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The North American prairie covered about 3.6 million-km2 of the continent prior to
European contact. Only 1–2% of the original prairie remains, but the soils that developed
under these prairies are some of the most productive and fertile in the world, containing
over 35% of the soil carbon in the continental United States. Cultivation may alter
microbial diversity and composition, influencing the metabolism of carbon, nitrogen,
and other elements. Here, we explored the structure and functional potential of the
soil microbiome in paired cultivated-corn (at the time of sampling) and never-cultivated
native prairie soils across a three-states transect (Wisconsin, Iowa, and Kansas) using
metagenomic and 16S rRNA gene sequencing and lipid analysis. At the Wisconsin
site, we also sampled adjacent restored prairie and switchgrass plots. We found that
agricultural practices drove differences in community composition and diversity across
the transect. Microbial biomass in prairie samples was twice that of cultivated soils, but
alpha diversity was higher with cultivation. Metagenome analyses revealed denitrification
and starch degradation genes were abundant across all soils, as were core genes
involved in response to osmotic stress, resource transport, and environmental sensing.
Together, these data indicate that cultivation shifted the microbiome in consistent ways
across different regions of the prairie, but also suggest that many functions are resilient
to changes caused by land management practices – perhaps reflecting adaptations to
conditions common to tallgrass prairie soils in the region (e.g., soil type, parent material,
development under grasses, temperature and rainfall patterns, and annual freeze-thaw
cycles). These findings are important for understanding the long-term consequences
of land management practices to prairie soil microbial communities and their genetic
potential to carry out key functions.

Keywords: soil microbiome, land management, metagenomics, native prairie, climate change, carbon cycle,
nitrogen cycle
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INTRODUCTION

The original North American prairie was a 3.6 million-km2

expanse of fertile soil (Mollisols). This region is highly productive
agriculturally and the majority of the original prairie has been
cultivated (Samson and Knopf, 1994). Besides replacing a species-
rich plant community with monoculture, land management
induces changes in soil physicochemical characteristics. Of
particular importance to global biogeochemical cycles is the
impact of human activities on nitrogen and carbon storage. In
2016, agriculture was the source of 8.6% of total greenhouse
gas emissions in the United States (USEPA, 2018). Thirty one
to 39% of the total soil organic carbon (SOC) stocks of the
conterminous United States are stored in prairie soils (Guo
et al., 2006). Tillage, fertilization, intensive cropping, and erosion
causes SOC losses of 20–60% (Stauffer et al., 1940; Mann, 1986;
Brye et al., 2001, 2002; Kucharik et al., 2001; Guo and Gifford,
2002; Sanford G.R. et al., 2012; Sanderman et al., 2017). Fertilizer
application and other agricultural management practices induce
N2O production, making croplands responsible for 76.7% of
United States N2O emissions into the atmosphere (USEPA,
2018).

Microbial communities drive carbon and nitrogen cycles
in soils. Thus, understanding how agricultural practices
impact microbial communities is critical for predicting future
greenhouse gas emissions. However, our understanding of
microbial diversity within prairie ecosystems and how prairie
soil microbiomes contribute to cycling of carbon, nitrogen,
and other nutrients is still developing. Disturbances related
to agriculture, such as tilling, fertilization, irrigation, and
burning change soil properties and alter microbial community
structure and functional capacity (Vitousek et al., 1997; Bending
et al., 2004; Mao et al., 2011; Orr et al., 2011; Habig and
Swanepoel, 2015; Jesus et al., 2015; Oates et al., 2016; Zhang
et al., 2017). Fertilization adds mineral N to soils, which is
processed by microbial communities through nitrification
and denitrification pathways, producing N2O (Firestone and
Davidson, 1989). N amendment shifts microbial community
composition and functional capacity through changes to
taxonomic richness (Coolon et al., 2013), activity (Marx et al.,
2001; Ramirez et al., 2012), biomass (Ramirez et al., 2012),
increases in active copiotrophic taxa (Fierer et al., 2012), and
community composition (Ramirez et al., 2012; Leff et al., 2015).
Tillage changes soil physicochemical properties (Phillips et al.,
1980; Ismail et al., 1994) and concomitantly alters microbial
community structure. It increases the abundance of aerobes,
facultative anaerobes, and denitrifiers in near-surface soils
(Doran, 1980) and causes changes in biomass (Guo et al., 2006),
diversity, and activity (Habig and Swanepoel, 2015; Mbuthia
et al., 2015; Nivelle et al., 2016). Monoculture cropping, some
pesticide applications, and organic management practices also
alter soil microbial community structure and diversity (Bending
et al., 2000, 2004; Figuerola et al., 2014; Duncan et al., 2016; Liang
et al., 2016; Pose-Juan et al., 2017; Zhang et al., 2017; Zhao et al.,
2018).

Broad-scale comparisons between geographic locations, crop
types, native prairie, and restored prairie ecosystems capture

differences in community structure and function driven by the
aggregate effects of cropping. Soil depth, crop systems (crop
species, monoculture, and annual versus perennial), and soil
variables all contribute to community assemblages and biomass
(Acosta-Martinez et al., 2008; Habig and Swanepoel, 2015; Liang
et al., 2016; Oates et al., 2016; Zhang et al., 2017). Community
composition and function in grassland soils have also been found
to vary across the world, likely due to differences in soil pH,
climate, and plant communities (Fierer et al., 2013; Leff et al.,
2015). Jesus et al. (2015) found that soil type and geographic
distance drove community structure in recently established plots
but that plant species became a dominant driver over long-term
cultivation.

