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Objective: Duoxuekang (DXK) capsule is an empirical prescription for Tibetan medicine in
the treatment of hypobaric hypoxia (HH)-induced brain injury in the plateau. This study
aimed to investigate the protective effects and underlying molecular mechanisms of DXK
on HH-induced brain injury.

Methods: UPLC–Q-TOF/MS was performed for chemical composition analysis of DXK.
The anti-hypoxia and anti-fatigue effects of DXKwere evaluated by the normobaric hypoxia
test, sodium nitrite toxicosis test, and weight-loaded swimming test in mice.
Simultaneously, SD rats were used for the chronic hypobaric hypoxia (CHH) test. RBC,
HGB, HCT, and the whole blood viscosity were evaluated. The activities of SOD and MDA
in the brain, and EPO and LDH levels in the kidney were detected using ELISA. H&E
staining was employed to observe the pathological morphology in the hippocampus and
cortex of rats. Furthermore, immunofluorescence and Western blot were carried out to
detect the protein expressions of Mapk10, RASGRF1, RASA3, Ras, and IGF-IR in the brain
of rats. Besides, BALB/c mice were used for acute hypobaric hypoxia (AHH) test, and
Western blot was employed to detect the protein expression of p-ERK/ERK, p-JNK/JNK,
and p-p38/p38 in the cerebral cortex of mice.

Results: 23 different chemical compositions of DXK were identified by UPLC–Q-TOF/MS.
The anti-hypoxia test verified that DXK can prolong the survival time of mice. The anti-
fatigue test confirmed that DXK can prolong the swimming time of mice, decrease the level
of LDH, and increase the hepatic glycogen level. Synchronously, DXK can decrease the
levels of RBC, HGB, HCT, and the whole blood viscosity under the CHH condition.
Besides, DXK can ameliorate CHH-induced brain injury, decrease the levels of EPO and
LDH in the kidney, reduceMDA, and increase SOD in the hippocampus. Furthermore, DXK
can converse HH-induced marked increase of Mapk10, RASGRF1, and RASA3, and
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decrease of Ras and IGF-IR. In addition, DXK can suppress the ratio of p-ERK/ERK,
p-JNK/JNK, and p-p38/p38 under the HH condition.

Conclusion: Together, the cerebral protection elicited by DXK was due to the decrease of
hematological index, suppressing EPO, by affecting the MAPK signaling pathway in
oxidative damage, and regulating the RAS signaling pathway.

Keywords: Tibetan medicine, Duoxuekang capsule, high-altitude polycythemia accompanied by brain injury, MAPK
signaling pathway, RAS signaling pathway

INTRODUCTION

There are about 140 million residents in the plateau section all
over the world (Boucly et al., 2017). Hypobaric hypoxia (HH)
environment at high altitude is one of the main factors affecting
human life activities (West, 2016). Furthermore, with the
development of society and economy, thousands of people are
climbing to high-altitude areas for reasons such as work or
tourism (Luan et al., 2019). People at high altitudes (≥2500 m)
would suffer from acute mountain sickness (AMS) or chronic
mountain sickness (CMS), manifested by headache, insomnia,
and dyspnea (Ma et al., 2020). Besides, AMS simultaneously
causes nausea, vomiting, and dizziness, and can even be life
threatening, while CMS can result in dyspepsia and high risk
of thrombosis, affecting more than 80 million people worldwide
(Gazal et al., 2019). Some evidences show that the prevalence of
CMS in high-altitude populations varies from 1.2 to 33% (Bao
et al., 2017) and is about 20% among Andean highlanders (Yao
et al., 2018). Synchronously, CMS is characterized by high-
altitude polycythemia (HAPC) and high-altitude pulmonary
hypertension (Gao et al., 2020). Furthermore, patients with
HAPC experience venectasia, attention-deficit disorder, and
lapse of memory (Liu et al., 2018).

It was reported that the morbidity of HAPC was around
5–18% in the Qinghai–Tibet Plateau (León-Velarde et al.,
2005), and its prevalence increased with the elevation of
altitude (Fan et al., 2018). HAPC accompanied by brain injury
was a common clinical symptom, which seriously damaged
public health (Deng et al., 2020). It was confirmed that the
expression of EPO can be increased after HH exposure (Yang
et al., 2021), which can lead to increased erythropoiesis
(Kasperska and Zembron-Lacny, 2020). Excessive
erythrocytosis results in an increase in blood viscosity which
can impair blood flow (Ogunshola et al., 2006). With the increase
of blood viscosity, the flow rate of blood in the body slows down,
leading to decreased blood perfusion in the brain tissue (Frietsch
et al., 2017). It was confirmed that the brain tissue of HAPC
patients was in a hypoxic and ischemic state, which was prone to
intracranial ischemia, infarction, and hemorrhage (Bao et al.,
2019). It had been confirmed that the activation of the MAPK
signaling pathway led to brain injury after HH exposure (Wang
et al., 2018). Furthermore, it was reported that the Ras/Raf/ERK
pathway was critical for neuroprotection and apoptosis
suppression during hypoxia insult (Xu et al., 2016).

