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ABSTRACT

Motivation: The functioning of many biological processes depends on

the appearance of only a small number of a single molecular species.

Additionally, the observation of molecular crowding leads to the insight

that even a high number of copies of species do not guarantee their

interaction. How single particles contribute to stabilizing biological

systems is not well understood yet. Hence, we aim at determining

the influence of single molecules on the long-term behaviour of biolo-

gical systems, i.e. whether they can reach a steady state.

Results: We provide theoretical considerations and a tool to analyse

Systems Biology Markup Language models for the possibility to sta-

bilize because of the described effects. The theory is an extension of

chemical organization theory, which we called discrete chemical or-

ganization theory. Furthermore we scanned the BioModels Database

for the occurrence of discrete chemical organizations. To exemplify

our method, we describe an application to the Template model of the

mitotic spindle assembly checkpoint mechanism.

Availability and implementation: http://www.biosys.uni-jena.de/

Services.html.

Contact: bashar.ibrahim@uni-jena.de or dittrich@minet.uni-jena.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Systems biology heavily relies on the precise language of reaction
networks (RNs) to describe many different processes in cells and
other living systems in a formal way (Kitano, 2002; Klipp et al.,

2009). Molecules and reactions can be expressed in an explicit or
implicit way (Danos and Laneve, 2004). These descriptions of the
network only capture the static part of the model. Additionally

the reactor, i.e. a collection of molecules, and the dynamics, i.e.
how to apply reactions to a reactor, have to be specified.
There are many different ways to model the dynamics of the

application of rules in a chemical system. To approximate the
inherently stochastic evolution of chemical systems typically
ordinary differential equations (ODEs) are in use (Dittrich et al.

2001). In this case, one assumes that a huge or even infinite
amount of particles is present so that it is reasonable to
assume continuous amounts, or more precisely, concentrations.
Furthermore, usually a well-stirred reactor and time constant

reaction rates as well as a sequential application of rules are

presumed. Depending on the type of system different kinetics

like mass action (Connors, 1990) or Michaelis–Menten kinetics

(Michaelis and Menten, 1913) can be used.
When looking at qualitative properties, we are often interested

in the long-term behaviour, i.e. the final states that the system is

able to reach. In continuous dynamical systems, given by the

ODEs, fixed points and limit cycles represent the final states of

the system. Chemical organization theory (COT) (Dittrich and di

Fenizio, 2007) was developed to better understand the long-term

behaviour of chemical system by introducing chemically more

relevant aspects and notions. Based on concepts of organization

in biology (Fontana and Buss, 1994), COT was developed to deal

with constructive systems, i.e. systems in which new species

appear and stay over a longer period. So far, COT was applied

successfully in various areas like chemical computing

(Matsumaru et al., 2007), social systems (Dittrich and Winter,

2005), evolutionary game theory (Veloz et al., 2014), HIV dy-

namics (Matsumaru et al., 2006) or checking systems biology

models for inconsistencies (Kaleta et al., 2009). The theoretical

results are based on the continuous dynamics and include the

observation that in every fixed point there is a chemical organ-

ization (Dittrich and di Fenizio, 2007; Peter and Dittrich, 2011).
Nevertheless their usefulness, the benefit to use differential

equations with a rich arsenal of methods to find such solutions

is finally limited by the fact that particle numbers are finite.

Hence, obviously not all properties of a system’s behaviour can

be detected. Cao and Liang (2008); Schultz et al. (2007) already

made some efforts to analyse small stochastic networks by ana-

lysing effects of small numbers of molecules on the stability of

switches and by proposing an algorithm to enumerate the state

space for spaces with small copy numbers with a limited number

of newly produced molecules, respectively. Ramaswamy et al.

(2012) discovered that for small sizes of reactors, the ratio be-

tween the amounts of species in steady state can change, and

hence, called this effect “discreteness-induced inversion effect”.
The inherent stochasticity of the dynamics in chemical systems

gives rise to well-established models like the algorithm developed

by Gillespie (1976, 1977). There the update of the molecules is

based on the fact that the occurrence of a reaction depends solely

on the abundance of molecules necessary for firing the reaction.