In the interest of restoring native habitat, mitigating
biodiversity loss, preserving soil integrity, and investigating
sustainable agriculture, grassland restoration is becoming more
common in prairie ecosystems (Jangid et al., 2009; Barber et al.,
2017). The magnitude and timing of the restoration of microbial
community structure remains unclear. Some studies suggest that
community response is rapid, occurring in less than a decade after
restoration (Herzberger et al., 2014; Duncan et al., 2016; Barber
et al., 2017). Other studies suggest that microbial community
restoration is a long-term process occurring on the order of
decades (Jangid et al., 2009).

Our understanding of microbial diversity within prairie
ecosystems and how prairie soil microbial communities
contribute to cycling of nutrients is still developing. Here we
aimed to gain a better understanding of the effects of land
management, specifically long-term cultivation, on soil microbial
communities and their potential to carry out key soil processes
in the region of the United States that had previously been
dominated by prairie. We performed 16S rRNA gene sequencing,
lipid analysis, and deep shotgun metagenomic sequencing in
cultivated and native prairie soils across a three state transect.
We asked how geographic location and cultivation practices
influenced microbial community composition and about the
capacity of soil microbes to cycle carbon, nitrogen, and other
nutrients. An important part of our design was to compare
long-term (>50 years) cultivated and never-cultivated sites
that were otherwise matched (paired) with respect to soil and
landform characteristics. Results from this study serve as a
baseline for understanding the impacts of land management
on soil communities, and consequently facilitate functional
predictions of the impacts of cultivation on carbon and nutrient
cycling processes.

MATERIALS AND METHODS

Sampling Sites
Three native tallgrass prairie sites representative of the U.S.
Midwest prairie ecosystem were studied: Manhattan, Kansas
(KS); Morris Prairie, Iowa (IA); and Goose Pond Prairie,
Wisconsin (WI). These sites constitute a southwest to northeast
transect across what was originally tallgrass prairie, but is now
mostly converted to highly productive annual crop agriculture.
At each location, a nearby long-term agricultural site was selected
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that matched the never-tilled (remnant) prairie site in soil type,
texture, slope, aspect, and drainage. A switchgrass and restored
prairie plot adjacent to the corn plot were also included at
the Wisconsin site. In the case of non-switchgrass cultivated
sites, samples were taken when sites were planted to corn
(a complete description of the sites and their history is in
Supplementary Methods). All sites were sampled in 2009 during
active plant growth and optimum soil moisture conditions:
Wisconsin-June 24, Iowa-June 26, and Kansas-August 7. Seven
samples were taken at each of the sites with a 1-cm diameter
soil corer to a depth of 12 cm. A reference sample (defined as
0 m) and six additional cores were sampled in two directions
from the reference (90 degree angle) at 1 cm, 1 m, and
10 m (Supplementary Figure S1). The corn sites were sampled
between the rows. At this plant stage few roots were sampled.
The litter layer was removed and the soil core extruded into a
plastic bag. The eighth sample was a larger volume (500 g) sample
taken adjacent to the reference core (the apex) designed for soil
chemical and physical analyses. All samples were immediately
placed on ice, stored locally under refrigeration, and shipped
overnight on blue ice and kept cold until DNA was extracted
or frozen until the soil chemistry analyzed. A subsample of
approximately 3.2 or 6.4 g (if sufficient DNA was not obtained
from the 3.2 g sample) from the reference core (0 m) was
used for metagenomic sequencing. Subsamples from all eight
cores were used for 16S rRNA gene sequencing and for lipid
analysis.

Soil Characterization
All soil chemical and physical attributes were analyzed at the
Michigan State University Soil and Plant Nutrient Laboratory
except for the boron, sulfur, and aluminum analyses, which were
done by A&L Great Lakes Laboratories using the Mehlich 3
method. The chemical analyses were those validated for reflecting
bioavailable elements in soils of the North Central region of
the United States (46) plus the chemical specific methods of
Bradstreet (1965), Huffman and Barbarick (2008), and the
United States Environmental Protection Agency (USEPA, 1993).
Physical (texture) analysis was by the hydrometer method of
Bouyoucos (1951) (see Supplementary Table S1).

DNA Extraction and 16S rRNA Gene
Sequencing
DNA was extracted from 250 mg soil portions using the
PowerSoil R© DNA isolation kit (Mo Bio Laboratories, Carlsbad,
CA, United States) according to the manufacturer’s protocol.
Multiple extractions were performed for each homogenized soil
sample to obtain approximately 10 µg/sample. The V6–V8
region of the small subunit (SSU) rRNA gene was amplified using
the primer pair 926f/1392r as described in Kunin et al. (2010).
The reverse primer included a 5-bp barcode for multiplexing
of samples during sequencing. Sequencing of PCR amplicons
was performed at the Joint Genome Institute (JGI) using Roche
454 GS FLX Titanium technology following manufacturer’s
instructions with the exception that the final dilution was 1e−8

(Allgaier et al., 2010). Of the 64 total samples, one of the Kansas

native prairie samples did not sequence properly, yielding 63
samples for bioinformatics and statistical analysis.

Lipid Analysis
Each core sample was homogenized and a 6-g portion was
frozen at −20◦C prior to lipid extraction. Membrane lipids
were extracted from 3-g lyophilized and milled material in a
two-phase aqueous-organic extraction (Bligh and Dyer, 1959).
FAME analysis was conducted as described by Microbial ID
(Kunitsky et al., 2006). Lipid methyl esters were determined using
a Hewlett-Packard 6890 Gas Chromatograph configured and
maintained for lipid analysis according to the recommendations
of MIDI (Kunitsky et al., 2006). Gas chromatogram parameters
were specified and peaks were identified by the MIDI
EUYKARY method (MIDI, Newark, DE, United States). Fatty
acid concentration was quantified by comparisons of peak
areas of the samples compared to two internal standards, 9:0
(nonanoic methyl ester) and 19:0 (nonadecanoic methyl ester)
(Sigma, St. Louis, MO, United States), of known concentration.
In all subsequent analyses, we excluded fatty acids that were
at an average abundance of <0.5 mol% or present in <3
samples.

