further challenges limit the utility
and accuracy of available population data. Census
data, when linked with accurate, small-area adminis-
trative boundary data, can provide spatially explicit
evidence based on population (10), but for privacy
reasons available data that can be linked to the
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smallest administrative areas are limited. The availability and ac-
curacy of the administrative boundaries available in digital formats
and at fine spatial scales can also be variable, leading to a poten-
tial misallocation of populations spatially. Moreover, human pop-
ulations are not uniformly distributed within areal units and thus
aggregate population data, particularly when only available for
larger areas, do not accurately represent the true spatial distribu-
tion of the population (4, 11). Consequently, accurate population
data are often lacking in places where they are needed the most
by governments and other organizations. However, recent ad-
vances in computing power, availability of regularly updated
high-resolution satellite imagery, global positioning systems
(GPS)-enabled field survey techniques, and statistical methods
are presenting opportunities for alternative approaches to pro-
ducing reliable, spatially refined estimates of human populations.

The Need for High Spatial-Resolution Population Data
The lack of recent, reliable, and spatially detailed population data
were highlighted with the 2013–2016 Ebola outbreak in West
Africa, where emergency responders struggled to identify the
location and size of rural settlements, and could not accurately
calculate infection rates since the denominator (i.e., the pop-
ulation at risk) was not known, an issue that is regularly encoun-
tered in emergencies and outbreak situations (1, 12–14). Nearly all
public health outreach efforts, from vaccinations to bed nets to
HIV treatment, depend on accurate target population denomi-
nators to estimate resource needs and project costs, as well as to
measure and assess results and impacts. International develop-
ment goals are based on ensuring that a certain percentage of the
population has access to specific services or resources, or ach-
ieves a certain level of social, economic, or physical health. These
measurements require a solid and regularly updated under-
standing of not only how many people live in a country, but
where and who they are (15).

As the move has been made from the Millennium Develop-
ment Goals to the Sustainable Development Goals, there is now
an explicit focus to leave no-one behind by reducing inequalities
both between countries and within countries (15). This highlights
the important aspect of within-country heterogeneity, whereby

aggregated data may hide significant subnational disparities.
However, assessing progress against Sustainable Development
Goal indicators relies on the availability of standardized and ro-
bust data, including a reliable baseline population estimate from
which to measure change (16). Given the importance of regional
heterogeneity in population characteristics, the United Nations
has explicitly called for improved availability of high-quality,
timely, and reliable data disaggregated by income, gender,
age, race, ethnicity, migratory status, disability, geographic loca-
tion, and other characteristics relevant to national contexts. This
will be vital to ensure subnational variation in indicators is ade-
quately captured (17). Previous work to produce subnational
population data has focused on approaches to disaggregate
population counts from census-defined areal units to high spatial-
resolution grids.

Disaggregation of Administrative Unit-Based Population
Data
Census data are typically made publically available aggregated in
space by large administrative areas, typically districts or subdis-
tricts, and these areal units present analytical challenges for
population studies. The boundaries of these units are often arbi-
trary for the demographic variables of interest. Census data are
collected by enumeration area, typically designed to cover
around 500 people and be small enough for enumerators to cover
in a day. Although enumeration area design generally aims to
avoid significant differences in types of housing and population
within units, they typically follow existing administrative bound-
aries and are designed for convenience of enumeration rather
than to follow differences in population distribution. In an effort to
characterize the spatial variation in the distribution of human
populations and overcome the limitations of such aggregate data,
much research has focused on creating alternative representa-
tions of population as a continuous surface (18). Dasymetric
mapping techniques are well-known cartographic approaches
[see Eicher and Brewer (19) and Mennis (18, 20)] to disaggregate
areal unit representations to more spatially refined distributions.
These techniques draw on ancillary or “covariate” data to re-
distribute data at finer scales by defining a functional relationship