Even though stochastic dynamics are much closer to a realistic

system, there are additional phenomena that are mostly not*To whom correspondence should be addressed.
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considered in these standard models. Fedoroff and Fontana

(2002) examine the effect of stochasticity, noise and small num-

bers of macromolecules and also pose the question “So how do

organisms manage—and perhaps even capitalize on—molecular

noise?” Halling (1989) even asks “Do the laws of chemistry apply

to living cells?” In other words, are the generally used settings for

chemistry, described above as the assumptions for the ODE

system, correct for a living cell?

After the initial observation of molecular crowding in cells

(Laurent, 1963; Laurent and Ogston, 1963), recently, even the

tracking of single molecule production is possible (Elf et al.,

2007; Yu et al., 2006). They discovered that proteins are produced

in bursts from single messenger RNA molecules. Becskei et al.

(2005) show how low molecule numbers change gene expression.

Reviews on macromolecular crowding and confinement are pre-

sented in (Zhou et al., 2008; Zimmerman and Minton, 1993). On

the theoretical side, there is the idea of fractal kinetics (Kopelman,

1988), and how macromolecular crowding implies these fractal

kinetics (Schnell and Turner, 2004). Other influences of the geom-

etry by the kinetics are given in (B�enichou et al., 2010).

In this article, we put an emphasis on two aspects, which we

call particle effect, of discrete systems. First, a small amount of

molecules of one or more species present in the reaction vessel

has an effect on the dynamical long-term behaviour of the

system. Second, the limitation of number of molecules in the

reaction vessel is considered. We aim to detect the ability of

RNs to stabilize because of the impact of small molecular

number or finite reactor size. This can be achieved by extending

the theory of chemical organizations.
For the extension, we look at the system in a discrete way, i.e.

there is no concentration of molecules, but rather a discrete

amount of them. This leads to discrete states and transitions

between them given by possible sequences of reactions. The dy-

namics usable with this theory was chosen as general as possible,

including mass action, Michaelis–Menten and maximal parallel-

ism (Krepska et al., 2008). However, only the simplest model

assuming one transition per reaction will be used in the main

text. This setup yields a Markov chain model on a transition

graph. Similar to COT, the definition of discrete organizations

is based on the closure and self-maintenance properties. These

two notions can be adapted to a discrete setup. All continuous

organizations are found to be discrete chemical organizations as

well. This makes the extension sound. The discrete organizations

correspond to particular steady states, which we identified as

caused by the described particle effects.
To distinguish between the so far developed continuous COT

and the discrete one, we denote it by discrete chemical organisa-

tion theory (DOT). For the introduction of all the necessary no-

tions in COT and Markov chains, we refer to Supplementary

Sections 1 and 2, respectively. We define discrete organizations

in Section 2.2. A characterisation via communication class in

Supplementary Section 3 then establishes properties for small

sizes of reactor vessels. For RNs with special structural proper-

ties, stronger results hold, see Supplementary Section 4. Finally

we use our findings to examine the Template model of the mi-

totic spindle assembly checkpoint (SAC) mechanism in Section

3.2. We use a Java implementation, which is also available

online. With its help, we scanned the BioModels Database

(Chelliah et al., 2013) for the existence of discrete organizations,

see Section 3.1.

2 METHODS

2.1 RNs and transition graphs

A RN consists of a set of molecular species and a set of reactions, which

are interactions among molecules that lead to the appearance or dis-

appearance of molecules.

DEFINITION 1. LetM be a set and R be a subset of PmultðMÞ � PmultðMÞ

where PmultðMÞ denotes the set of multisets overM. The pair ðM;RÞ is

called RN, and we callM the set of molecules and R the set of reactions.

By applying or firing a reaction ðl; rÞ 2 R to a multiset s, also called a

state, overM, we mean replacing the subset l by the subset r in s. The

stoichiometric coefficients of ðl; rÞ are lM. We assume that the multiset

considered is always large enough, i.e. that it consists of enough molecules

as required on the left hand of the rule, otherwise the reaction is not

applicable. Also, we will assume a maximal reactor size or maximal

size of state Nmax later in our considerations; a rule cannot be applied

if the resulting multiset exceeds the maximum. A limited reactor size also

means a finite state space. We will use the notations from multiset theory

and write ðl; rÞðsÞ=s� l+r for the result of applying a reaction to a

multiset.