Total abundance of lipids was used as an index of total
microbial biomass. The abundance of indicator lipids for
Gram-negative and Gram-positive bacteria, Actinobacteria, and
saprophytic and arbuscular mycorrhizal fungi were further
analyzed to indicate community response to treatment variables
(Vestal and White, 1989; Balser and Firestone, 2005). Lipid data
(mol%) were arcsine-transformed for normality and multivariate
principal component analysis was carried out using JMP
software, version 5.0.

Bioinformatic and Statistical Analyses of
16S rRNA Gene Sequences
16S rRNA gene sequencing resulted in 646,884 16S rRNA gene
reads, which were processed in QIIME 1.8.0 (Caporaso et al.,
2010). Sequences were denoised, quality filtered, and chimera
checked. Clustering was done at a 97% similarity threshold.
Operational taxonomic units (OTUs) were assigned to sequences
based on 97% identity using the open-reference USEARCH
algorithm (Edgar, 2010). Finally, clusters were assigned OTU
identifiers, resulting in 8,291 OTUs and a median of 9,776
sequences per sample. The recommended sampling depth of
3,266 sequences/sample for downstream analysis eliminated
only one sample (Wisconsin restored prairie, 1 m south from
core). OTUs were assigned taxonomy against the May 2013
release of GreenGenes (Lawrence Berkeley National Laboratory,
Berkeley, CA, United States) using the RDP classifier method in
QIIME.

Alpha Diversity
Alpha and beta diversity metrics were calculated in QIIME.
Multiple rarefactions were performed on the OTU table with
a minimum and maximum number of sequences of 200 and
3,200, respectively, and a step-size of 500 and 100 iterations,
producing 600 rarified tables. Alpha diversity was calculated
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on the rarified tables using the phylogenetic whole tree
method. Rarefaction plots were generated from collated alpha
diversity files and each metadata category was plotted. Finally,
a student’s t-test was used as implemented in the QIIME script
compare_alpha_diversity.py to perform pairwise comparisons
between the alpha diversity values of samples of a given metadata
category.

To calculate alpha diversity by state when considering only
corn and native prairie samples, an OTU table was filtered to
exclude the restored prairie and switchgrass samples. Multiple
rarefactions were performed on the resulting OTU table with a
minimum and maximum number of sequences of 500 and 4,500,
respectively, and a step-size of 500 and 50 iterations, producing
400 rarified tables. Alpha diversity was subsequently calculated
on the rarified tables using the phylogenetic whole tree method
as described above. A student’s t-test was used as described
above to calculate pairwise comparisons of alpha diversity by
state.

Beta Diversity
Beta diversity was estimated by calculating unweighted UniFrac
distances and visualized using principal coordinate analysis. The
PERMANOVA test embedded within the QIIME software suite
was used to determine the degree to which categorical metadata
parameters explained patterns in the UniFrac distance matrix
(permutations = 999).

Because our data are not normally distributed, we used
the non-parametric Kruskal–Wallis and Mann–Whitney tests
implemented in QIIME on the single rarified table to determine
which taxa were significantly different in abundance than
expected if the OTUs were randomly distributed in the
samples. The Mann–Whitney test was used to compare which
families differentiate corn and native prairie samples. Taxa
with Bonferroni-corrected P-value less than or equal to 0.05
were chosen for visualization. The Kruskal–Wallis test was
used to determine which families were significantly different
among all four management practices (corn, switchgrass, native
prairie, and restored prairie). Similarly, taxa with Bonferroni-
corrected P-values less than or equal to 0.05 were selected for
visualization.

Correlation of Phylogenetic Profiles and
Chemical Metadata
Spearman rank coefficients comparing the relationships between
taxa and soil chemical metadata were calculated in R statistical
software [R version 3.0.2, Comprehensive R Archive Network
(CRAN)]. Briefly, a matrix containing chemical metadata was
merged with a matrix containing relative taxonomic abundance,
such that the Spearman rank coefficient was calculated between
sample-matched chemical metadata and OTU abundance data
summarized at the order level. To investigate relationships
between bacterial taxa and lipid profiles and to compare
the two methods, Spearman rank coefficients were similarly
calculated between sample-matched lipid profiles and the
relative abundance of OTUs summarized at the order level.
Resulting correlation matrices were filtered such that only

columns and rows containing at least one correlation ≥ an
absolute value of 0.60 were retained. Heatmaps were produced
in R statistical software using heatmap.2 (R version 3.0.2,
CRAN).

Metagenomic Sequencing, Assembly,
and Annotation
We performed shotgun metagenome sequencing using the
reference core (0 m) DNA from the native prairie and
continuously cultivated sites in each state. Libraries with∼270 bp
inserts were generated with the Illumina TruSeq protocol.
Sequencing for each sample was conducted over a period of more
than a year and spanned several platform improvements. As a
result, for each sample sequence data was a mixture of Illumina
GA2 (2× 76 bp), GAIIx (2× 100 bp, 2× 114 bp, and 2× 150 bp),
or HiSeq 2000 (2 × 100 bp). Sequence data were deposited into
the NCBI Short Read Archive (Supplementary Table S2).