Fig. 1. At the beginning of 2017, the number of years since the last national census in countries across Latin America, Africa, and Asia. Data from
https://unstats.un.org/unsd/demographic/sources/census/censusdates.htm.
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between, in this case, population density and the mapped ancil-
lary data (21). This approach to population disaggregation, which
we term “top-down” population mapping, is shown graphically in
Fig. 2A. Since the mid-1990s (22) researchers have taken advan-
tage of Geographic Information Systems and satellite remote-
sensing technologies for dasymetric mapping of population,
producing high spatial-resolution grids to represent ancillary data
as well as for the resulting population distributions. These efforts
have ranged from a simple equal weighting of census counts to
grid cells within an administrative area, to the integration with
higher spatial resolution covariate datasets and advanced statis-
tical procedures, more accurately representing the distribution of
the human population across space (4, 5, 11, 22, 23).

Early examples of top-down census disaggregation products
include the proportional allocation of population counts to grid
cells within each administrative area [Gridded Population of the
World (GPW) V1] and smoothing across boundaries (GPW V1b)
(22, 24), or allocation of population counts based on covariates
known to correlate with population density, such as distance to
major roads and land cover (e.g., LandScan 1998) (22, 23, 25).
Over the past two decades, there have been considerable
advances in data availability, computational power, and methodo-
logical approaches, enabling the production of gridded population
datasets at finer spatial resolutions and global coverage (4, 11).
Other advances include the use of very high-resolution satellite
imagery and machine-learning techniques to identify human-built
structures, with subsequent allocation of human population counts

to these potentially settled sites (26). Further progress in this area
will enable ever more accurate representations of human pop-
ulation distributions across space, at improved spatial resolutions,
based on the availability of areal unit-based census and population
estimate data.

Challenges to “Top-Down” Disaggregation
Where high-quality, recent census data are available and linked
with accurate digital boundary data that match with those used for
enumeration, the disaggregation approaches described above
can provide detailed and valuable representations of the spatial
distribution of human populations. Prior research on population
distribution models has typically focused on the challenge of
selecting ancillary spatial data; however, the central challenge to
the accuracy of top-down disaggregation methods is the re-
liability of input population data. Conducting a national census is
an arduous, resource-intensive undertaking, and is a challenge
even in countries with the necessary technology, infrastructure,
and financial and human capacity (27). In low-income nations, or
those that have undergone internal strife and frequent changes in
government, maintaining accurate, up-to-date census data—
particularly where population growth is rapid and nonuniform and
migration rates are high—is an extraordinary challenge. It is
therefore important to emphasize that gridded population esti-
mates based on top-down disaggregation are only as good as the
census data on which they are based.

Fig. 2. Schematic of (A) top-down and (B) bottom-up mapping approaches. Populations are assumed to be restricted to areas containing
residential buildings; population density within these areas is predicted based on ancillary datasets such as road networks, temperature, or green
vegetation.
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A national census, which typically aims for complete enumer-
ation of a population within a defined region or territory on a
single specific date, can be challenging for a number of reasons.
Capacity gaps in many national statistical offices, together with
financial constraints, present challenges in many low income
countries. In some cases, there may be a lack of political will or
concerns that accurate and up-to-date population data may in-
stigate instability. For example, Lebanon’s last population census
was conducted in 1932 and there has been no recent census due
to a complex combination of religious and sociodemographic
concerns (28). Ongoing civil unrest, political instability, and war
can prevent the planning and implementation of a national cen-
sus. Enumeration may also be constrained in specific areas due to
insecurity and lack of access to those regions. In these situations,
estimated population growth rates provide the means for updat-
ing population data over time. The most recent census in Somalia,
for example, was conducted between 1985 and 1986 and no data
were publicly released. Thus, the only publically available census
data for Somalia date from 1975 (29). In Afghanistan, the first and
only national census was held in 1979, although this only covered
67% of districts due to insecurity (30). Further census enumeration
was planned for 2008, with a precensus household listing exercise
conducted between 2003 and 2005 (31). However, the census was
rescheduled to 2011 due to insecurity, but was eventually can-
celled because of the security situation, and has ultimately been
replaced by a form of “rolling” sociodemographic and economic
surveys, conducted in one or more provinces at a time (30). In
Madagascar, the most recent census was conducted in 2003, with
subsequent plans being postponed during a period of political
instability (32), and a similar situation exists in the Democratic
Republic of Congo, with new censuses since the last one in
1984 having often been postponed. Thus, while a total population
census can provide the foundation to inform spatially dis-
aggregated population estimates, it is clear that such estimates
based on censuses that are decades-old, incomplete, or poten-
tially biased by methodological or political processes need to be
complemented by additional data sources.

