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In this paper, a time-delayed fractional order adaptive sliding mode control algorithm is proposed for a two-wheel self-balancing
vehicle system. )e closed-loop system is proved based on the Lyapunov-Razumikhin function. )e switching function is
designed to make the system robust when facing uncertainties and external disturbances. It is designed to avoid monotonically
increasing gains and can handle state-dependent uncertainties without a prior bound. )e two-wheel self-balancing vehicle used
in the experiment consists of a gyroscopeMPU-6050 and accelerometer, a motor driving circuit composed of a motor driving chip
TB6612FNG, and STM32F103x8B that is selected as the control core. )e experimental results show that the time-delayed
fractional order adaptive sliding mode control algorithm canmake the vehicle achieve autonomous balance and quickly restore its
stable state while appropriate disturbance is introduced.

1. Introduction

)e movement principle of a two-wheel self-balancing ve-
hicle is based mainly on the basic principle of dynamic
stability. )e gyroscope and acceleration sensor inside the
vehicle are used to detect the changing attitude of the vehicle.
)e control system is used to precisely adjust the motor to
maintain the balance of the system. At present, two-wheel
self-balancing vehicles are widely used in transportation,
rescue, and other fields. )ey have provided an effective
solution to environmental pollution and energy crisis. Two-
wheel self-balancing vehicles have the characteristics of high
order, nonlinearity, strong coupling, and underactuation.
However, some uncertainties, such as mechanism friction,
ground friction, changing payload, and road gradient still
need to be dealt with. At present, the control algorithms used
in two-wheel self-balancing vehicles include PID, neural
network, mode predictive control, O control, and so on.

Sliding mode control is a branch of variable structure
control that was proposed in the 1950s. It belongs to a

nonlinear control that is realized through a switching
function. It is insensitive to parameter changes and has the
capability of rejecting interference. )ere are many methods
to deal with the considered external disturbance. Li inves-
tigated the problem of induced L2 disturbance attenuation
control design for T-S fuzzy delta operator systems with
time-varying delays via the IO approach [1]. )e time delay
was handled by the IO approach to facilitate the estab-
lishment of the feedback interconnection system. Based on
the feedback interconnection system, a sufficient condition
of asymptotical stability was obtained for the closed-loop
system. )e desired DOF controller was designed to guar-
antee the closed-loop system to be asymptotically stable with
an induced L2 disturbance attenuation performance. Liu
studied the finite-time H∞ control of a fractional order
HTGS [2]. Based on the generalized T-S fuzzy model, the
fractional order fuzzy model of a HTGS was presented. By
combining finite-time control and H∞ control theory, a
finite-time H∞ state feedback control was proposed for the
HTGS. )e control is based on the fractional order stability
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theorem. Gao presented a novel descriptor SMO to for-
mulate accurate estimations of both plant states and actuator
fault deviation [3]. )e stability of error dynamics was
analyzed and a developed stability criterion was established.
)e developed criterion gave a solvable solution to obtain
the observer gains using convex optimization algorithm. A
linear sliding surface and integral sliding surface were
designed. A new SMC law was formulated with a discon-
tinuous control input and an equivalent control to guarantee
that the finite-time convergence of the plant trajectories. Liu
proposed an ESO-based cascade controller for regulating the
oxygen excess ratio of the PEMFC air-feed system to its
desired value, using the sliding mode technique [4]. )e
control objective was to avoid oxygen starvation during
sudden load changes. )e designed cascade controller
consists of oxygen excess ratio tracking outer loop and
compressor flow rate regulation inner loop. )e ESO was
used to reconstruct the oxygen excess ratio. )e outer
control loop using the estimated oxygen excess ratio pro-
vided the compressor flow rate reference for the inner loop
based on the STA. A simple SMC law consisting of a linear
term and a switching term was designed for the inner loop.