Due to the large number of reads in these datasets, a Convey
(Richardson, TX, United States) HC-1 hybrid core computer
was used for preprocessing and roadmap construction. Graph
phases of assembly used the Convey implementation (cnygc
version 2.0.3208) of Velvet and were run either on the HC-
1, a Sun Fire X4600 M2 with 1TB of RAM, a Dell R910
with 1TB of RAM or an IBM 3850 with 1 TB of RAM. Read
pre-processing included trimming reads of Illumina quality
‘B’ using the cnygc–trimB operation. Velvet version 1.2.03
was used for contig construction (Zerbino and Birney, 2008).
Details for each assembly are included in the Supplementary
Methods. Sequencing and assembly statistics are summarized in
Supplementary Table S3. Assembled contigs were submitted to
Integrated Microbial Genomes (IMG) metagenome annotation
pipeline for gene calling and annotation (Markowitz et al., 2014;
Huntemann et al., 2015). Predicted protein sequences from IMG
were compared to the FOAM database (Prestat et al., 2014) using
hmmsearch at default settings (Eddy, 2011). For every sample, the
relative abundance of each gene was calculated by dividing the
number of hits to that gene by the total number of hits to the
FOAM database.

Core Functional Analysis
We defined core genes as those having similar abundances
across communities (Shade and Handelsman, 2012). Rare
gene families (those observed less than 100 times across
all samples) were removed from analysis. Rank abundance
curves were generated for each sample and the variance in
rank abundance across samples was calculated for each gene.
Genes varying the least in rank abundance were considered
to represent core genes. To identify functional categories
enriched in core genes, we counted the number of core genes
(defined as the top 10% of genes varying the least in rank
abundance) in each category of the second functional sublevel
of the FOAM hierarchy. Permutation tests were performed
by randomly assigning different outcome variances to each
gene from the observed set of variances 10,000 times to
obtain 95% confidence intervals for the number of core genes
expected in each category. P-values were corrected for multiple
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testing using the false discovery rate (Benjamini and Hochberg,
1995).

Phylogenetic and Taxonomic Analysis of
Nitrous Oxide Reductase (nosZ)
Phylogenetic diversity of denitrifiers was investigated using
the 795 nosZ sequences identified in contigs by IMG/M. To
perform multiple sequence alignments, we built a custom HMM
profile using nosZ amino acid sequences downloaded from the
functional gene pipeline & repository (FunGene) database (Fish
et al., 2013) that exceeded 1100 amino acids in length and had
a minimum score of 630. The HMM profile was built from the
FunGene seed alignment using hmmbuild from the HMMER3
package at default settings (Eddy, 2011). NosZ sequences from
our dataset were aligned using hmmalign at default settings.
Confidence scores were assigned to each alignment position using
Zorro (Wu and Scott, 2012). Residues scoring less than 0.01
were removed from the alignment for tree building purposes.
Because genes predicted from metagenome assemblies are often
only partial sequences, many do not overlap. Therefore, we
selected only sequences greater than 20 amino acids in length
that overlapped the region with the highest alignment certainty
as determined by Zorro scores. NosZ sequences curated and
classified by Sanford R.A. et al. (2012) were added to the
alignment using the muscle profile alignment algorithm (Edgar,
2010). A phylogenetic tree was inferred using FastTree (Price
et al., 2009) at default settings. The tree was rooted using
Haloarcula marismortui and Halorubrum lacusprofundi (Sanford
R.A. et al., 2012). We assigned taxonomy to individual nosZ
sequences by performing a BLASTP (Altschul et al., 1990) search
against the National Center for Biotechnology Information non-
redundant (NCBI-NR) database using an E-value cutoff of
1 × 10−5. The resulting file was imported into MEGAN, which
performed taxonomic classification (Huson et al., 2016).

Carbohydrate Active Enzymes
Glycoside hydrolase (GH) genes were identified in the raw
metagenomic sequence data by comparison to the Carbohydrate
Active Enzyme (CAZy) database (Lombard et al., 2014) using
the UBLAST algorithm within the USEARCH program1 with
an acceleration value 0.2 and an E-value cutoff of 1 × 10−5.
GH family assignments were made based on the top hit. We
verified the assignments by comparing putative GH sequences to
the NCBI-NR database using UBLAST with the same parameters
described above.

RESULTS

16S rRNA Gene Sequencing and
Diversity Analysis
We sampled native tallgrass prairie (NP) sites from three states
(Kansas, Iowa, and Wisconsin) representative of the Midwestern
United States (U.S.) prairie ecosystem. At each location, a nearby

1http://drive5.com/usearch

site was selected that experienced long-term cultivation and was
planted to corn (CC) when sampled. At the Wisconsin site,
adjacent switchgrass monoculture and restored prairie plots were
available and were also sampled. Sequencing of the 16S rRNA
gene yielded 645,542 high quality sequences and identified 8291
OTUs.

Computation of alpha diversity metrics revealed significant
differences in richness and phylogenetic diversity between
cultivated and native prairie sites (Supplementary Figure S2
and Supplementary Table S4). Alpha diversity was significantly
higher overall in cultivated soils compared to native prairie soils
(P = 0.006) and in switchgrass compared to native prairie soils
(P < 0.04), although within-state alpha diversity metrics were not
significantly different between management practices (e.g., Iowa
CC versus Iowa NP). Alpha diversity was not different between
the 250 mg sample taken from the soil core (10 g) and the large
scale (500 g) samples, indicating ability to resolve complexity was
already saturated with small sample sizes. Alpha diversity differed
significantly among states, with Kansas having the highest alpha
diversity and Iowa the lowest. All state pairwise comparisons
were significant (P < 0.05).

Beta diversity analysis showed clustering of soil samples
by management practice across the data set (Figure 1A) and
within states (Figures 1B–D). Bacterial communities from
cultivated soils clustered together but were separate from native
prairie communities (Figure 1A). When comparing samples
by state, native prairie, and corn samples formed discrete
clusters (Figures 1B–D). At the Wisconsin site, switchgrass,
and restored prairie locations were also sampled and the
microbial communities in all of the plots that had been cultivated
exhibited considerable overlap (Figures 1A,D). State, site, and
land management were each found to be significant factors that
explained UniFrac distances (P < 0.05). Site was the strongest
factor in determining community differences (Pseudo-F 3.814,
P = 0.001), closely followed by management practice (Pseudo-F
3.811, P = 0.001). Distance within sites (0, 1 cm, 1 m, and 10 m)
was not significant.