“Bottom-Up” Population Estimation
The growing requirement for spatially disaggregated population
data and the absence of national population and housing census
data in some countries mean that other data sources are in-
creasingly being explored in efforts to produce spatially dis-
aggregated population estimates at different geographical scales
and time periods. We introduce here the concept of a bottom-up
approach to population estimation, which shares a common goal
with top-down approaches: to produce population estimates for
small areas or uniform, high spatial-resolution grids. By aggre-
gating these high-resolution predictions, population totals can
also be produced for administrative units or for the national level if
required. Conceptually, bottom-up estimation of population re-
lies on complete counts of population within small, defined areas
(which we call “microcensus surveys”), selected across an area of
interest, and collected relatively rapidly and at a fraction of the
cost of a full national census. Statistical models are then used to
link microcensus data to spatial covariate data, with full coverage
over the regions of interest to predict population numbers in
unsampled locations (Fig. 2B).

Early examples of bottom-up style, spatially disaggregated
population estimation approaches focused mainly on urban set-
tings, with the area of cities being used to estimate population
sizes. For example, a global linear regression was used to quantify

the relationship between the log of population count and the log
of urban area (based on urban extents determined using night-
time lights), followed by estimation of national populations based
on the percentage of the population in each country thought to
reside in urban areas (33). This general approach has been further
developed via the incorporation of additional ancillary variables to
improve the predictive performance, such as distance to roads,
slope, age of community (27), satellite-derived variables (e.g.,
mean reflectance in specific bands) (34), vegetation indices, tex-
ture, and surface temperature (35). Thus, bottom-up methods can
also learn and benefit from advances in geospatial data used in
the top-down models discussed previously.

The majority of related research has focused on high-income
settings, where the availability of high-quality spatial datasets is
generally good. There has been considerably less attention paid
to low- and middle-income settings, where alternative population
estimation approaches could provide a means to fill significant
data gaps. However, access to high-quality spatial datasets (e.g.,
building function, footprint, or floor space data) in these areas
tends to be more limited. Where similar methods have been ap-
plied in low- and middle-income settings, they have demon-
strated strong potential. For example, satellite images of Quito
were classified by density of buildings and microcensus surveys
were undertaken to assess the feasibility and costs of population
estimation (36). In an urban setting in Sierra Leone, population
sizes were predicted using the number of buildings or rooftop
areas (based on a combination of ground-based mapping and
satellite imagery interpretation) (12, 37). Similarly, previous work
in Minas Gerais, Brazil sought to estimate urban populations
based on habitable surface areas (building footprints combined
with building height data from laser scanning) (38). Population
estimations for internally displaced persons or refugee camps
have also been conducted in several countries, by simply multi-
plying the number of residential structures (based on manual in-
terpretation of satellite imagery) with the average occupancy
values; this approach resulted in good predictive accuracy in
some, but not all, settings (39).

Bottom-Up Population Estimation Methodologies
As illustrated in Fig. 2, the general bottom-up population esti-
mation approach entails: (i) microcensus population enumeration;
(ii) linkage with relevant ancillary datasets; and (iii) definition of the
functional relationships between ancillary datasets and the pop-
ulation data to predict populations in unsurveyed locations.