In recent years, sliding mode control has developed
rapidly in the field of two-wheel self-balancing robots.
Abeygunawardhana proposed a second-order sliding mode
controller based on the disturbance observer [5]. Rafael
established a reference model based on a dual-relay con-
troller for tracking control problems of a wheel pendulum.
[6] Guo proposed a sliding mode controller for an under-
actuated system consisting of a pendulum and two wheels.
[7] Based on the nonlinear dynamic model, Yue divided the
whole system into three subsystems: rotational motion,
longitudinal motion, and zero dynamics. [8] Within these
subsystems, the inclined angle of the vehicle was treated as
zero dynamics, the longitudinal acceleration was used as
control input, and the sliding mode control technology was
used to stabilize the zero dynamic subsystem. Li established a
physical model of a two-wheel self-balancing vehicle and
designed a sliding mode controller based on Newtonian
mechanics. [9] Dai used the sliding mode control to achieve
self-balance and pitch angle control of a double-wheel
inverted pendulum robot with friction compensation. [10]
Ali used a set of highly coupled nonlinear differential
equations to represent the motion model of two-wheel self-
balancing robots [11]. Zhou proposed a robust integral
sliding mode controller based on bounded system uncer-
tainties with linearization error and input delay [12]. Nasim
used back-stepping sliding mode to solve the problem of
balancing and trajectory tracking of a two-wheel balanced
mobile robot [13]. Chen proposed a robust tracking control
based on a nonlinear disturbance observer for self-balanced
mobile robots with unknown external disturbances [14].
Wang proposed a model-free fractional order sliding mode
control based on an extended state observer, providing a
framework that considered nonlinearity of friction, pa-
rameter variation, and external disturbance [15].

Designing robust controllers for uncertain time-delay
systems has become a key problem. )e robustness of
sliding mode variable structure control makes it

insensitive to the model error, changing parameters, and
external disturbance. )erefore, variable structure control
has become an effective control method for time-delay
systems. With the development of variable structure
control theory, some research is available on variable
structure control of time-delay systems [16, 17]. Roy
solved the long-standing problem of consistent stability
analysis and control design in continuous time for time-
delay control (TDC). Based on its newly proposed
structure of TDE error, a more robust control law was
formulated [18]. Roy made a number of significant con-
tributions: proposing a novel adaptive sliding mode
control (ASMC) methodology that does not require a
priori bounded uncertainty [19], a novel ASMC strategy
that overcomes underestimation and overestimation
problems commonly observed in conventional ASMC
[20], and a hybrid control methodology called a time-delay
sliding mode control for accurate path tracking of non-
holonomic wheeled mobile robots [21].

In this paper, an adaptive time-delay fractional order
sliding mode control algorithm is proposed to control the
motion of a two-wheel self-balancing vehicle. )e stability of
the closed-loop system is proved based on the quadratic
Lyapunov function. )e influence of control parameters on
control performance is analyzed based on a simulation. )e
physical experiment of the two-wheel self-balancing vehicle
is carried out to verify the effectiveness of the control al-
gorithm. )e technique contribution of the presented
control method is summarized as follows:

(1) A time-delay control (TDC) algorithm is proposed.
)e TDC approximates the system uncertainty by
using control input and state information of the
immediate past time instant.

(2) A fractional order sliding mode control is designed.
Fractional order sliding mode has a memory effect
and better stability. Its parameter selection range is
wider and more flexible. Fractional calculus operator
can obtain faster speed and higher control accuracy.
It not only makes the system converge in finite time
but also effectively weakens the chattering of tradi-
tional integer order sliding mode controller.

(3) Adaptive switching gain of the sliding mode control
is designed.

2. Mathematical Model of TWIP

)e coordinate system is established as follows: the midpoint
of the line segment connecting the centroids of two wheels is
set as the origin X. )e moving direction of the vehicle is set
as the Y axis. )e line connecting the centroids of the two
wheels is set as the axis. )e vertical upward direction
through the origin is set as the Z axis. )e motion model of
the two-wheel self-balancing vehicle is shown in Figure 1.

If we denote M as the mass of vehicle, m as the mass of
wheel, R as the radius of wheels, l as the distance from the
centroid of the vehicle to the origin, J as the moment of
inertia of the vehicle, Jw as the moment of inertia of wheel, θ
as the angle of inclination of the vehicle, and xm as the
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displacement of vehicle, then the kinetic energy K of the
vehicle is expressed as follows:

K �
1
2

M _xm + l _θ cos θ􏼐 􏼑
2

+(l _θ sin θ)
2

􏼔 􏼕 +
1
2

J _θ
2
. (1)

)e kinetic energy of wheels Kw is

Kw �
1
2

m _x
2
m +

1
2
Jw

_xm

R
􏼠 􏼡

2

. (2)

)e potential energy of system is given as follows:

P � Mgl cos θ. (3)

)e Lagrange function is constructed as follows:

L � K + Kw − P

�
1
2

M _xm + l _θ cos θ􏼐 􏼑
2

+(l _θ sin θ)
2

􏼔 􏼕 +
1
2

J _θ
2

+
1
2

m _x
2
m +

1
2
Jw

_xm

R
􏼠 􏼡

2

− Mgl cos θ.