A subset C of M being closed means that by applying all reactions

possible in C to multisets over C we do not get molecules outside C. A

subset S ofM being self-maintainingmeans that reactions able to fire in S

can occur at certain strictly positive rates to a multiset overM without

reducing the number of molecules of any species of S.

DEFINITION 2. A subset ofM is a chemical organization if it is closed and

self-maintaining.

The set of all states s, i.e. multisets of species, is called state space; see

Figure 3 for an example. We call a set of states c a part of the state space

and define the molecules present in states of the part asMðcÞ. We also

use this notation for species, i.e.MðsÞ=MðfsgÞ. Analogously, the reac-

tions firing in a part c are denoted Rc.

The following definitions are adopted from Markov chain theory; see

for example (Br�emaud, 1999), p. 56, and p. 71.

DEFINITION 3 (Transition graph). The transition graph is a directed graph

with the states as nodes and edges from a state s to a state ~s if there is a

transition, i.e. a sequence of reactions Rðs; ~sÞ transforming s to ~s.

DEFINITION 4 (Accessible set). A state ~s is said to be accessible from state s

if there is a path from s to ~s. The set of states accessible from s is called

accessible set from s and denoted AccðsÞ.

2.2 Particle effects and discrete organizations

Dynamical models of RNs mostly use ODEs to describe the change in

concentration of the molecular species over time. Because concentrations

are a continuous abstraction of the actual amounts of molecules present,

we are interested in the cases that the actual number influences the

observed behaviour. The motivation for defining discrete organizations

is so-called particle effects, which are the consequences of using discrete

molecule numbers. They occur in two different cases.

The first case happens if there are too few particles to start a reaction,

e.g. when there are reactions in the network where at least one reactant

species M has a stoichiometric coefficient lM41. Then, this reaction

cannot fire if the amount of M is lower than lM. When using concentra-

tions to describe the amount of M, the effects of the not firing are not

captured; see Figure 1. Taking the naive approach to just compute the
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solutions of the equations given by mass action kinetics leads to predict-

ing a long-term behaviour of the concentrations, which is not possible in a

real chemical system with a limited amount of molecules.

The second case occurs if the reactor is nearly full, because of the limita-

tion of amount ofmolecules, reactionsmight also not occur. In the transition

graph, this is seen in the non-existence of edges where the amount of mol-

ecules present in a state suggests that there should be a reaction possible.Also

the long-term behaviour shown in Figure 2 cannot be detected with chemical

organizations or analysis of the ODEs frommass action kinetics. In the only

fixed point of the shown RN, the catalysts K1;K2;K3 vanish. Only the

pdorgs, see Definitions 5 and 6, hint at the possibility to stabilize the

system in a small reactor in a state with all species present.

DEFINITION 5 (Discrete organization, generator). A subset of species D of

M is called discrete organization if there is a state s with

D=MðAccðsÞÞ

and there is a sequence of transitions ð�1; . . . ; �kÞ such that

RAccðsÞ= [
k

i=1
[
ðl;rÞ2�i
fðl; rÞg

and ~s=ð�k� . . . � �1ÞðsÞ satisfies

8M 2 D : ~sM � sM:

Such a state s is called (internal) generator of the discrete organization.

Our definition only depends on the topological properties of the tran-

sition graph, see Definition 3, underlying the Markov chain and the

topological properties of the RN. It also does not refer to the capacity

of the state space. Rather, the definition is given independently of the size

of state space. This makes it possible to talk about a reactor of unlimited

and limited capacity.

The two requirements correspond to the closure and self-maintenance.

The first ensures that we start with the species of D, and there are no new

species produced or consumed in the whole accessibility set. The second

ensures that there is a path of transitions using all reactions possible

leading to a state with no less molecules. Of course, one discrete organ-

ization can have several generators; see also Figure 3 for examples.

LEMMA 1 (Self-maintainence and discrete organizations). Consider the

case of one reaction per transition. For a discrete organization D of M

with a generator s the RN

ðD;RAccðsÞÞ=ðMðAccðsÞÞ;RAccðsÞÞ

is self-maintaining and hence an organization.

