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The two major goals of common disease genetics research
have been dissection of the aetiopathogenesis of common
diseases, and the development of genetic predictors or
diagnostic tools of disease. The former goal has clearly been
successfully achieved, with successes in genomics driven
repositioning of therapeutic agents (e.g. of interleukin [IL]-
17/23 inhibition into psoriasis and ankylosing spondylitis
based on genome-wide association study [GWAS] findings,
particularly of association of IL-23 receptor variants with
those diseases [1,2]), and in ongoing drug development
programs informed by GWAS associations.[3] Early hopes
that GWAS-associations would prove useful as diagnostic
tests were not realised, because GWAS demonstrated that
commondiseaseheritability is trulypolygenic,withvery large
numbers (likely thousands to tens of thousands) of genetic
variants involved, each contributing a small fraction of the
total genetic effect on the disease.[4] The recent development
of approaches that combine findings across the genome has
revolutionised thisfield though,[5] andwill in turnhavemajor
effects on the practice of medicine. In this paper we review
whatpolygenic risk scores (PRS) are, how they are developed,
and their potential applications in rheumatology.

PRS are quantitative scores that measure an individual
genetic risk for the condition or trait involved. Early PRS
used only variants that had been definitively associated
with the condition, typically defined by achieving ‘genome-
wide significance’ for association usually considered to be
P< 5�10�8. As for nearly all diseases only a minority of
the total heritable component of diseases has yet been
defined at this level of significance, these scores have
limited informativity, although they perform better than
scores of individual single-nucleotide polymorphisms
(SNPs). Including SNPs that show less definitive evidence
of association captures a higher proportion of the total
heritability of the disease, but also increases the number of
variants included that are false positive findings that add
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statistical noise to the score and reduce its performance.
True PRS have been optimised such that the number of
SNPs involved maximises the performance of the score,
and typically include hundreds to thousands of SNPs. For
example, a PRS in ankylosing spondylitis shows that using
only 103 non-major histocompatibility complex (MHC)
SNPs that have been shown to achieve definitive genome-
wide significant associations with the disease, the score
could discriminate cases from healthy subjects with an area
under the curve (AUC) of 0.66, which is moderately
informative (0.5 = no capacity to discriminate, 1.0= per-
fect ability to discriminate).[6] However, a PRS involving
1750 non-MHC SNPs selected effectively for their strength
of association with the disease had AUC= 0.78, a marked
increase in performance, even though many of the 1750
SNPs involved may ultimately turn out not to be associated
with the disease.

Different methods of selecting SNPs for PRS have been
developed, and further improvements are likely with for
example machine learning approaches. Whilst they have
typically been developed using data from SNP micro-
arrays, they can also use inputs data from whole genome
sequencing as well. Development of the PRS though
normally requires very large sample sizes, typically >5000
cases and controls. The greater the sample size, generally
the better the performance of the PRS, because the ability
to discriminate between true positive and false positive
associated SNPs increases.[7]

The performance of the PRS is influenced by several other
factors in addition to the discovery dataset size.[7] The
more comprehensive the performance of the genetic
characterisation, the better will be the performance of
the PRS. Therefore, whole genome sequence data will
perform better than SNP microarrays, which do not
reliably detect copy number variants or rare variants, and
only capture a moderate proportion of the total number of
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SNPs. Approaches that incorporate epigenetic profiles may
also improve the performance of SNP based scores.
Epigenetic characterisation is much more complicated
and is affected by non-heritable variables including gender,
age, smoking status, diet and medications, as well as the
cellular composition of the source DNA, which are very
hard to control for. It is therefore not clear at this point
whether inclusion of epigenetic data will increase the
performance of PRS.

The discovery dataset needs not only to be large, but also
preferably to be diagnostically homogenous, as clinical
heterogeneity will increase heterogeneity of the genetic
factors involved in the cases studied. Thus, for most
diseases, large well characterised GWAS datasets are the
optimal datasets for PRS development, rather than
biobank style datasets, where there is less diagnostic
certainty about many diseases or traits.