(4)

Defining u as the control input of the system, we obtain
the following using the Euler-Lagrange formula:

d
dt

zL

z _θ
􏼠 􏼡 −

zL

zθ
� − u, (5)

d
dt

zL

z _xm

􏼠 􏼡 −
zL

zxm

�
u

R
. (6)

Substituting (4) into (5), we obtain

d
dt

zL

z _θ
􏼠 􏼡 −

zL

zθ

�
d
dt

M _xm + l _θ cos θ􏼐 􏼑l cos θ + J _θ + Ml
2 _θsin2 θ􏽨 􏽩

+ M _xm + l _θ cos θ􏼐 􏼑l _θ sin θ − Ml
2 _θ

2
sin θ cos θ − Mgl sin θ

� M€xml cos θ − M _xml sin θ _θ − 2Ml
2 sin θ cos θ _θ

2

+ Ml
2€θcos2 θ + J€θ + Ml

2€θsin2 θ + 2Ml
2 _θ

2
sin θ cos θ

+ M _xm + l _θ cos θ􏼐 􏼑l _θ sin θ − Ml
2 _θ

2
sin θ cos θ − Mgl sin θ

� M€xml cos θ + J€θ + Ml
2€θ − Mgl sin θ � − u.

(7)

Substituting (4) into (6), we obtain
d
dt

zL

z _xm

􏼠 􏼡 −
zL

zxm

�
d
dt

M _xm + l _θ cos θ􏼐 􏼑 + m _xm + Jw

_xm

R2􏼢 􏼣

� M + m +
Jw

R2􏼒 􏼓€xm + Mlθ cos θ − Ml _θ
2
sin θ �

u

R
.

(8)

By simplifying and linearizing (6) and (7), we obtain

€θ �
Mlg Jw + mR2 + MR2( 􏼁θ

JJw + R2mJ + JR2M + Ml2Jw + R2Ml2m
−

Jw + mR2 + MR2 + RMl

JJw + R2mJ + JR2M + Ml2Jw + R2Ml2m
u, (9)

€xm �
− M2l2R2gθ + JwR + MlR2 + Ml2R( 􏼁u

JJw + R2mJ + JR2M + Ml2Jw + R2Ml2m
. (10)

X

θ

Y

Z

O

Figure 1: Model of a two-wheel self-balancing vehicle.
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)e state variables are given as follows:

x � θ, xm􏼂 􏼃
T
. (11)

Define

f �
Mlg Jw + mR2 + MR2( 􏼁θ

JJw + R2mJ + JR2M + Ml2Jw + R2Ml2m

− M2l2R2gθ
JJw + R2mJ + JR2M + Ml2Jw + R2Ml2m

􏼢 􏼣. (12)

Define the input matrix as follows:

B � −
Jw + mR2 + MR2 + RMl

JJw + R2mJ + JR2M + Ml2Jw + R2Ml2m

JwR + MlR2 + Ml2R

JJw + R2mJ + JR2M + Ml2Jw + R2Ml2m
􏼢 􏼣. (13)

)us, the state space can be written as follows:

€x(t) � f(t) + Bu(t). (14)

Considering the existence of external disturbance d, the
system dynamics can be written as follows:

€x(t) � f(t) + d(t) + Bu(t). (15)

If we define

ξ(t) � f(t) + d(t), (16)

τ(t) � Bu(t), (17)

then (15) can be written as follows:

€x(t) � ξ(t) + τ(t). (18)

3. Time-Delayed Fractional Order Adaptive
Sliding Mode Control

3.1. Fractional Order Calculus. Fractional calculus is the
operation of derivatives and integrals extended to the
fractional order. It actually provides a more precise tool for
describing physical systems. )e Riemann-Liouville (RL)
fractional differintegral is one of its most common defini-
tions. For a function x that is defined in [t0, t], the RL
fractional integrator is defined as follows [22]:

t0
D

α
t
x(t) �

1
Γ(α)