PROOF. We can choose a sequence of transitions or, under the hypothesis,

reactions ð�1; . . . ; �kÞ as in the definition of discrete organizations above.

Counting the occurrence of each reaction type in the sequence, we get

positive integer rates for each type of reaction. These rates show the self-

maintenance.

The newly identified discrete organizations are consistent with the con-

cept from COT, i.e. every (continuous) organization is a discrete

organization.

LEMMA 2 (Continuous are discrete organization). Consider the case of one

reaction per transition. If the subset O ofM is an organization, then there

is a generator s of a discrete organization such that O=MðAccðsÞÞ and

RO=RAccðsÞ. Therefore, every organization is also a discrete organization.

PROOF. We can choose integer reaction rates forRO, which fulfil the self-

maintenance condition for O. Define a sequence ð�1; . . . ; �kÞ of reactions

with the multiplicities equal to the rates. We can choose a state s such that

O=MðsÞ, and the multiplicities of species are big enough so that the

sequence ð�1; . . . ; �kÞ can fire.

DEFINITION 6 (Purely discrete organization). The discrete organizations,

which are not found in the continuous theory, are called purely discrete

organizations (pdorg).

From a computation point of view, if we choose a large enough tran-

sition graph, we will find every (continuous) organization. Hence, this

gives a different way of defining and computing organizations in the

models using discrete molecule numbers. Of course, for most purposes,

this will be considerably slower than existing implementations (Centler

et al., 2008, 2010) because of the size of the state space.

We provided two ways of computing discrete organizations. First, we

can use Definition 5. Second, we can check the networks ðM;R0Þ for

organizations where R0 is a subset of R in which we eliminated some of

the reactions of higher order. These are then candidates for discrete or-

ganizations. They are only candidates because we do not know whether

there is a suitable generator. A candidate for a generator is given as in the

proof of Lemma 2.
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Fig. 1. Effects of small molecular numbers. The network isM=fA;B;Cg,

R=fA+2B!k1 ;;A+C!k2 2B+C;B+C!k3 A+C; 2C!k4 ;g, as shown in

the upper part of the figure. (A) and (B) show the ODE solution corres-

ponding to mass action kinetics with reaction rates k1=k3=k4=1; k2=

1:1 and initial concentrations equal to 0:3 for a time interval from 0 to 100

and500, respectively.We can see that the concentrations of all three species

tend to 0, which is also a fixed point of the dynamics. To see the particle

effects, we assume a total volume of molecules equal to 10 and 100 in (C)

and (D), respectively. This means initially 3 or 30 copies, respectively, of

every species are present. Then, because of degradation reactions, they

slowly vanish. Once the concentration of C falls under 0:1 and 0:01, re-

spectively, the destruction reaction 2C! ; ofC is switched off. This hap-

pens approximately at time 5 and 50 in (C) and (D), respectively. Then, the

system stabilizes in the (purely) discrete organization fA;B;Cg; see

Definitions 5 and 6. This takes of course much longer in the case of a

reactor volume of 100 than 10; therefore, we used a bigger time scale in

(B) and (D)
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For a pdorg holds RAccðsÞˆRMðAccðsÞÞ. We emphasize the difference

between these two sets. RMðAccðsÞÞ stands for the set of reactions applic-

able, when only considering present species, not their numbers, whereas

RAccðsÞ stands for the set of reactions actually applicable when also con-

sidering multiplicities. There are two possible reasons why these two sets

are not equal.

First, there might not be enough molecules in any state in AccðsÞ to

trigger a reaction, e.g. the reaction 4A! B cannot fire in the state 3A.

This can only occur if at least one species, which occurs with high stoi-

chiometry, has small molecule number. For a pdorg D with a generator s,

we call it of type A if for any reaction ðl; rÞ 2 RMðsÞnRfsg, there is a species

M with sM5lM.

Second, the reactor might be full. This can only occur if at least one

reaction has more molecules on the right hand side than on the left hand

side. Because of reactor size limitations, this overproduction might be

hindered; a transition to larger states might not be possible. We call it

of type B if for any reaction ðl; rÞ 2 RMðsÞnRfsg holds jðl; rÞðsÞj4Nmax.