Potential Bioindicators of
Land-Management Practice and Soil
Chemistry
Twenty-six microbial families differed significantly in abundance
between corn and native prairie samples (P < 0.05, Figure 2
and Supplementary Figure S3). Taxa that were more
abundant in the cultivated corn soils included the families
Nitrosomonadaceae, Nitrospiraceae, three unknown families
of class Gemmatimonadetes, and two unknown families of
class Anaerolineae. Only seven families were significantly more
abundant in native prairie samples, including Rhizobiaceae,
Phyllobacteriaceae, Bradyrhizobiaceae, Mycobacteriaceae, and
Ktedonobacteraceae. Many of these families have members that
carry out key nitrogen cycle processes. The shift from nitrogen
fixers in prairie soils to those capable of nitrification in cultivated
soils is presumably a response to nitrogen fertilizer application.

Spearman correlations between bacterial orders and soil
chemical metadata revealed significant trends, specifically

Frontiers in Microbiology | www.frontiersin.org 5 August 2018 | Volume 9 | Article 1775

http://drive5.com/usearch
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01775 August 13, 2018 Time: 18:57 # 6

Mackelprang et al. Microbiome of Native and Cultivated Prairie Soils

FIGURE 1 | Visualization of beta-diversity reveals clustering by management type. Unweighted Unifrac distances were plotted using Principal Coordinate Analysis
(PCoA) in QIIME. Each point represents a discrete sample. (A) PCoA plots of all sites and samples. (B–D) PCoA plots by state.

in relation to nitrogen (Supplementary Figure S4).
Rhizobiales were strongly correlated to ammonium (NH4

+)
(ρ = 0.61, P < 0.001), while the putative orders Gemm.5,
Gemmatimonadetes N1423WL, and Acidobacteria Sva0725 were
negatively correlated to ammonium (ρ = −0.67, −0.61, and
−0.61, respectively, P < 0.001).

Lipid Profiles
Lipid analysis indicated higher microbial biomass in the native
prairie soils compared to the cultivated corn soils, mainly

due to lower fungal abundances associated with cultivated
corn soils (Figure 3 and Supplementary Tables S5, S6).
Arbuscular mycorrhizal fungi, saprotrophic fungi, protozoa,
and Actinobacteria-associated lipids were also higher in
abundance in native prairie soils than in cultivated corn soils.
Both Gram-negative and Gram-positive associated lipids were
more abundant in native prairie soils, although the Gram-
negative to Gram-positive ratios were not significantly different
(Supplementary Figure S5). Notably, 37 of the 50 measured
lipids were significantly more abundant in native prairie soils,
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FIGURE 2 | Abundance of bacterial families that differentiate corn and native prairie samples. Key OTUs at the family level that are significantly different between
corn and native prairie samples, regardless of state (Kansas, Wisconsin, and Iowa). The non-parametric Mann–Whitney t-test (number of permutations = 999) was
used to compare relative abundance of families in corn and native prairie samples from a single-rarified OTU table at 3,266 sequences/sample. Families with
Bonferroni corrected P-values <0.05 were chosen for visualization.

while only four lipids were slightly, but not significantly, greater
in the cultivated corn: 16:1 Cis Alcohol w7, 16:1 ISO G, 16:1 w7c,
18:0 2OH (Supplementary Table S6).

There was a significantly higher ratio of fungal to bacterial
lipids in Kansas native prairie compared to the other sampling
locations (Supplementary Figure S5). The ratios of lipids
corresponding to arbuscular mycorrhizal fungi compared to
saprotrophic fungi were consistently lower in cultivated corn,
and significantly higher in Kansas native prairie, Wisconsin
switchgrass, and Wisconsin restored prairie (Supplementary
Figure S5). This suggests that the grasses in these specific fields
may be more effectively colonized with symbiotic fungi.

Spearman correlations of lipid profiles to relative abundances
of bacterial orders revealed significant relationships between
particular taxa and lipids (Supplementary Figure S6).
Rhizobiales, Ktedonobacterales, and Planctomycetia order B97
were positively correlated with most measured lipids. Notably,
families belonging to these bacterial orders were differentially
abundant in corn and native prairie soils, with increased
abundances in native prairie soils (Figure 2). Conversely, orders
belonging to the Gemmatimonadetes class, Nitrosomonadales,
and Anaerolineae order envOPS12 were negatively correlated
with most measured lipids (Supplementary Figure S6). Likewise,
families of these orders are differentially abundant between corn
and native prairie soils, with elevated abundance in the former

(Figure 2). Together, these trends are congruent with the general
observation of higher microbial biomass in native prairie samples
compared to cultivated samples.

Core Functional Gene Analysis
We performed metagenome sequencing on reference cores
from the native prairie and cultivated corn soils in each
state. Metagenome sequencing resulted in 1.3 terabases (Tb) of
sequence data from the six samples (ranging from 159 to 327 Gb
per sample). De novo assembly was performed on each of the
sequence datasets, yielding 50.8 million contigs >200 bp in length
totaling 16.8 Gb of assembled data (Supplementary Table S3).