Microcensus Surveys. Population data for a sample of areas
across the area or country of interest are needed as a primary
input to bottom-up population estimation. These data may come
from a partial census, census-like population survey (i.e., where a
survey is designed to provide population counts), or a specifically
designed microcensus survey. The design of the microcensus (or
other) survey used to provide training data is a vital step to ensure
accurate and unbiased population predictions. The survey design
should capture as best as possible the range of densities, de-
mographics, and environments that exist across the area of in-
terest, providing a representative sample. Consideration (for
example using stratified sampling) should be given to geo-
graphical, socioeconomic, or environmental factors that may in-
fluence population densities within the specific context in which
the work is being conducted. For example, urban areas are
more densely populated than rural; average household sizes
may vary according to ethnic, religious, or cultural groups; and
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the ruggedness of terrain may also influence settlement patterns
and population density. The importance of these and other
factors will vary by setting, so survey design should be con-
ducted carefully, building on a detailed understanding of the
specific context. Another key requirement for these data are
robust georeferencing of the geographical areas where pop-
ulation data has been acquired.

Population enumeration can be conducted within administra-
tive units (e.g., census tracts) or within other arbitrarily designed
polygons, as long as the population data are explicitly linked to
the correct geographical area. Printed maps can be used as
guides to identify the correct geographical areas, based on
physical landscape characteristics (e.g., roads, mountains, rivers,
buildings). However, technological advances now offer a range of
more sophisticated methods for the accurate geographical posi-
tioning of enumeration activities. GPS can be used to ensure
enumeration is occurring in the correct location, and the inclusion
of GPS technology in smart phones and tablet computers can
integrate navigation and the recording of geographical coordi-
nates into enumeration activities, minimizing locational error and
human effort.

Covariates. The covariates used for bottom-up population esti-
mation should be (i) strongly correlated to population density and
(ii) available consistently across all areas where the population
estimation is required. Population estimation approaches have
previously been categorized as utilizing the relationships between
population and covariate data representing the following: (i ) built-
up areas, (ii) areas of specific land use types, (iii) counts of dwelling
units, (iv) satellite-derived measures such as spectral radiance, or
(v) socioeconomic or physical characteristics (34, 35, 40). In prac-
tice, integration of multiple of these elements is likely to result in
the best predictive performance, as they each capture different
facets relating to how population numbers and densities vary
spatially. Although access to high-quality, spatially comprehen-
sive datasets representing some of these characteristics has tra-
ditionally been difficult in resource-poor settings, advances in
image-processing techniques, computational power, and the in-
creasing availability of very high-resolution satellite imagery (of
the order of <10-m spatial resolution) means that the production
of high-quality covariates for many settings is increasingly feasible
(41, 42). The mapping of human settlements and even individual
buildings from a new generation of satellite imagery and aerial
photography is providing detailed geospatial data on human
settlement patterns, a key input (as settlement areas or dwelling
counts within specified areas) for bottom-up population estima-
tion (12, 43). Furthermore, semantic detail can also be used, such
as the density of dwellings or inhabitants (35, 37), types of
buildings (e.g., residential/nonresidential) (44), or types of settle-
ment patterns (e.g., informal/formal), which can be distinguished
using computer-vision and machine-learning approaches (43).

Other ancillary spatial datasets capturing features related to
how humans are distributed on the landscape are already widely
used to improve the accuracy of dasymetric mapping. A com-
parison of top-down population density models in 32 low- and
middle-income countries found that covariates related to defining
settlements, climate, topography, and ecology consistently
explained the most variation in population density (45). Datasets
representing factors, such as distance to roads, elevation, slope,
and night-time lights (4) can also be integrated for the improve-
ment of predictive accuracy for bottom-up population mapping
(35). There has been substantial growth in the availability of

volunteered geographic information (VGI), such as through
OpenStreetMap, which can help address these issues by pro-
viding data such as settlement extents, building footprints, or the
locations of roads or facilities (46, 47), and VGI has been utilized in
dasymetric mapping previously (11, 48, 49). However, VGI data
can be prone to spatial bias in completeness, with a tendency
toward better data availability in urban areas and wealthier
countries so should be used with care (50). Finally, novel data
sources, such as those derived from mobile communications and
social media, show potential for not only providing additional
spatial covariates to improve the accuracy of both top-down and
bottom-upmodeling approaches (51), but also as a way to capture
the daily, seasonal, and annual dynamics of populations (52–54).