An organization can be of type A as well as type B. The types corres-

pond to the particle effects introduced in Figures 1 and 2. The existence of

a connected pdorg of type A or B means that there is the potential of a

steady state containing exactly these species. For the definition of type B,

we need to have the possibility to limit the reactor size. Discrete organ-

izations of type A can also exist in a reactor of unlimited size.

This independence of the reactor size makes type A more realistic for a

wider variety of models. We use this notion of type A and B to further

filter the found pdorgs for their interest and behaviour.

The generalization of a connected chemical organization to the discrete

case is easy to do. If D is a discrete organization, then ðD;RAccðsÞÞ is an

organization in the original sense where s is any generator state for D. Of

course, for different generators, there can occur different RAccðsÞ, and

hence, different properties of the network ðD;RAccðsÞÞ.

DEFINITION 7 (Connected purely discrete organization). A purely dis-

crete organization D is connected if there is a generator s of D such that

ðD;RAccðsÞÞ is connected as a continuous chemical organization.

3 RESULTS

3.1 Scan of the BioModels Database

The BioModels Database (Chelliah et al., 2013) is a database of

quantitative biological models. At the time of writing, March

2014, it consisted of 490 curated and 595 not curated models

written in the Systems Biology Markup Language (Hucka

et al., 2003). We use this repository to show the appearance of

pdorgs. As in some of the models we found an abundance of

pdorgs, we also use the notion of connected discrete organizations

as an extension of the concept with the analogue name intro-

duced in (Centler et al., 2008). Connectedness is a means to sort

out organizations, which exist because of combinatorial effects;

see Definition 7.
We scanned all 1085 models in the database and tried to find

all discrete organizations for an Nmax of 10 if possible. For some

models, the computational resources (Intel Core i7 at 3.2GHz

with 12GB of memory) were not sufficient, and within a maximal

runtime of 30min no result was found. Hence, we reduced the

Nmax stepwise from 10 down to 1. The results are listed in

Supplementary Table S1 and can also be found as csv file with

the Supplementary Material. Of course, a model not listed might

still exhibit pdorgs, but we did not find them because of the

restrictions on computation mentioned.
Like this, we found that 206 of the 490 curated models and 75 of

the 595 not curated have pdorgs. Among the curated models with

pdorgs, only one does not exhibit any connected pdorg. All the not

curated models with pdorgs also have at least one connected one.

When considering a reactor of finite size and hence a state space of

finite size, there are two causes for the appearance of pdorgs, as

illustrated inFigures 1 and 2, respectively.We call these typesA and

B pdorgs, respectively; see also end of Section 2.2. Only 21 of the

205 curated models with connected pdorgs show connected pdorgs

of type A. For the 75 not curated models, which exhibit connected

pdorgs,we foundonly 7with typeAorganizations.With the scanof

the BioModels Database, we prove the existence of types A and B

pdorgs inmany storedmodels and hence also show the applicability

of our software tool. Of course, addressing the biological relevance

of the potential to go into steady state due to particle effects has to

be addressed in future efforts.

3.2 The mitotic SAC mechanism—BIOMD0000000193

To ensure the fidelity of chromosome segregation of the repli-

cated genome during cell division, the mitotic SAC delays the

onset of anaphase until all chromosomes have made amphitelic
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Fig. 2. Effects of finite reactor size. The network is

M=fA;B;C;K1;K2;K3g;R=fA+K1!
k1
B+K1;B+K2!

k2
C+K2;C+

K3!
k3
A+K3;K1+K2!

k4
4C;K2+K3!

k5
4C;K1+K3!

k6
4Cg, as shown in

the upper part of the figure. (A) shows the ODE solution corresponding

tomass action kinetics with reaction rates k1=k2=k3=1; k4=k5=k6=5

and initial concentrations equal to 0:12 for a time interval from 0 to 50.