To explore the functional gene repertoire in our samples,
we refrained from between site comparisons because of lack
of within site replication. Instead, we identified core functions
shared across all samples (Supplementary Table S7). We defined
core genes as those varying least in abundance across all
sites. These genes may form a backbone supporting ecosystem
processes critical in both native and cultivated soil communities.
Conceptually, this is similar to taxonomically based core
microbiome analyses discussed in Shade and Handelsman (2012).
Among the top core genes, we found genes involved in transport,
cell regulation and signaling, and nitrogen metabolism. One of
the top core genes was adenylate cyclase, which is an essential
part of microbial cyclic AMP (cAMP) signaling. Genes related
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FIGURE 3 | Total lipid abundance (microbial biomass nmol/g) and distribution
patterns (%) of the main microbial groups. “Others” indicates microbial groups
where taxonomic origin cannot be determined. Samples are (from left to right):
Wisconsin native prairie, Kansas native prairie, Wisconsin restored prairie,
Wisconsin switchgrass, Iowa cultivated corn, Wisconsin cultivated corn, and
Kansas cultivated corn. Bar graphs show total lipid abundance and the
relative abundance of each group. Error bars are the standard error of the total
lipid abundance.

to cAMP signaling have been observed at high frequency in
other soil metagenome surveys (Delmont et al., 2012). Two
serine/threonine protein kinases, which are widely distributed
across bacterial and archaeal phyla and play an important roles
in physiology, regulation of cells division and translation, and
environmental sensing (Pereira et al., 2011; Shi et al., 2014),
were also among the top core genes. Nitrite reductase (nirK),
a nitrogen regulatory protein C (ntrC) family gene, and two
NitT/Tau family ABC transport genes were among the core genes
related to the nitrogen cycle.

To formally identify functional groups enriched in core genes,
we combined genes into FOAM ontological groups and found
that at functional level 1 (the most general functional level), the
prokaryotic type ABC transporters (P = 0.013) and regulation of
response to osmotic stress (P = 0.047) categories had more core
genes than expected under the null hypothesis that core genes
are randomly distributed across FOAM functional categories.
Within the prokaryotic type ABC transporters category, the genes
detected encoded transporters of a broad range of compounds,
including sugars, amino acids, peptides, cell wall components,
and metals (Supplementary Figure S7). In the “regulation of
response to osmotic stress” FOAM category, genes detected
included those encoding sensor kinase proteins of the two-
component signal transduction system, two of which belonged
to the ompR family (KO: K07636; K02484) that allow bacteria to
sense changes in osmolarity (Feng et al., 2003).

Nitrogen Metabolism
Because nitrogen fertilization is a major perturbation to
cultivated soils and nitrogen is a key driver of soil microbial
community composition (Fierer et al., 2012, 2013), we analyzed

nitrogen metabolism pathways that were reconstructed from
metagenomic sequence data. Forty-nine genes involved in all
major components of the nitrogen cycle were detected across the
metagenomes (Figure 4). Genes involved in denitrification were
more abundant than nitrification genes. Those involved in the
conversion of nitrite to nitrogen gas (nirK: 18%, nirS: 3.1%, norC:
6.5%, norB: 2.0%, and nosZ: 3.4%) made up 33% of all detected
nitrogen cycle genes. Genes involved in ammonia assimilation
accounted for 39% of all the nitrogen cycle genes. Ammonia
monooxygenase, a key gene in the nitrification pathway, was only
detected at low levels (<0.3% of nitrogen-cycle genes). NifH, the
key marker gene for nitrogen fixation, accounted for 1.7% of the
nitrogen-cycle genes.

Because the denitrification pathway was highly represented
in the metagenomes, we focused on the phylogenetic diversity
of denitrifiers. Specifically, we focused on nosZ sequences
because NosZ is the only enzyme known to catalyze the last
step of denitrification: conversion of nitrous oxide (N2O) to
nitrogen gas (N2) whereas other steps in the denitrification
pathway can be catalyzed by multiple enzymes (Jones et al.,
2008). Phylogenetic analysis revealed two distinct clades with
strong bootstrap support corresponding to typical (Clade I)
and atypical nosZ (Clade II) genes (Figure 5). We were able to
assign taxonomy using the lowest common ancestor algorithm
(Huson et al., 2016) to 80% of the Clade I sequences at the
phylum level, the majority of which were from Proteobacteria.
Genes with higher resolution taxonomic assignments were
affiliated with Alphaproteobacteria, Betaproteobacteria
(primarily Burkholderiales), or Gammaproteobacteria (primarily
Pseudomonadales). The 20% of the sequences not assigned to
a specific taxonomic group were classified as environmental
sequences.

Among the two-thirds of nosZ sequences from this study
that clustered with Clade II nosZ genes, we were able to
classify approximately 75% at the phylum level; the remaining
25% were either environmental or unassigned. We found
greater taxonomic diversity among Clade II nosZ genes
and they were primarily affiliated with Bacteroidetes (41%),
Verrucomicrobia (18%), Deltaproteobacteria (7%), and at lower
levels to Chloroflexi, Epsilonproteobacteria, Gemmatimonadetes,
Alphaproteobacteria, Betaproteobacteria, and Firmicutes
(Figure 5).

Carbohydrate Metabolism
We explored the repertoire of carbohydrate-degrading enzymes
in the soil communities by comparing raw reads to GH
sequences from the CAZy database (Lombard et al., 2014).
The most dominant GH gene families were GH13, representing
36% of all GH sequences, and GH15 at 8% (Supplementary
Table S8A). Glucoamylases, which are involved in starch
hydrolysis, constituted the bulk of the GH15 enzymes (Cantarel
et al., 2009; Marín-Navarro and Polaina, 2011). GH13 also
contained a large number of starch-degrading enzymes. Taken
together, these data suggest high amylolytic (i.e., starch-
degrading) potential in the sampled soil region.

Glycoside hydrolase families targeting plant structural
polysaccharides were categorized by function (Pope et al.,
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FIGURE 4 | The abundance of nitrogen cycle genes in cultivated and never-cultivated tall grass prairie soils in the Midwestern United States. Each gene in the
nitrogen cycle is enclosed in a colored box. The color of the box indicates the abundance of each gene relative to all nitrogen cycle genes in the assembled
metagenome data. Genes were identified on contigs by comparing predicted protein sequences to the FOAM database. Percentages are averaged across all
samples.