This issue also applies to validation sets. It is clearly
essential to validate any PRS, to ensure it is generalisable
when used in datasets or individuals other than those in the
discovery cohorts. Validation can be either internal,
involving the same cohorts used to develop the PRS, or
completely external. Cross-validation is one strategy for
internal validation, in which the discovery cohort is
divided in two with one part used to develop the PRS, and
the other to test that PRS. This process is repeated multiple
times and the results of the tested sets are used to define the
PRS and to validate the score. This approach has the
advantage that the validation uses cohorts which reflects
the disease characteristics of the discovery cohorts, but the
disadvantage that it is not truly independent. Also the
discovery cohorts never use the whole dataset, and are
therefore not optimally powered. External validation
involving a completely separate dataset is truly indepen-
dent. However, often external validation cohorts are not as
clinically homogenous as the discovery set, and may have
subtle ethnic differences, leading to apparent loss of
performance of the PRS. Failure to validate in external
datasets may therefore simply reflect clinical differences
between the datasets rather than true failure of the PRS.

Ethnicity also has effects on the performance of PRS,
although for most common diseases these effects are likely
to be modest, because the common variants that drive
susceptibility to those diseases arose long ago in human
ancestry, before most human ethnic divergence occurred.
As most PRS have been developed from GWAS datasets,
these typically have studied people of western European
descent. Similarly, most validation studies have involved
large scale publicly available biobank datasets, such as UK
Biobank and FinnGen, and therefore the performance of
these PRS in other ethnic groups has yet to be determined.
This may be because either no GWAS data is available such
as understudied populations of African or south Asian
ancestry, or due to the GWAS data is not publicly available
such as in Chinese or other east Asian ancestries. There is
clearly a great need to increase the diversity of datasets
available for discovery and validation of PRS.

There are now PRS available for a large number of traits
and diseases. The PGS Catalogue is a public repository of
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such scores [https://www.pgscatalog.org/].[8] The cata-
logue currently (6/8/2021) includes scores for over 800
diseases, involving African (n= 149), south Asian (n= 79),
east Asian (n= 132), Hispanic/Latin American (n= 80)
and European (n = 811) ancestries. Clearly there is a great
need to extend PRS research and development into non-
European ancestries.

Clinical use of PRS: Whilst PRS have typically been
developed to be used in diagnosis, they have multiple other
potential clinical and research uses. These include
improving disease classification, predicting likelihood of
future development of disease, stratifying people according
to need and optimal frequency of screening tests,
prediction of natural history of disease, pharmacogenom-
ics and more. As PRS are typically developed in carefully
assessed, clinically homogenous GWAS datasets, they can
be used in disease classification, as people with clinical
similar conditions with low PRS have a different though
potentially overlapping aetiopathogenesis for their disease.
This suggests they either have a different disease, or a
disease subset.

PRS are stable from the point of conception, and therefore
have predictive ability for disease, and do not depend on
development of the disease to have utility. This means they
can be applied to determine the optimal frequency of
screening tests for the disease, and there are currently
studies underway for example to stratify people for breast
or prostate cancer screening frequency according to their
PRS. There are many potential usages of PRS in
rheumatology in this regard, such as stratifying people
at risk of systemic lupus erythematosus or rheumatoid
arthritis, to reduce inappropriate autoantibody testing in
those at low risk of disease. Additionally they can be used
to predict the likelihood of future development of disease,
or facilitate early disease diagnosis, enabling preventative
therapy where such exists, or early interventional therapies
for those with disease. Given the strong evidence that early
intervention leads to better outcomes for many rheumatic
diseases such as rheumatoid arthritis and ankylosing
spondylitis, the potential utility of PRS in rheumatology is
obviously high.