Under these conditions, the concentrations of the catalysts are the same

over time. We can see that the concentrations of all three catalysts K1, K2

andK3 tend to 0, and the other speciesA,B andC stabilize at somepositive

but distinct values. To see the particle effects when a reactor of limited size

is assumed, we change the set of ODEs once the total sum of all species

concentrations reaches 1. This happens at time 3 approximately. Namely,

the last four reactions transforming pairs of catalysts to four copies of C

are switched off. The resulting curves are shown in (B). Then, the system

stabilizes in the (purely) discrete organization fA;B;C;K1;K2;K3g; see

Definitions 5 and 6. Furthermore, the catalysts stabilize in a small but

positive concentration, and the species A, B and C tend towards the

same concentration
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tight bipolar attachments to the mitotic spindle. This checkpoint

mechanism is conserved from Yeast to Human. The core protein

and complexes are the same but have different concentration and

live in different cell size. The mitotic checkpoint complex (MCC)

composed of Mad2, Bub3, BubR1 and Cdc20 inhibits the ana-

phase-promoting complex to initiate progression into anaphase.

The molecular mechanism has been studied using systems-level

approach for both Human and partly Yeast (Ibrahim et al.,

2009; Lohel et al., 2009; Ibrahim et al., 2008a,b). These models

considered ODEs and also some spatial but not stochastic ef-

fects. An important pathway in these models is the formation of

a complex called Bub3:BubR1:Cdc20 that is sequestering Cdc20

away and eventually inhibits the initiation of anaphase. For the

full RN, see Figure 4. Our DOT approach shows that the com-

plex Bub3:BubR1:Cdc20 must vanish to get the stable state, and

this process is size limited; see Supplementary Figure S8. This is

the opposite view to the explanation that this complex is kineto-

chore dependent (Reaction 5, switched on or off), which means it

works by an external signal for specific period to sequester

Cdc20. Our DOT interpretation would be that this complex en-

hances MCC formation and does not need to be kinetochore

controlled. These predictions can influence the budding yeast

rather than the human model.

4 DISCUSSION

We provided a novel method to predict possible steady states of
biological models due to the occurrence of particle effects. The
theoretical foundation is an extension of COT to discrete sys-

tems. More precisely, we gave the definition of discrete chemical
organizations for transition graphs. This turns out to be a gen-
eralization of the concept of chemical organizations, which was

originally aimed at continuous models. We called the discrete
organizations not found in COT purely discrete. They represent
potential steady states due to particle effects, i.e. effects of small

molecular numbers and/or finite reactor size. The former effect
accounts for the biological phenomena of small numbers of
copies of a molecule, molecular crowding and the spatial distri-

bution of molecules in a cell. The latter effect might seem less
natural than the former because we consider reactors with an
upper bound on the number of molecules they contain.

However, we want to mention two classes of example situations
in which this is a reasonable assumption. First, if we consider
reactions that model an inflow, e.g. through channels in a mem-

brane, we can have the situation that inflow is blocked because of
the already full inside of the reactor. Second, if we model the
spatial setting in a reactor, we know that single molecules occupy

more space than a complex of molecules.

Fig. 3. Example for our definition of pdorgs. Again, we consider the network M=fA;B;Cg, R=fA+2B! ;;A+C! 2B+C;B+C! A+C;

2C! ;g with Nmax=5 described in Figure 1 before. The boxes refer to the states, where, for example, ð1; 2; 1Þ; 31ð22Þ in the top middle, means there is

one element of species A, one of C and two of species B, the state has the unique number 31 and is part of the communication class with number 22. The

labels at the transitions are the transition probabilities. There are the pdorgs fA;B;Cg with a generator ð1; 2; 1Þ, fCg with a generator ð0; 0; 1Þ and fA;Bg
with a generator ð1; 1; 0Þ. The light blue coloured states show the generators of the pdorgs. The grey states show the generators for the rest of

organizations, namely, fAg, fBg and f;g. We refer to the Supplementary Material, Section 5, for how they can be calculated
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Furthermore, our findings complement the connection found

between chemical organizations and continuous systems (Peter

and Dittrich, 2011), namely, that organizations play a crucial role

in the long-term behaviour of chemical reaction systems. Similarly,

the theory developed herein might be adjustable to also cover par-

ticle effects on elementarymodes (Schuster andHilgetag, 1994) and

cut sets (Klamt and Gilles, 2004). Because COT is based on the

stoichiometric information of RNs alone, only constellations of

species in the potential steady states are computed. We do not con-

sider information on amounts or ratio of amounts as addressed in

(Ramaswamy et al., 2012). Furthermore, we do not say what the

concentration or amounts in the long run might be.