2010; Hess et al., 2011) and evaluated separately from
other GH families because of their potential to decompose
recalcitrant biomass. Endoglucanases (cellulases) were primarily
represented by families GH5 and GH9; these two GH families
accounted for approximately 9% of all reads within the plant
structural polysaccharides category. Other cellulase families
were detected at low levels (<1.5%; Supplementary Table S8B).
β-glucosidases, primarily GH1, accounted for ∼10% of the
plant polysaccharide degrading genes; sequences predicted
to be xylanases (GH10 and GH11) made up another 5%.
The primary hemicelluloses found in grass cell walls contain
L-arabinose side chains (Scheller and Ulvskov, 2010), which
may explain the high abundance of α-L-arabinofuranosidases
(GH51, GH54, and GH62: 12.9–16.8%) in all of the samples
examined.

DISCUSSION

The former tallgrass prairie region of the Midwestern
United States is an area of economic and ecological importance
for food security, biofuel production, nutrient retention, and
is a major terrestrial carbon store, that could be jeopardized
with climate change (Boody and DeVore, 2006; Jordan and
Warner, 2010; Jokela et al., 2011; Paustian et al., 2016).

Predicting the environmental consequences of changes to
prairie-derived soils resulting from cultivation practices will
likely be improved by understanding the microbial communities
involved in carbon and nutrient cycling before and after
cultivation.

Here we performed lipid profiling of microbial biomass as
an indicator of soil metabolic health and quality (Vestal and
White, 1989; Yao et al., 2000). We observed approximately
double the microbial (lipid) biomass in native prairie samples
compared to their paired cultivated samples (Figure 3 and
Supplementary Table S6), suggesting that the prairie is
more supportive of microbial biomass likely resulting from
higher levels of soil carbon. This observation agrees with
the results of Spearman rank correlations of taxa to lipid
abundances, in that taxa positively correlated with cultivated
corn samples were negatively correlated to total abundance
of most measured lipids. Conversely, taxa positively correlated
with native prairie samples, such as families of the Rhizobiales
order, showed strong positive correlations to most measured
lipids (Supplementary Figure S6). The abundance of arbuscular
mycorrhizal fungi in native prairie is not surprising as
several of the tallgrass prairie grasses are known to be
mycorrhizal dependent (Wilson and Hartnett, 1998; Hoeksema
et al., 2010; van der Heijden et al., 2015; Koziol and Bever,
2016).
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FIGURE 5 | An approximate maximum-likelihood phylogenetic tree of 538 nosZ amino acid sequences predicted from metagenome assemblies and 69 sequences
previously characterized as typical (Clade I) or atypical (Clade II) (Sanford G.R. et al., 2012). Reliability of each split in the tree was calculated using the
Shimodaira–Hasegawa test. The tree was rooted using Haloarcula marismortui and Halorubrum lacusprofundi (Sanford R.A. et al., 2012). Clades are colored
according to the majority taxonomic group hosting the majority of sequences. Letters in the upper left of each clade indicate the presence of secondary taxa. E,
environmental; V, Verrucomicrobia; BP, Betaproteobacteria; AP, Alphaproteobacteria; B, Bacteroidetes; U, unassigned; C, Chloroflexi; EP, Epsilonproteobacteria; G,
Gemmatimonadetes. One group, referred to as mixed in the figure legend, contained no dominant taxonomic group.

Although the biomass was higher in prairie, alpha diversity
was significantly higher in cultivated sites; cultivated corn
showed the highest diversity, followed by switchgrass, restored
prairie, and native prairie. Evenness did not differ significantly
between prairie and cultivated corn. This finding is consistent
with the work of Barber et al. (2017) who found that alpha
diversity was lowest in native prairie and long-term restoration
sites compared to agriculture fields and recently restored sites.
Similarly, Acosta-Martinez et al. (2008) found elevated alpha
diversity in samples from cultivated cornfields. This increase in
alpha diversity, but with a much lower biomass, may be the

result of agricultural practices associated with cultivation that
provide more microbial niches, such as application of nitrogen-
based fertilizer and/or the higher annual fluxes of organic carbon
turnover stemming from plant productivity and litter input.
Ample provision of otherwise scarce nutrients, such as nitrogen
and phosphorus could drive fertilizer-associated increases in
diversity (Acosta-Martinez et al., 2008; Mao et al., 2011). Notably,
all of the corn plots in our study received a nitrogen-based
fertilizer.

Long-term cultivation also resulted in significant changes in
bacterial community structure. The soil microbiomes exhibited
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distinct clustering according to land management practice,
with cultivated samples clustering together and separately
from the native prairie samples, suggesting evidence of a
cultivation-specific microbiome. The native prairie samples not
only clustered distinctly from the cultivated samples but also
clustered separately by state, suggesting that a combination
of local soil history, plant species, and climate influence soil
microbial community structures. The similarity of cultivated
soil communities–whether from corn, switchgrass (3 years since
cultivation), or even restored prairie (10 years since cultivation)–
suggests that cultivation in general has a profound influence
on the microbial community structure independent of crop
species. In a similar vein, Fierer et al. (2012) found that
a common practice in cultivation–high levels of N input–
changed community structure similarly in both monoculture and
grassland sites compared with low and intermediate levels of N
addition (Fierer et al., 2012).