Duoxuekang capsule (DXK, ), composed of
Phyllanthus emblica L. ( , Ju Rure), Rhodiola crenulata

(Hook. f. et Thoms.), H. Ohba ( , Suoluo Mabu),
Hippophae rhamnoides L. ( , Daerbu), and Zingiber
officinale Rosc. ( , Gajia) (Wang et al., 2017), was derived
from a secret recipe owned by Cuoru-Cailang, a very well-known
Tibetan medicine master. In the previous studies, we have
confirmed that HIF-1 alpha (HIF-1α) but not HIF-1 beta will
undergo significant changes during hypoxia stimulation, and
Rhodiola crenulata can regulate the expression of HIF-1α to
exert an anti-hypoxia cerebral protective role (Wang et al.,
2019). In addition, Rhodiola crenulata can improve HH-
induced brain injury by inhibiting the apoptosis of the
hippocampus and maintaining the morphology and structure
of mitochondria (Hou et al., 2018). As a frequently used
prescription of Tibetan medicine, DXK is effective in the
treatment of HAPC. Clinical investigations found that DXK
can enrich brain–blood perfusion of patients with HAPC
through enhancing the oxyhemoglobin saturation and heart
rate (Ga et al., 2019; Li et al., 2020). Simultaneously, we also
confirmed that DXK can increase the number of collagen and
elastic fibers in AHH-induced brain injury via inhibiting
oxidative stress injury (Li et al., 2020). In this study, we first
analyzed the chemical compositions of DXK by UPLC–Q-TOF/
MS and investigated whether its underlying molecular
mechanisms on HAPC accompanied by brain injury were
related to MAPK and RAS signaling pathways.

MATERIALS AND METHODS

Reagents and Chemicals
Duoxuekang capsule (DXK, No. 160816) was provided by the
research laboratory of School of Ethnic Medicine, Chengdu
University of Traditional Chinese Medicine (Chengdu, China).
Nuodikang capsules (NDK, No. Z10980020) were produced by
Tibet Rhodiola Pharmaceutical Holding Co., Ltd. (Tibet, China).
Hongjingtian oral liquid (HOL, No. Guoyaozhunzi B20070002)
was provided by Tibet Tibetan Medicine Group Co. LTD (Tibet,
China). Superoxide dismutase (SOD, No. A001-3-2), lactic
dehydrogenase (LDH, No. A020-2-2), erythropoietin (EPO,
No. H051), malondialdehyde (MDA, No. A003-1-2), hepatic
glycogen (No. A043-1-1), and total protein extraction kits
(W034-1-1) were purchased from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). Bicinchoninic acid
(BCA) Protein Quantitative Kit (70-PQ0012) was provided by
Multi Sciences (Lianke) Biotech, Co., Ltd. (Hangzhou, China).
Anti-Mapk10 (ET1612-68), anti-Ras (ER40115), and anti–IGF-
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IR antibodies (ER63734) were provided by Hangzhou Hua’an
Biotechnology Co. Ltd. (Hangzhou, China). Anti-RASGRF1 (bs-
3560) and anti-RASA3 antibodies (bs-595) were purchased from
Bioss Biological Technology, Ltd. (Beijing, China). Cy3-
conjugated goat anti-rabbit IgG (GB21303), bull serum
albumin (BSA, G5001), and ethylene diamine tetraacetic acid
(EDTA) antigen retrieval solution (PH8.0, G1206) were provided
by Wuhan Servicebio Technology Co., Ltd. (Wuhan, China).
RASGRF1 (A6964) was purchased from ABclonal Biotechnology
Co, Ltd. (Wuhan, China). Antibodies against p-ERK (#9101),
ERK (#9102), p-JNK (#9251), JNK (#9252), p-p38 (#4511), p38
(#8690), β-actin (#8457), and anti-rabbit immunoglobulin G
secondary antibodies (#7074) were provided by Cell Signaling
Technology, Inc. (Danvers, MA, United States). Sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE, AR0131)
and polyvinylidene fluoride (0.45 μm, PVDF, AR0136-04) were
provided by Boster Biological Technology Co., Ltd. (Wuhan,
China). Ultrasignal ECL chemiluminescent solution (4AW011-
200) was purchased from Beijing 4A Biotech Co., Ltd. (Beijing,
China). Methanol and acetonitrile for UPLC were purchased
from J. T. Baker Inc (Phillipsburg, NJ, United States). Leucine
enkephalin and formic acid were supplied by Sigma-Aldrich (St
Louis, MO, United States).