Statistical Approaches. The goal of bottom-up models is to
predict populations across large areas where data exist for only a
small subset of the area. Less emphasis is placed on explaining the
processes producing population distributions, as might be done
in models projecting fertility, mortality, and migration rates. It is
important to distinguish this goal because it has implications for
understanding the methodological approach. First the associa-
tions with the covariate datasets are not interpreted causally,
which might lead to simplistic environmental determinism argu-
ments. The initial covariate selection, as discussed above, does
identify covariates that are expected to be correlated with pop-
ulation density. While some ancillary data could be associated
with population density or growth rates, the relationships are also
seen as indirect markers of the variation in population, which re-
flects how human settlements modify and are constrained by the
environment. Second, the statistical methods used in bottom-up
models must be capable of drawing together multiple sources of
data to build the model. These multiple data sources provide
information not only from the data space of relationships between
population and covariates, but also from their positions in space.
Specifically, observations taken closer together in space tend to
be more similar than those further apart. This feature, known as
spatial autocorrelation, is common to our first-hand experiences
of the world—populations cluster together in similar groups—but
it violates assumptions of independence that underlie classic
statistical methods. Explicit consideration of spatial structure, on
the other hand, can substantially improve predictive outputs (55,
56) because spatially structured variation between microcensus
areas that is not fully explained by the covariates is still a source of
useful information for predictions. Future research in this area
should aim to explicitly address spatial autocorrelation, which
should provide improved predictive accuracy. Several options are
available to ensure that residual spatial autocorrelation is appro-
priately dealt with. For example, spatially autoregressive models
may be used for the predictive modeling of areal data, with a
spatial adjacency matrix being used to ensure that the probability
of values estimated is conditional on the level of values in
neighboring areal units (57). Alternatively, where population data
can be represented as spatial points (e.g., using the centroid of
small areal units with linked population data), geostatistical
methods that model residual autocorrelation as a function of
distance between points may be applied (58).

There are few examples in the literature of areal-based spa-
tially explicit models where prediction into unsurveyed locations is
the main aim, but none, as far as we are aware, that have applied
these methods to population estimation. Nevertheless, currently
available software does include this functionality (59), and where
applied, the inclusion of spatial dependency has resulted in
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improved predictive performance (60). Predicted populations
from these types of areal-based methods would be explicitly as-
sociated with areal units, and the subsequent spatial disaggre-
gation of predicted population counts (along with associated
confidence intervals or SEs) can then be used to provide high
spatial-resolution population estimates and an indication of pre-
dictive uncertainty. While there are no specific examples in the
literature of these methods being applied for population estima-
tion, the extrapolation of household survey data by these means
has been used to provide bottom-up spatial predictions of pop-
ulation age structures (61). These geostatistical methods have
utilized data from specific field surveys and household survey data
(e.g., Demographic and Health Survey data), where spatial coor-
dinates refer to the location where the survey was conducted
(e.g., a point within a village, or a health center location), or the
(normally spatially displaced) survey cluster centroid for national
household survey data. Application for the prediction of pop-
ulation size or density would require careful consideration of how
population data are represented most accurately as points: ex-
plicit geographically linked enumeration (i.e., using GPS sup-
ported enumeration hardware to geolocate all households
enumerated) provides the ideal basis for this, enabling enumer-
ation within small, uniformly sized, and well-defined areas. Pre-
dictive outputs from geostatistical methods could be provided on
a grid at the same spatial resolution for which covariate datasets
are available (or at a coarser spatial resolution if required), thus
removing the need for subsequent spatial disaggregation.

The previous examples of bottom-up population estimation
discussed have focused on the application of linear regression
models of raw population counts, population densities, or the
natural log of one of these values. For the modeling of population
counts, the application of Poisson, negative binomial, or quasi-
Poisson regression may be more appropriate, given that pop-
ulation counts are inherently positive integers. Note also that the
spatial modeling approaches we discuss here are more commonly
discussed in ecological studies to predict the abundance of plant
and animal species (62) than in the demography or population
studies literature.