As most diseases individually affect a minority of the
population, and most PRS have at most moderate
discriminatory capacity, PRS on their own are not
particularly useful for predictive screening in the general
population. Rather, they are of utility in combination with
other tests, or in groups at high risk of the disease
concerned. For example, the ankylosing spondylitis PRS
mentioned above has a maximum positive predictive value
(likelihood of disease given a positive test) of 15% when
used in the general population, which is not high enough to
justify widespread usage. However, if used in a setting such
as patients <45 years of age with >3 months of chronic
back pain, where the prior probability of ankylosing
spondylitis is high (30%), then the maximum positive
predictive value of the PRS is 93%,which is high enough to
be nearly diagnostic on its own. In clinical practice we
typically use tests in combination with each other tests and
imaging, and with our clinical assessment of the patient.
Very few PRS to date have been assessed for their utility in
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clinical settings and performance in relation to or in
combination with other currently available tests. There
are large scale programs underway internationally to do
this, such as the ‘Our Future Health’ program in the
United Kingdom, which will study PRS performance and
acceptability in five million Britons over the next 5 years
[https://ourfuturehealth.org.uk/].

As disease severity and complications for many diseases
have genetic underpinnings, PRS are therefore also of use
in predicting disease complications and natural history. An
emerging field of research is the use of PRS to predict
response to or toxicity of pharmacologic treatments.
Current pharmacogenomics focus on individual SNP, or in
some cases copy number variants, and their association
with drug efficacy and toxicity, but it is likely that these
characteristics are also polygenic in nature.

PRS in Rheumatology: As most rheumatological diseases
have low prevalence and moderate to high heritability, PRS
for many rheumatological diseases have demonstrated high
discriminatory capacity [Table 1].[9-16] Very few though
have been developed or validated for other than European
ethnicities, and there are stillmanymajor rheumatic diseases
for which no PRS has been published to date.

Whilst several of these AUC may seem moderate, with few
exceptions ranging between 0.65 and 0.80, it should be
borne in mind that many of our diagnostic tests actually
have lower AUC and yet are considered valuable and are
widely used in clinical practice. For example, CRP has an
AUC of 0.7 when used in the diagnosis of ankylosing
spondylitis[17] and 0.61 for rheumatoid arthritis.[18] MRI
when used to screen chronic back pain for patients with
ankylosing spondylitis has an AUC of 0.62 to 0.885.[19,20]

Therefore PRS already perform similarly to widely used
tests in rheumatological clinical practice, and are only
likely to improve in performance in future.

These scores are already potentially of clinical utility. The
current ankylosing spondylitis PRS is more informative
than human leukocyte antigen (HLA)-B27 testing alone,
which has AUC of 0.869 to 0.901 in Europeans and East
Asians respectively.[6] As the PRS is easily calculated from
Table 1: Exemplar PRS for common rheumatic diseases.

Disease Ethnicity AUC

Ankylosing spondylitis European 0.924[6]

Ankylosing spondylitis East Asian 0.948[6]

Acute anterior uveitis European 0.96[9]

Systemic sclerosis European 0.673[10]

Systemic lupus erythematosus European 0.67–0.72[11]

Systemic lupus erythematosus East Asian 0.76[12]

Rheumatoid arthritis European 0.78[13]

Gout European 0.664[14]

Osteoporotic hip fracture European 0.798[15]

Psoriatic arthritis European 0.91–0.92[16]

In each case the AUC is reported for use of the PRS to discriminate cases
from healthy subjects. AUC: Area under the curve; PRS: Polygenic risk
scores.
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anyone who has had a SNP microarray performed, its cost
to these people is far lower than that of HLA-B27
genotyping. Even in those who have not had SNP
microarray genotyping performed, its cost is already lower
than current HLA-B27 testing costs within the National
Health Service in the United Kingdom, as so clearly should
replace it.

A potential rheumatological application of PRS is to assist
in diagnosis either prior to or in combination with other
tests performed as part of standard diagnostic workup.
A recent paper reported the development of a suite of
PRS (‘G-PROB’) for this application, which provides a
probability of a patient with inflammatory arthritis having
either gout, psoriatic arthritis, rheumatoid arthritis,
spondyloarthropathy, or systemic lupus erythematosus.[21]

In patients presenting with undiagnosed inflammatory
arthritis, the PRS suite was able to deprioritise one disease
in 100% of patients, two or more diseases in 84% of
patients, three or more diseases in 40% of patients, and
four diseases in 11% of patients, with a negative predictive
value 0.98. Whilst clinicians did a little better, the disease
with the highest G-PROB matched the final diagnosis in
roughly half of patients (53%). Combining the PRS with
clinical information is likely to improve the performance of
this score, but the study shows that this is close to being
usable as a triage tool in clinical practice.