UPLC–Q-TOF-MS Analysis
The chemical compositions of DXK were identified by
UPLC–Q-TOF/MS according to the previous study (Zhang
et al., 2020). The chromatographic method was achieved
adopting Acquity UPLCR BEH C18 (100 mm × 2.1 mm ×
1.7 μm) as a stationary phase and 0.1% formic acid (A)/
acetonitrile with 0.1% formic acid (B) as a mobile phase with
gradient elution at a constant flow rate of 0.4 ml/min. The elution
order was as follows: maintained with 2% B in 3 min, linear
gradient from 2%B to 5% B in 2 min, 5% B to 8% B in 1 min, 8% B
to 9% B in 5 min, 9% B to 12% B in 6 min, 12% B to 21% B in
9 min, 21% B to 25% B in 2 min, and 25% B to 35% B in 2 min.
The column temperature was carried out at 40°C, and the
injection volume was 1 μl. The Waters SYNAPT G2 HDMS
system was used for mass spectrometry. Nitrogen is used as
atomizing hole gas, with source temperature, 150°C; cone gas
flow, 50 l/h; desolvation temperature, 450°C; desolvation gas flow,
800 l/h; sampling cone, 40 V; extraction cone, 4 V; capillary
voltage, 2.5 kV (negative mode); scan time, 0.2 s; inter-scan
time, 0.02 s; mass-to-charge ratio, m/z 100–1200 Da; and lock
mass (leucine enkephalin), m/z 554.2615 [M-H] (negative-ion
mode). The data were analyzed using MassLynx V4.1 software
(Waters).

Animals
All animals were provided by Experimental Animal Institute of
Sichuan People’s Hospital (License number: SCXK (Chuan)
2015–30) and were tested after 7 days of adaptive feeding in a
well-ventilated environment under a 12-h dark/light cycle and
dark cycle at 23 ± 2°C and humidity of 60 ± 5% in the animal
room of Plateau Disease Laboratory, School of Ethnic
Medicine, Chengdu University of Traditional Chinese
Medicine.

Hypoxia Tolerance Test in Mice
Eighty male Kunming species mice (20 ± 2 g, 6–8 weeks) were
randomly divided into five groups: control group, NDK group
(0.28 g/kg), DXK low-, medium-, and high-dose groups (DXK-L,
0.9 g/kg; DXK-M, 1.8 g/kg; DXK-H, 3.6 g/kg). Each group was
randomly divided into two groups with eight mice in each group,
and the mice were administered continuously for 30 days. After
the last intragastric administration, each mouse was allowed to
rest for 1 h. For the normobaric hypoxia test, themice were placed
in a 250-ml airtight container containing 10 g of medical soda
lime (Xie et al., 2020). For the sodium nitrite toxicosis test, the
mice were intraperitoneally injected with 2% (m/v) sodium nitrite
solution at 20 ml/kg (Yang et al., 2019). The survival time was
recorded until the disappearance of abdominal breathing.

Weight-Loaded Swimming Test
Forty male Kunming species mice (20 ± 2 g, 6–8 weeks) were
randomly divided into five groups: control group, NDK group
(0.28 g/kg), DXK low-, medium-, and high-dose groups (DXK-L,
0.9 g/kg; DXK-M, 1.8 g/kg; DXK-H, 3.6 g/kg). After the last
intragastric administration, the mice were loaded with a lead
wire of 4% of bodyweight attached to their tails. Then, the mice
were gently placed into a plastic pool to a depth of 30 cm filled
with water at 25 ± 0.5°C for swimming. Each mouse was
individually placed in the pool to reduce interference. The
exhausted swimming time was recorded when the mice failed
to return to the surface to breathe within a period of 10 s (Hou
et al., 2020; Li et al., 2020).

Chronic Hypobaric Hypoxia Experiment
Thirty-six male Sprague–Dawley rats (200 ± 20 g, 2–3 months)
were randomly divided into six groups: control group, model
group, NDK group (0.14 g/kg), DXK-L group (0.45 g/kg), DXK-
M group (0.9 g/kg), and DXK-H group (1.8 g/kg), with six rats in
each group. The control group was served as normoxia kept at
normal atmospheric pressure, and other groups were exposed
continuously for 40 days to a simulated high altitude of 5000 m in
an animal hypobaric and hypoxic chamber (FLYDWC50-II C,
Avic Guizhou Fenglei Aviation Armament Co., Ltd, China). The
rate of ascents to altitude was maintained at 300 m/min. The
chamber was brought down to sea level at every day interval for
30 min for intragastric administration and replenishment of food
and water (Maiti et al., 2008).