Validation of Outputs. Because the primary objective of bottom-
up estimation is prediction in nonsampled areas, validation of the
spatially disaggregated population estimates is rare. Where re-
sults have been reported previously they indicate a good corre-
lation between predicted and observed total population or
population density values, particularly when considering larger
administrative units. For example, an R2 value of 0.72 (squared
correlation coefficient for observed vs. predicted counts, using
independent testing data) was obtained by Harvey et al. (34),
highlighting good predictive performance. Similarly, population
predictions from a linear regression model developed using data
from 10% of available census units in the Netherlands, along with
building floor space or volume data, produced predictive errors
(calculated as median absolute percentage error, based on the
remaining 90% of available census units) of 18.3% at the smallest
administrative level, 9.3% at the largest administrative level, and
0.5% at the national level (44). Several previous studies have
identified persistent overestimation of population density in rural
areas or areas where buildings are largely nonresidential (e.g.,
industrial sites) and underestimation of population density in high-
density urban settings, particularly where multistory buildings are
common (34, 35, 44). This suggests that contextual information,
such as residential vs. nonresidential buildings or building height

information, may improve predictions. The utility of such addi-
tional information has been highlighted in the Netherlands, where
building footprint areas, building floor space areas (which incor-
porates multiple floors per building), and building volume (which
incorporates building heights) were used as covariates in a pre-
dictive linear regression approach, with building floor space found
to produce the most accurate predictions (44). However, not all
studies assessed predictive performance against an independent
testing dataset, and in the majority of examples, values were not
back-transformed before accuracy assessment (i.e., validation was
based on population density or the log of population density
values rather than population counts) (27, 35). Both of these sce-
narios result in an overestimation of predictive accuracy and dif-
ferences in accuracy assessment protocols make meaningful
comparison of different modeling approaches impossible.

Future research should incorporate the comparison and
validation of different methodologies to provide a clear un-
derstanding of predictive accuracy. While limited applications to
date have indicated good predictive performance, robust test-
ing and validation should be conducted in a range of settings. In
particular, validation studies performed in countries with com-
prehensive and reliable census data coverage should be a pri-
ority. Population estimates can also be compared with other
administrative data, such as vaccination records (61) or local
population projections. This type of testing and validation is
required to strengthen the evidence that bottom-up approaches
can be considered as an appropriate means of generating robust
population estimates in areas where complete census coverage
is not possible.

Limitations
The bottom-up approach described here has the potential to
produce spatially disaggregated population estimates in situa-
tions without recent and reliable census data; however, the
approach should be seen to complement a census or other enu-
meration work. We emphasize the complementary nature of the
bottom-up approach because a full-enumeration census can in-
clude additional information on socioeconomic and demographic
characteristics in the population. Several limitations to the ap-
proach need to be considered. These caveats are broadly related
to: (i) data collection and analysis methods, and (ii) interpretation/
use of the resulting estimates. The methods described here are
based on microcensus data collections, and these microcensus
data must be collected with the same care and rigor as a full
census. The field protocol should, at a minimum, include multiple
layers of supervision and quality control. External observers and
postenumeration surveys confirming data collection should be
used when possible, as in full enumeration censuses. All data
should be checked for consistency and to assess potential
underenumeration. The smaller number of enumerators needed
for a microcensus (compared with a full national census) is an
opportunity to improve oversight and training to prevent such
data-collection errors. The increasing use of mobile devices (e.g.,
smartphones and tablets) with inbuilt georeferencing capabilities
also provides opportunities for improved data quality and vali-
dation, by providing the means to collect enumeration data with
associated date, time, and location information.