Whilst PRS are available across multiple diseases, there
remain many diseases including major rheumatic diseases
where no score has yet been reported. Further, for many
rheumatological diseases the sample size used for discovery
sets has been modest, and larger sample sizes will lead to
better performance. New statistical approaches may also
lead to modest gains in PRS performance, but the key areas
where much further work is required are multiomic scores
combining PRS with other biomarkers and clinical factors,
and extension of PRS research further into non-European
ancestries. Health economic assessment of the impact of
PRS is underway but given the low cost of SNP microarray
genotyping, likely to be <£20 per patient shortly. The
widespread availability of SNP microarray data from
direct-to-consumer testing companies such as 23andMe
andMyHeritage, means that it is near certain that PRS will
be widely introduced into clinical practice in the near
future. We then need to work out best how to use them as
diagnostic and predictive tools, and integrate the tests into
our clinical pathways. There will clearly need to be
educational programs about how to interpret these tests,
but in reality this is quite easy, once it is realised that they
are interpreted in the same way as any other numeric
biomarker test we use every day in clinical practice, the
only difference being that they don’t change during life.
This will significantly benefit prediction, diagnosis and
treatment of disease, and potentially enable accurately
targeted preventative or early intervention approaches to
disease management. Wouldn’t that be a great outcome!
Funding

This research was supported by the National Institute for
Health Research (NIHR) Biomedical Research Centre
based at Guy’s and St Thomas’NHS Foundation Trust and

https://ourfuturehealth.org.uk/
http://www.cmj.org


Chinese Medical Journal 2021;134(21) www.cmj.org
King’s College London and/or the NIHRClinical Research
Facility. The views expressed are those of the author(s)
and not necessarily those of the NHS, the NIHR or the
Department of Health.
References
1. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P,

Duncanson A, et al. Wellcome Trust Case Control Consortium;
Australo-Anglo-American Spondylitis Consortium (TASC). Associa-
tion scan of 14,500 nonsynonymous SNPs in four diseases identifies
autoimmunity variants. Nat Genet 2007;39:1329–1337. doi:
10.1038/ng.2007.17.

2. Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP,
et al. A large-scale genetic association study confirms IL12B and leads
to the identification of IL23R as psoriasis-risk genes. Am J Hum
Genet 2007;80:273–290. doi: 10.1086/511051.

3. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown
MA, et al. 10 years of GWAS discovery: biology, function, and
translation. Am J Hum Genet 2017;101:5–22. doi: 10.1016/j.
ajhg.2017.06.005.

4. Manolio TA, Collins FS, CoxNJ, GoldsteinDB,Hindorff LA,Hunter
DJ, et al. Finding the missing heritability of complex diseases. Nature
2009;461:747–753. doi: 10.1038/nature08494.

5. Evans DM, Visscher PM, Wray NR. Harnessing the information
contained within genome-wide association studies to improve
individual prediction of complex disease risk. Hum Mol Genet
2009;18:3525–3531. doi: 10.1093/hmg/ddp295.

6. Li Z, Wu X, Leo PJ, De Guzman E, Akkoc N, Breban M, et al.
Polygenic Risk Scores have high diagnostic capacity in ankylosing
spondylitis. Ann Rheum Dis 2021;80:1168–1174. doi: 10.1136/
annrheumdis-2020-219446.

7. Dudbridge F. Power and predictive accuracy of polygenic risk scores.
PLoS Genet 2013;9:e1003348. doi: 10.1371/journal.pgen.1003348.

8. Lambert SA, Gil L, Jupp S, Ritchie SC, Xu Y, Buniello A, et al. The
Polygenic Score Catalog as an open database for reproducibility and
systematic evaluation. Nat Genet 2021;53:420–425. doi: 10.1038/
s41588-021-00783-5.

9. Huang XF, Li Z, De Guzman E, Robinson P, Gensler L, Ward MM,
et al. Genomewide association study of acute anterior uveitis
identifies new susceptibility loci. Investig Ophthalmol Vis Sci
2020;61:3. doi: 10.1167/iovs.61.6.3.