Analysis of Hematological Parameters of
Rats
On the 40th day, the rats were intraperitoneally anesthetized with
200 mg/kg pentobarbital sodium, and the blood was taken from
the abdominal aorta using one-time anticoagulant negative
pressure blood collection tubes. The blood samples were kept
statically at room temperature for 20 min; then, red blood cell
count (RBC), hemoglobin (HGB), red blood cells deposited
(HCT), and the whole blood viscosity were measured by an
automatic three-group blood analyzer (TEK- MINI, Jiangxi
Tecom Technology Co., LTD, Jiangxi, China). Additionally,
the whole blood viscosity was measured at four shear rates of
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1/S, 5/S, 50/S, and 200/S (Nader et al., 2018) by the full-automatic
hemorheology testing instrument (SA-6000, Beijing Secco Sid
Technology Co., LTD, Beijing, China). The diagnostic criterion of
HAPC was as follows: HGB ≥ 210 g/l (Li et al., 2014).

Biochemical Analysis of Rats
After weight-loaded swimming test, the serum LDH and hepatic
glycogen were determined according to the manufacturer’s
instructions. After removal of the brain and kidney, the
samples of rat subject to CHH insult were washed in 4°C
physiological saline and preserved in a refrigerator at −80°C.
Then, the 10% (w/v) sample homogenates were centrifuged at
3500 rpm for 10 min (Liu et al., 2019). The supernatant was
harvested to determine the levels of SOD and MDA (brain), as
well as EPO and LDH (kidney). The absorbance at 450 nm (SOD
and LDH), 532 nm (MDA), and 620 nm (EPO) was determined

by a microplate reader (SpectraMax iD3, Molecular Devices Co.,
Ltd. Shanghai, China).

Pathological Evaluation of Brain Tissue in
Rats
Hematoxylin and eosin (H&E) staining was performed as
previously described (Li et al., 2020). The brain specimens
were fixed in 4% formalin, dehydrated, and embedded in
paraffin wax. Then, coronal brain sections were cut into 5-μm
slices. The sections were de-waxed with xylene, washed with
water for 20 min, and then stained with hematoxylin and eosin.
And the images were recorded at 200× and 400×magnification by
using a DM1000 (Leica, Germany) microscopic imaging system
with an optical microscope (CX21FS1, Olympus Corporation,
Japan).

FIGURE 1 | Total ion chromatogram of DXK by UPLC–Q-TOF-MS.

TABLE 1 | Twenty-three chemical constituents identified by UHPLC–Q-TOF/MS.

No RT (min) Formula Molecular weight ppm Compounds Sources

1 1.32 C13H16O10 331.0665 0 1-O-glucogallin R. crenulata and P. emblica
2 1.5 C7H6O5 169.0134 −1.8 Gallic acid P. emblica and R. crenulat
3 1.59 C13H12O11 343.0294 −2 Mucic acid 1,4-lactone 3-O-gallate P. emblica
4 2.22 C13H12O11 343.0294 −2 Mucic acid 1,4-lactone 5-O-gallate P. emblica
5 5.86 C20H20O14 483.0781 −1 3,6-Digalloyl glucose P. emblica
6 6.45 C14H20O7 299.113 −0.3 Salidroside R. crenulata
7 6.77 C14H10O9 321.0251 1.2 Digallate P. emblica
8 7.12 C20H19O14 483.0773 −0.4 1,6-Di-O-galloyl-glucose P. emblica
9 9.38 C41H28O10 951.0756 1.7 Hippophaenin A H. rhamnoides
10 9.55 C27H22O18 633.075 3.5 Corilagin P. emblica
11 10.07 C20H16O13 463.052 1.5 Ellagic acid hexose P. emblica
12 10.4 C9H10O5 197.0445 −2.5 Progallin A P. emblica
13 14.59 C14H6O8 300.9982 −0.7 Ellagic acid P. emblica and H. rhamnoides
14 15.8 C41H30O27 953.0901 0.5 Chebulagic acid P. emblica
15 15.99 C34H28O22 787.1013 2.4 1,2,3,6-tetra-O-galloylglucose P. emblica
16 16.25 C34H26O22 785.0844 0.9 Tercatain P. emblica
17 18.4 C21H38O11 465.2334 −0.4 Rhodioloside R. crenulat
18 20.54 C21H20O11 447.0924 −0.7 Quercetin-3-O-rhamnoside H. rhamnoides
19 20.94 C41H32O26 939.1094 −1.1 Pentagalloyglucose P. emblica
20 25.39 C27H30O16 609.1457 0.2 Rutin H. rhamnoides
21 28.14 C17H26O6S 357.1365 −2 6-Gingesulfonic acid Z. officinale
22 28.94 C19H36O10 423.2238 1.9 Rhodiooctanoside R. crenulat
23 29.71 C16H12O7 315.0511 1.9 Isorhamnetin H. rhamnoides
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Immunofluorescence Assay
Immunofluorescence was performed as previously described (Mao
et al., 2020). Briefly, the de-waxed hippocampus sections were
repaired by EDTA antigen retrieval solution. After blocking with
5% BSA for 30min, the slices were incubated overnight at 4°C with
primary antibodies against Mapk10, RASGRF1, RASA3, Ras, and
IGF-IR in a dilution of 1:100. On the next day, the slices were
incubated with Cy3-conjugated goat anti-rabbit IgG antibody for 1 h
at 37°C. The nucleus was counterstainedwithDAPI. Simultaneously,
the images were captured by a fluorescence microscope (NIKON
ECLIPSE C1, Nikon Corporation, Tokyo, Japan). The
immunoreactivity density was analyzed using Image-Pro Plus 6.0
software (Media cybernetics, Inc., Rockville, MD, United States).