A second area of concern is related to the use and broader
impacts of population-mapping activities. As noted above, mak-
ing claims about a population total even using a national census is
a highly political and contentious issue. The results affect all per
capita rate estimates, shift political representation, and change
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claims to power or resources. While the substantial task of a full
national census can only be undertaken by a central government,
the bottom-up approach is potentially available to more analysts.
On the one hand, this means that typically marginalized or
undercounted communities could produce alternative population
estimates themselves; it also means that people from outside a
country can make competing claims about a population. For this
reason, we recommend openness and transparency in data
sources and methods and for communication among analysts
conducting a bottom-up mapping project and multiple stake-
holders, including the central government.

Basing a country’s population estimate on a bottom-up sta-
tistical model invites questions about the accuracy of the model,
particularly in situations without a full census for comparison.
Country settings that lack an updated census may be experienc-
ing conflicts, environmental hazards, or large population dis-
placements. Such events make it difficult to accurately collect
information on the highly mobile population, andmisrepresenting
populations at risk should be avoided. Uncertainty in the esti-
mates is not inherently a limitation, however. Despite being por-
trayed as definitive and authoritative, a full census may contain
errors. An advantage of the bottom-up estimation approaches are
that uncertainty about population estimates can be explicitly
quantified. The challenge is to appropriately use and convey this
uncertainty to policy makers and other data users, particularly to
avoid underestimating the population impacted by hazards or
other events.

The Future of Bottom-Up Population Estimation
Bottom-up approaches for spatially disaggregated population
estimation is a significant area of active research. In Nigeria, set-
tlement mapping using very high-resolution imagery in combi-
nation with small-area microcensus surveys, geolocated national
household surveys, and a range of geospatial layers, are being
used to estimate population sizes and age and sex structures at a
spatial resolution of 90 m (63). The outputs are being used to
improve the efficiency and effectiveness of vaccination planning,
forming the demographic basis of the Nigeria Vaccination
Tracking System (vts.eocng.org/), as well as being adopted for
humanitarian needs assessments (59). Elsewhere, the Afghanistan
Central Statistics Organization, the United Nations Population
Fund (UNFPA), WorldPop, and the Flowminder Foundation are
using bottom-up approaches to derive population estimates
across all parts of Afghanistan, as an update to existing estimates
that are based on projections using the 1979 census and 2003–
2005 household listing (64). The use of spatial statistics to quantify
the relationships between microcensus-derived population counts
and a range of spatial covariates, including detailed settlement

information, is enabling population prediction in areas where re-
cent enumeration has not been possible due to insecurity. Census
enumeration generally fulfils a far broader role than the bottom-up
population estimation approach we describe (census question-
naires also cover a range of more detailed demographic and so-
cioeconomic factors), making direct-cost comparisons difficult.
However, the approach we outline provides a low-cost option for
the provision of national and subnational population estimates. For
countries in Africa, a full-enumeration census typically costs ap-
proximately $1–2 per person; for example, the Ethiopia 2007 cen-
sus was estimated to have cost $74 million, equating to around
$1 per person (60). Following the work in Nigeria and Afghanistan,
the bottom-up approach to estimating population counts, in-
cluding acquiringmicrocensus and satellite imagery for the country,
is estimated to cost between $0.03 and $0.15 per person in the
population. There is also potential to broaden the bottom-up ap-
proach to cover further demographic and socioeconomic variables,
with examples based on geolocated household survey data dem-
onstrated elsewhere (65, 66), but more research in various settings
is needed.

Subnational data on population remain central to government
operations, and are vital for tracking progress toward national and
international development goals. National population and hous-
ing censuses will continue to provide themost important source of
such data, but in many cases these data are outdated and un-
reliable, with few other data sources, such as registries, available
to aid in updates. Statistical approaches have been applied for the
estimation of populations within specific urban and rural settings
in the absence of census data (11, 33, 34, 61), and within refugee/
internally displaced persons camps (39). However, there have so
far been few attempts to provide estimates across national extents
(5, 44) and less attention paid to low-income settings where
contemporary population information is currently lacking. We
propose that suitable data sources, computational power, and
statistical methods are now available to enable high-resolution,
spatially disaggregated national population estimation to be
carried out in countries where comprehensive, recent, and reliable
census data are unavailable and are unlikely to become available
due to challenging contexts.
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