10. Bossini-Castillo L, Villanueva-Martin G, Kerick M, Acosta-Herrera
M, López-Isac E, Simeón CP, et al. Genomic Risk Score impact on
susceptibility to systemic sclerosis. Ann Rheum Dis 2021;80:118–
127. doi: 10.1136/annrheumdis-2020-218558.

11. Chen L, Wang YF, Liu L, Bielowka A, Ahmed R, Zhang H, et al.
Genome-wide assessment of genetic risk for systemic lupus
2524
erythematosus and disease severity. Hum Mol Genet 2020;29:
1745–1756. doi: 10.1093/hmg/ddaa030.

12. Wang YF, Zhang Y, Lin Z, Zhang H, Wang TY, Cao Y, et al.
Identification of 38 novel loci for systemic lupus erythematosus and
genetic heterogeneity between ancestral groups. Nat Commun
2021;12:772. doi: 10.1038/s41467-021-21049-y.

13. Yarwood A, Han B, Raychaudhuri S, Bowes J, Lunt M, Pappas DA,
et al. A weighted genetic risk score using all known susceptibility
variants to estimate rheumatoid arthritis risk. Ann Rheum Dis
2015;74:170–176. doi: 10.1136/annrheumdis-2013-204133.

14. Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars N, Benner C,
AguirreM, et al. Genetics of 35 blood and urine biomarkers in the UK
Biobank. Nat Genet 2021;53:185–194. doi: 10.1038/s41588-020-
00757-z.

15. Lu T, Forgetta V, Keller-Baruch J, Nethander M, Bennett D, Forest
M, et al. Improved prediction of fracture risk leveraging a genome-
wide polygenic risk score. Genome Med 2021;13:16. doi: 10.1186/
s13073-021-00838-6.

16. Patrick MT, Stuart PE, Raja K, Gudjonsson JE, Tejasvi T, Yang J,
et al. Genetic signature to provide robust risk assessment of psoriatic
arthritis development in psoriasis patients. Nat Commun 2018;
9:4178. doi: 10.1038/s41467-018-06672-6.

17. Rudwaleit M, van der Heijde D, KhanMA, Braun J, Sieper J. How to
diagnose axial spondyloarthritis early. Ann Rheum Dis 2004;
63:535–543. doi: 10.1136/ard.2003.011247.

18. Shovman O, Gilburd B, Zandman-Goddard G, Sherer Y, Orbach H,
Gerli R, et al. The diagnostic utility of anti-cyclic citrullinated peptide
antibodies, matrix metalloproteinase-3, rheumatoid factor, erythro-
cyte sedimentation rate, and C-reactive protein in patients with
erosive and non-erosive rheumatoid arthritis. Clin Dev Immunol
2005;12:197–202. doi: 10.1080/17402520500233510.

19. Ye L, Liu Y, Xiao Q, Dong L, Wen C, Zhang Z, et al. MRI compared
with low-dose CT scanning in the diagnosis of axial spondyloar-
thritis. Clin Rheumatol 2020;39:1295–1303. doi: 10.1007/s10067-
019-04824-7.

20. Diekhoff T, Hermann KG, Greese J, Schwenke C, Poddubnyy D,
Hamm B, et al. Comparison of MRI with radiography for detecting
structural lesions of the sacroiliac joint using CT as standard of
reference: results from the SIMACT study. Ann Rheum Dis
2017;76:1502–1508. doi: 10.1136/annrheumdis-2016-210640.

21. Knevel R, le Cessie S, Terao CC, Slowikowski K, Cui J, Huizinga
TWJ, et al. Using genetics to prioritize diagnoses for rheumatology
outpatients with inflammatory arthritis. Sci Transl Med 2020;12:
eaay1548. doi: 10.1126/scitranslmed.aay1548.

How to cite this article: Brown MA, Li Z. Polygenic risk scores and
rheumatic diseases. Chin Med J 2021;134:2521–2524. doi: 10.1097/
CM9.0000000000001845

http://www.cmj.org

	Polygenic risk scores and rheumatic diseases
	Funding
	References