Acute Hypobaric Hypoxia Experiment
Forty-eight male BALB/c mice (20 ± 20 g, 6–8 weeks) were
randomly assigned to six experimental groups: control group,
model group, HOL group (3.3 ml/kg), DXK-H group (3.6 g/kg),
DXK-M group (1.8 g/kg), and DXK-L group (0.9 g/kg). After
consecutive 7 days of administration, HH-induced brain injury of
mice was established according to the previous studies (Li et al.,
2020).

Western Blot Analysis
The brain tissues of animal subject to CHH and AHH insults were
collected for Western blot analysis (Hou et al., 2020). The total
protein of the brain tissue was extracted by a total protein
extraction kit, and the total protein concentration was measured
by a BCA protein quantitative kit. The proteins were separated by
SDS-PAGE, with 54 μg protein loaded in each well, and transferred

to a 0.45-μmPVDFmembrane. Themembranes were blocked with
5% BSA for 1.5 h at room temperature and subsequently incubated
overnight at 4°C with primary antibodies for mice p-ERK/ERK,
p-JNK/JNK, and p-p38/p38, and for rats Mapk10, RASGRF1,
RASA3, Ras, and IGF-IR. Membranes were washed with TBST
and subsequently incubated with anti-rabbit immunoglobulin G
antibody for 2 h at room temperature. Then, ultra-signal ECL
chemiluminescent solution was used to visualize the peroxidase-
coated bands, and images were captured using a Chemidoc XRS
Imaging System (Bio-Rad Laboratories, Inc., Hercules, CA,
United States). The signal intensities of the bands of interest
were quantified and normalized to β-actin using Image-Pro Plus
6.0 (Media cybernetics, Inc., Rockville, MD, United States).

Statistical Analysis
The data were expressed as mean ± standard deviation (SD). Data
analyses were processed by GraphPad Prism 6 (GraphPad
software, La Jolla, United States) with one-way analysis of
variance with Tukey’s post-tests. p-values < 0.05 were
considered statistically significant.

RESULT
Identification of Main Bioactive Compounds
in Duoxuekang by UPLC–Q-TOF/MS
Analysis
UPLC–Q-TOF/MS analysis was conducted to investigate the
chemical profiles of DXK. Figure 1 shows the exact base peak
chromatogram of DXK. Twenty-three chemical compounds are

FIGURE 2 | The effect of DXKon anti-hypoxia and anti-fatigue effects ofmice. (A) The survival time ofmice in normobaric hypoxia test, (B) the survival time ofmice in sodium
nitrite toxicosis test, (C) theweight-loaded swimming endurance time ofmice, the levels of LDH inmice serum (D), and hepatic glycogen (E) after theweight-loaded swimming test.
Data were expressed as the mean ± SD (n � 8). **p < 0.01 vs. the control group. DXK, Duoxuekang capsule; LDH, lactic dehydrogenase; NDK, Nuodikang capsule.
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identified under the negative mode, through fitting calculation of
the corresponding molecular weight on the excimer ion peak
([M-H]-) compared with the standards (Table 1). Gallic acid,
ellagic acid, corilagin, rhodioloside, isorhamnetin, and rutin were
identified as the preeminent bioactive compounds in DXK.

Effect of Duoxuekang on Anti-Hypoxic and
Anti-Fatigue in Mice
Anti-hypoxic effects of DXK on neurobehavioral impairments were
examined using normobaric hypoxia test and sodium nitrite toxicosis
test (Figure 2). As shown in Figure 2A,B, the survival time ofmice in
DXK was dose-dependently increased, compared with the control

group (P< 0.01). In addition, the weight-loaded swimming test was
used to examine the anti-fatigue effect of DXK. The weight-loaded
swimming time (Figure 2C) of mice was dramatically prolonged (p <
0.01), LDH level (Figure 2D) was decreased (p < 0.01), and hepatic
glycogen level (Figure 2E) was increased (p < 0.01) in DXK. These
data suggest that DXKpossessed anti-hypoxic and anti-fatigue ability.