It is important to remark the connection between DOT and the

study of RNs using Petri Nets (PN) (Murata, 1989; Petri, 1962;

Yen, 2006). Namely, the PN formalism is an abstraction of par-

allel processes and has been shown to be equivalent to the RNs

formalism. Several behavioural properties developed in PN

theory, such as liveness, persistence, deadlock, etc., have shown

to be relevant to the analysis of RNs (Heiner et al., 2008).

Interestingly, both COT and (sur-)T-invariants of PN have been

linked to the analysis of elementarymodes (Schuster andHilgetag,

1994) and cut sets (Klamt and Gilles, 2004) in RNs (Heiner et al.,

2010; Kaleta et al., 2006). However, the definition of self-main-

tenance of COT differs from the definition of sur-T-invariants in

PN theory in the choice of positive and non-negative rates, re-

spectively.Moreover, the notion of closed set ofCOThas not been

studied in PN theory. Hence, exploring the connections between

DOT and PN might be useful to extend our knowledge of the

long-term behaviour of continuous RNs, already obtained by

COT (Peter and Dittrich, 2011), to the discrete domain.
The analysis of the SACmodel in detail hints at the influence of

a molecular complex on the cell division of Yeast, which was

before not identified as important. Even though the example of

palindromic DNA we described is merely a toy model, it clearly

shows the inability of the known analysis tools to detect the effect

of the distribution of molecules over space on the long-term be-

haviour. By providing an open-source tool for the search for dis-

crete organizations, we also made it possible to find models that

might be influenced by only a few copies of single molecular spe-

cies. We used the tool to prove the existence of discrete organiza-

tions in many biological examples contained in the BioModels

Database. Especially the appearance of connected pdorgs of

type A is of interest. Also, the limitations of our implementation,

like the runtime, could be addressed in a future effort.

Fig. 4. Visualization of the SAC model. Eukaryotic cells have evolved a conserved checkpoint mechanism for chromosome segregation, the SAC. This

checkpoint delays anaphase onset and prevents exit from mitosis until all chromosomes are properly attached and have aligned on the mitotic spindle. In

many organisms, an MCC composed of Mad2, Bub3, BubR1 and Cdc20 inhibits the APC to initiate progression into anaphase. Ibrahim et al. (2009)

have constructed a detailed dynamic model of MCC formation and analysed its quantitative properties. In this model, Mad2-activation at the

kinetochore is commonly seen as the central part of the SAC mechanism. It is known as the “Template model”. According to this model (reactions

R1, R2 and R3), Mad2 in its open conformation (O-Mad2) is recruited to unattached kinetochores by Mad1-bound Mad2 in its close conformation (C-

Mad2) to form the ternary complex Mad1:C-Mad2:O-Mad2*. In this complex, O-Mad2* is the “activated” Mad2, i.e. it is stabilized in a conformation

that can interact with Cdc20 to form Cdc20:C-Mad2 (Ibrahim et al., 2008a,b). O-Mad2 can bind to Cdc20 with very low affinity (reaction R6). Bub3

associates quite stably with BubR1, which has two binding sites to Cdc20. Binding of the N-terminal region of BubR1 to Cdc20 requires prior binding of

Mad2 to Cdc20. Systematically, the Bub3:BubR1 complex binds to Cdc20:CMad2 to form the MCC complex (reaction R4). The other site (residues 490

and 560) of BubR1 binds Cdc20 tightly regardless of Mad2 being bound to Cdc20. Therefore, BubR1 can form a ternary complex with Bub3 and Cdc20

(reaction R5). The formation of Bub3:BubR1:Cdc20 is accelerated in the presence of unattached chromosomes and it might be that MCC forms as an

intermediate complex from which O-Mad2 rapidly dissociates
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Our newly developed discrete organization theory is a first step
towards the analysis of fixed points in RNs with small molecule
numbers.
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