The observation that the restored prairie samples have
bacterial communities that are intermediate between prairie
and cultivated locations (Figure 1D), but more similar to
those from the long-term cultivated sites is notable. This
finding suggests that the changes associated with agricultural
practices endure over long time periods, and that the return
of the soil microbiome to the composition found in the
native prairie state is a slow process. This is in agreement
with previous findings of no difference in bacterial community
composition between traditionally managed agricultural fields
and a previously cultivated field that was left to recover for
9 years (Buckley and Schmidt, 2003) but in contrast with other
data that suggest a faster time-frame for recovery (Herzberger
et al., 2014). It is not clear what is driving the differences
between these investigations, but it highlights the necessity of
further studies to determine of how environment, vegetation, soil
physicochemistry, and microbial processes interact in response to
land-use changes.

Land-use management not only explained differences in
microbial diversity and biomass, but also was correlated with
taxonomic changes. In contrast to the native prairie samples,
cultivated soil showed significantly higher abundances of the
Nitrospiraceae and Nitrosomonadaceae families. The former is
involved in ammonia oxidation to nitrite, the rate-limiting
step in nitrification (Kowalchuk et al., 2000; Webster et al.,
2005), while the latter oxidizes nitrite to nitrate (Lücker et al.,
2010). The increased abundance of ammonia oxidizers in the
cultivated soils may be a response to the application of ammonia-
nitrogen fertilizer for production of corn. Nitrification activity
is known to increase with nitrogen fertilizer application (Carey
et al., 2016; Ouyang et al., 2016). In native prairie soils,
several members of the order Rhizobiales–common rhizosphere-
associated microbes–were more abundant than in cultivated
soils. In contrast to recent studies (Fierer et al., 2013; Barber
et al., 2017), we did not observe significant differences in
Verrucomicrobia across sites or treatments.

While 16S rRNA gene sequencing revealed differences in taxa
known to perform nitrification (cultivated corn) and nitrogen
fixation (native prairie), analysis of the metagenomic data
suggests that denitrification was uniformly important in both

cultivated and native ecosystems, similar to observations in
Nelson et al. (2016). Denitrification returns nitrogen to the
atmosphere as inert N2 (complete denitrification) or the potent
greenhouse gas N2O (incomplete denitrification). The most
abundant nitrogen cycle gene (nirK, which reduces NO2

− to NO)
encodes one of the first steps in this pathway and was found to be
a core functional gene. Clade I and Clade II nosZ genes (encoding
the final step in the denitrification pathway), were found in a
large number of phyla from both native prairie and cultivated
corn samples. Until recently, attenuation of soil N2O emissions
was thought to be mediated primarily by members of the Alpha-,
Beta-, and Gamma-proteobacteria that are capable of performing
all steps in the denitrification pathway (Sanford R.A. et al., 2012).
However, bioinformatics analyses have revealed phylogenetically
distinct nosZ sequences (Clade II) in a diverse array of organisms
lacking other genes in the denitrification pathway (Sanford
R.A. et al., 2012). Our observation that approximately 2/3 of
prairie soil nosZ genes were atypical corroborates a recent study
surveying nosZ in different soil types (Orellana et al., 2014) and
suggests a deep reservoir of phylogenetically diverse organisms
capable of mitigating N2O emission through N2O reduction
to N2.

Soils represent one of the most complex microbial
communities on Earth. As such, they present a unique challenge
for assembling and analyzing metagenomic data. Prior analysis
of the Iowa corn and Iowa prairie metagenomes demonstrated
48 and 31% of contigs (from corn and prairie, respectively) had
coverage of less than 10 and that only ∼20% of the sequence
data could be assembled (Howe et al., 2014). Full assemblies
of soil metagenomes may require many terabases (Gans et al.,
2005; Howe et al., 2014; Rodriguez-R et al., 2018). Because
soils have substantial spatial heterogeneity, even down to the
microstructure scale (Nesme et al., 2016), we designed the study
to maximize sequence coverage of a small sample, i.e., to not
dilute the community with extraneous DNA from different sites
even though they might be local. This design for depth rather
than breadth sacrificed the more traditional replicate design for
the metagenome samples, limiting our ability to determine how
functional genes differ between sites. Our 16S rRNA amplicon
data, however, does provide replication for the sites.

Here, we focused on near-surface soils since they are more
responsive to land management (Zhang et al., 2017). However,
a significant proportion of biomass resides within deeper soils
(Fierer et al., 2003) and deep-soil microbes contribute to long-
term carbon sequestration (Rumpel and Kogel-Knabner, 2011).
Depth is a major driver of community structure (Pereira et al.,
2017; Zhang et al., 2017). Just as in surface soils, tillage
(Sun et al., 2018), and soil physicochemical properties (Zhang
et al., 2017) strongly affect microbial communities at depth.
To gain a full understanding of how geographic distance,
cropping systems, and long-term cultivation influence microbial
community structure and function, future studies must consider
both horizontal and vertical community distributions.

In summary, we found that cultivation has a significant impact
on microbial community biomass, diversity, and composition in
soils across the former tallgrass prairie region of the Midwestern
United States. However, based on our metagenomic survey,

Frontiers in Microbiology | www.frontiersin.org 11 August 2018 | Volume 9 | Article 1775

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01775 August 13, 2018 Time: 18:57 # 12

Mackelprang et al. Microbiome of Native and Cultivated Prairie Soils

we found that many core functions were conserved, even at small
sample scales, across geographic regions and land management
practices, suggesting that conditions common to prairie soil,
independent of land-use, select for a set of critical features that
persist despite perturbation. While DNA sequence information
does not reflect current microbial activity since much of it may
not be expressed at any given time, it does reflect microbial
dynamics over a long time. The paired sites in this case had
50–100 years of cultivation versus none, which resulted in a
major microbial biomass change (as documented by lipid data)
and major microbial community change (as documented by 16S
rRNA data). While the metagenomic portion of this study was
designed to a sequence samples deeply because of soil community
complexity, further studies are needed to sample more broadly
to determine to what extent and which genes are selected under
different land management and crop regimes.
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