Effect of Duoxuekang on Hematological
Parameters of Rats
To examine the whole blood viscosity, hematological parameters
and levels of EPO and LDH in the kidney were examined after
DXK treatment in theHH-induced brain injurymodel of rats. HHcan

FIGURE 3 | The effect of DXK on blood rheological properties, hematological parameters, and EPO and LDH of the kidney in rats with brain injury induced by CHH.
The levels of the whole blood viscosity of 1 s−1 (A), 5 s−1 (B), 50 s−1 (C), 100 s−1 (D), 200 s−1 (E), RBC (F), HGB (G), and HCT (H) of rats. The levels of EPO (I) and LDH
(J) in the kidney. Data were expressed as the mean ± SD (n � 6). **p < 0.01 vs. the control group; p < 0.01 vs. the model group. DXK, Duoxuekang capsule; EPO,
erythropoietin; HGB, hemoglobin; HCT, hematocrit; LDH, lactic dehydrogenase; NDK, Nuodikang capsule; RBC, red blood corpuscles.
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cause an increase of thewhole blood viscosity (Figures 3A–E), levels of
RBC, HGB, and HCT (Figures 3F–H), and levels of EPO and LDH
(Figures 3I,J) in rats. After administration of DXK, whole blood
viscosity and levels of RBC, HGB, HCT, EPO, and LDH were
markedly decreased (p < 0.01). These findings imply that DXK can
reduce the increase of hematological parameters of rats caused byHH.

Duoxuekang Ameliorates Hypobaric
Hypoxia–Induced Brain Injury of Rats
We observed the effects of DXK administration on the degree of brain
injury after HH exposure by using H&E. The H&E staining
representative images of the hippocampus and cerebral cortex of the
rats showed that HH causes shrinking of neurons with darkly stained
pyknotic nuclei, disordered array of neurons, perivascular edema, and
vascular dilatation and congestion (Figures 4A,B). After administration
of DXK, these pathological changes were significantly improved. In
addition, compared with the control group, the level of MDA
(Figure 4C) was increased, while SOD (Figure 4D) was decreased
after HH exposure. However, after administration of DXK, MDA was
signally decreased, and SOD was increased. In particular, DXK caused
the changes of oxidative stress biomarkers in a dose-dependent way. All
in all, the results above indicated that DXK has a good cerebral
protective effect in the HH-induced brain injury model.

Duoxuekang Regulates RAS and
Mitogen‑Activated Protein Kinase Signaling
Pathways
RAS and MAPK signaling pathways were closely related to brain
injury after HH exposure (Xu et al., 2016; Wang et al., 2018).

Thus, we evaluated whether DXK influenced RAS and MAPK
signaling pathways to alleviate HH-induced brain injury.
Immunofluorescence (Figure 5) and Western blot (Figure 6)
were performed to assess the expression of RAS signaling
pathways in rats’ hippocampus. Compared with the control
group, HH exposure increased Mapk10, RASGRF1, and
RASA3 (p < 0.01), as well as decreased Ras and IGF-IR
(p < 0.01), while DXK treatment reversed the tendency.
Simultaneously, the result of Western blot showed that HH
exposure substantially increased phosphorylation of ERK, JNK,
and p38 in the mice cerebral cortex, and there was a significant
difference following treatment with DXK (Figure 7, p < 0.01).
The therapeutic effect of Duoxuekang in HH-induced brain
injury is mainly through the regulation of RAS and MAPK
pathways.

DISCUSSION

As the unique HH environment in the plateau, the imbalance of
oxygen supplies and consumption of human body can lead to
excessive reactive oxygen species production and oxidative stress
injury (Farías et al., 2016; Badran et al., 2019). The brain injury
caused by HH can cause a decrease in learning, memory, and the
ability to deal with complexity (Taylor et al., 2016). Furthermore,
long-term HH environment triggered the erythrocytosis, high-
blood viscosity, and the decline of oxygen uptake and
transportation (Lu et al., 2017). It has been verified that HH
caused edematous neurons, enlarged perivascular space, and
shrinking of neurons with darkly stained pyknotic nuclei
(Wang et al., 2018; Wang et al., 2019). Tibetan medicine, as a

FIGURE 4 | | The effect of DXK on brain pathomorphology and oxidative stress indexes in the hippocampus of rats with brain injury induced by CHH. (A, B)
Representative images of H&E staining of the hippocampus (left) and cerebral cortex (right) of rats in each group (200×, scale bar: 100 μm; 400×, scale bar: 50 μm).
Condensed neurons and deep-stained nucleus (red arrows), perivascular edema (black arrows), and dilation of blood vessel congestive (yellow arrows). The levels of
MDA (C) and SOD (D) in the hippocampus. Data were expressed as the mean ± SD (n � 6). **p < 0.01 vs. the control group; ##p < 0.01 vs. the model group. DXK,
Duoxuekang capsule; MDA, malondialdehyde; NDK, Nuodikang capsule; SOD, superoxide dismutase.
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FIGURE 5 | The effect of DXK on the protein levels of Mapk10, RASGRF1, RASA3, Ras, and IGF-IR in the hippocampus of rats with brain injury induced by CHH.
Representative microphotographs of immunofluorescence staining (400×) for identification of Mapk10 (A), RASGRF1 (B), RASA3 (C), Ras (D), and IGF-IR (E) (red color);
average optical of Mapk10 (F), RASGRF1 (G), RASA3 (H), Ras (I), and IGF-IR (J). Data were expressed as the mean ± SD (n � 6). **p < 0.01 vs. the control group;
#p < 0.05, ##p < 0.01 vs. the model group. DXK, Duoxuekang; NDK, Nuodikang capsule.
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FIGURE 6 | The effect of DXK on the protein levels of signaling pathway–related proteins in the hippocampus of rats with brain injury induced by CHH. (A)
Representative protein bands of Mapk10, RASGRF1, RASA3, Ras, and IGF-IR. (B–F) The corresponding quantitative statistical results of Mapk10 (B), RASGRF1 (C),
RASA3 (D), Ras (E), and IGF-IR (F). Data were expressed as the mean ± SD (n � 3). **p < 0.01 vs. the control group; #p < 0.05, ##p < 0.01 vs. the model group. DXK,
Duoxuekang; NDK, Nuodikang capsule.

FIGURE 7 | The effect of DXK on the expression of the MAPK signaling pathway–related proteins in the cerebral cortex of mice with brain injury induced by AHH. (A)
Representative protein bands of p-ERK, ERK, p-JNK, JNK, p-p38, and p38. The corresponding quantitative statistical results of p-ERK/ERK (B), p-JNK/JNK (C), and
p-p38/p38 (D). Data were expressed as the mean ± SD (n � 3). **p < 0.01 vs. the control group; ##p < 0.01 vs. the model group. DXK, Duoxuekang; HOL, Hongjingtian
oral liquid.
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traditional plateau medical system recognized by the world, has a
unique systematic theory and practical experience in the
prevention and treatment of altitude sickness. In theory of
Tibetan medicine, DXK can mainly treat Chiba disease by
promoting blood circulation, removing blood stasis, and
clearing heat and detoxification (Ga et al., 2019). Previous
studies have found that DXK can improve HAPC and HH-
induced brain injury (Li et al., 2020). However, the
pharmacodynamic material basis of DXK against HH-induced
brain injury is not clear. In this study, a total of 23 different kinds
of compounds of DXK were identified using UPLC–Q-TOF/MS
(Figure 1 and Table 1). Synchronously, there was evidence that
gallic acid (from P. emblica and R. crenulate) (Sun et al., 2014),
ellagic acid (from P. emblica and H. rhamnoides) (Dhingra et al.,
2017), salidroside (derived from R. crenulate) (Fan et al., 2020), as
well as isorhamnetin (Gong et al., 2020) and rutin (Sundaram
et al., 2018) (both from H. rhamnoides) had antioxidative stress,
anti-inflammation, and neuroprotective effects.

The normobaric hypoxia test and the sodium nitrite toxicosis
test were implemented for the evaluation of DXK antioxidant
activity (Cui et al., 2018). The presented experiments uncovered
that DXK had significant antioxidant activity which can prolong
the survival time of mice in both tests. The weight-loaded
swimming test was generally noted to assess the anti-fatigue
activity of drugs (Yang et al., 2020). Besides, intense exercise
can cause a decrease of hepatic glycogen and an increase of LDH
levels in blood (Zhang et al., 2014; Xie et al., 2020). Our results

indicated that DXK can prolong the exhaustion time on the
weight-loaded swimming test by decreasing the LDH activity and
increasing the hepatic glycogen level. These results indicate that
DXK possessed anti-hypoxic and anti-fatigue ability.

According to previous studies, the HAPC model in rats was
successfully established by evaluating their RBC, HGB, HCT, and
the whole blood viscosity (Cowan et al., 2012; Kim et al., 2019).
Hypoxia stimulated a persistent increase in EPO mainly
generated by the kidney, causing an increase of RBC in
response to changes in blood oxygen availability, ultimately
leading to HAPC (Zhou et al., 2012; Bunn, 2013). It is
confirmed that hypoxia inducible factor-1α (HIF-1α) gene and
protein expression are increased after HH exposure (Xie et al.,
2017; Li et al., 2021). In addition, HIF-1α can promote the
expression of EPO, which promotes the maturation of RBC
(Marzo et al., 2008). The overexpression of EPO can lead to
the increase of RBC, which results in an increase in blood
viscosity (Ogunshola et al., 2006). In previous studies, we
established the HAPC animal model in SD rats and confirmed
that HH can cause the increase of HIF-1α expression in the
hippocampus and cortex, while repression after DXK treatment
(Wu et al., 2009). In this study, we observed that DXK can reduce
the increase of blood viscosity and EPO caused by HH. Results
above indicate that DXK can decrease the blood viscosity by
reducing the expression of EPO. Studies have found that HH can
cause cerebral blood–brain barrier (BBB) dysfunction, increased
vascular permeability, as well as aggravated hippocampal and

FIGURE 8 | Mechanism of activation of the RAS/MAPK signaling pathway by erythropoietin.
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cortical damage (Wilson et al., 2009; Liu et al., 2015; Coimbra-
Costa et al., 2017). As a crucial promoter of apoptosis, oxidative
stress indexes of MDA and SOD contributed to increased dead
neuronal cell (Wu et al., 2019). In this study, we found that DXK
can improve the damage of cortex and hippocampus induced by
HH, decrease MDA, and increase the SOD level in rats. Our study
showed that DXK can ameliorate HH-induced brain injury and
oxidative stress.

Clinical studies have confirmed the positive effects of NDK
and HOL in the treatment of brain injury caused by HH (Meng
et al., 2015; He and Zhang, 2017). Therefore, we selected NDK
and HOL as positive drugs in brain injury models of AHH and
CHH, respectively. In addition, Mapk10 was selectively expressed
in the central nervous system (CNS), and the lack of Mapk10
conferred neuroprotection (Pirianov et al., 2007; Wen et al.,
2016). It is confirmed that activation of RAS and MAPK
signaling pathways is associated with EPO, and its mechanism
is shown in Figure 8. (Miura et al., 1994; Marzo et al., 2008).
Besides, RASGRF1, observed in mature neurons of the
hippocampus (Zhu et al., 2013), was a neuron-specific guanine
nucleotide exchange factor for Ras proteins (Tonini et al., 2001),
mediating the activation of oxidative stress by regulating Ras
family proteins (Tsai et al., 2018). Furthermore, RASA3, acting as
a suppressor of Ras function (Hancock, 2003), was critical for the
accommodation of platelet adhesion (Stefanini and Bergmeier,
2016). In addition, IGF-I, locally produced by neurons and glial
cells, exerted significant neuroprotection during acute brain
injury insult (De Magalhaes Filho et al., 2017). Synchronously,
IGF-IR was widely expressed in CNS, producing IGF-I and IGF-
binding proteins, and its activation mediated neuroprotective
effects under hypoxia condition (Garcia-Segura et al., 2006). In
this study, HH induced increases of Mapk10, RASGRF1, and
RASA3, as well as decreases of Ras and IGF-IR, while DXK
treatment conversed the tendency. These results indicate that the
regulation of the RAS pathway is related to the cerebral protective
effect of DXK. In addition, oxidative stress motivated the MAPK
signaling pathway, leading to cellular damage (Liu et al., 2018). In
our previous study, we established the HH-induced brain injury
model in BALB/c mice and found that HH can lead to oxidative
damage of the brain (Li et al., 2020). DXK can significantly
improve oxidative stress injury of the brain induced by HH (Li
et al., 2020). In our study, the phosphorylation of ERK, JNK, and
p38 was activated by HH, while causing repression after DXK
treatment, suggesting that DXK can effectively antagonize HH-
induced oxidative stress injury and activation of the MAPK
signaling pathway.

In conclusion, our results show that DXK has cerebral
protection effect against HH through the decrease of the
whole blood viscosity and reduction in oxidative damage, via
regulating RAS and MAPK signaling pathways. However, there
are some limitations in this study. First, we have not absolutely
confirmed the potential constituents in DXK penetrating the BBB
to exert cerebral protection. Second, although we have proved

that DXK can regulate RAS and MAPK signaling pathways, the
interactions between them still need to be further investigated. In
the following experiments, we will clarify the pharmacodynamic
material basis of DXK hypoxic brain protection by imaging mass
spectrometry and microfluidic BBB chips (Wang et al., 2020).
Meanwhile, we will elucidate the interactions between RAS and
MAPK signaling pathways through gene silencing and protein
expression inhibitors.
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