􏽚
t

t0

(t − τ)
α− 1

x(τ)dτ, (19)

where α is the fractional order, τ is the integral variable, and
Γ(x) is the gamma function that is defined as follows:

Γ(x) � 􏽚
∞

0
e

− t
t
x− 1dt. (20)

)e RL fractional derivative is defined as follows:

t0
D

α
t
x(t) �

dm

dtn

1
Γ(m − α)

􏽚
t

t0

(t − τ)
m− α− 1

x(τ)dτ􏼢 􏼣,

(21)

where α ∈ [m − 1, m) and m is a positive integer near α.

3.2.0e Proposed Algorithm. Let xd be the desired state and
􏽥x be the state error:

􏽥x(t) � xd(t) − x(t). (22)

)en, the following sliding mode surface function can be
constructed:

s(t) � _􏽥x(t) + cD
α
􏽥x(t), (23)

where 0< α< 1, c> 0.
Taking the derivative of formula (23) yields

_s(t) � €􏽥x(t) + cD
α+1

􏽥x(t). (24)

Substituting (22) into (24), one can obtain

_s(t) � €xd(t) − €x(t) + cD
α+1

􏽥x(t). (25)

Substituting (21) into (25), one can obtain

_s(t) � €xd(t) − ξ(t) − τ(t) + cD
α+1

􏽥x(t). (26)

Denote h as the time delay. )e TDC approximates the
system uncertainty by using control input and state infor-
mation of the immediate past time instant. )en, (18) can be
written as follows:

ξ(t − h) � €x(t − h) − τ(t − h). (27)

)e adaptive control law is constructed as follows:

τ(t) � €xd(t) − ξ(t − h) + cD
α+1

􏽥x(t) + ρ(t)
s(t)

‖s(t)‖
. (28)

)e switching gain satisfies

ρ(t) � 􏽢K0(t) + 􏽢K1(t)‖x(t)‖, (29)

_􏽢K0(t) � ‖s(t)‖ − α0 􏽢K0(t), (30)

_􏽢K1(t) � ‖s(t)‖ · ‖x(t)‖ − α1 􏽢K1(t), (31)

where α0 > 0, α1 > 0, 􏽢K0(t)> 0, 􏽢K1(t)> 0.

3.3. Stability Analysis
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Theorem 1. Based on the Lyapunov’s stability theory, con-
sidering the kinematics equation (14) of a two-wheel self-
balancing vehicle system with input delay and the adaptive
sliding mode controller (28)–(31), the tracking error of the
system converges and the system becomes uniform ultimate
bounded.

Proof. Define

E � [􏽥x _􏽥x]. (32)

Construct a Lyapunov-Krasovsky functional as follows:

V(E, t) �
1
2
s

T
(t)s(t) +

1
2

􏽘

1

i�0

􏽢Ki(t) − K
∗
i􏽨 􏽩

2
, (33)

where K∗i (t)> 0.
Taking the derivative of formula (33), one can obtain

_V(E, t) � _s
T
(t)s(t) + 􏽘

1

i�0

􏽢Ki(t) − K
∗
i􏽨 􏽩

_􏽢Ki(t). (34)

Substituting (26) into (34), one can obtain

_V(E, t) � €xd(t) − ξ(t) − τ(t) + cD
α+1

􏽥x(t)􏽨 􏽩
T
s(t)

+ 􏽘
1

i�0

􏽢Ki(t) − K
∗
i􏽨 􏽩

_􏽢Ki(t).
(35)

Substituting (28) into (35), one can obtain

_V(E, t) � €xd(t) − ξ(t) − €xd(t) + ξ(t − h) − cD
α+1

􏽥x(t) − ρ(t)
s(t)

‖s(t)‖
+ cD

α+1
􏽥x(t)􏼢 􏼣

T

s(t) + 􏽘
1

i�0

􏽢Ki(t) − K
∗
i􏽨 􏽩

_􏽢Ki(t)

� − ξ(t) + ξ(t − h) − ρ(t)
s(t)

‖s(t)‖
􏼢 􏼣

T

s(t) + 􏽘
1

i�0

􏽢Ki(t) − K
∗
i􏽨 􏽩

_􏽢Ki(t)

� − ξ(t) − ξ(t − h)
T

􏽨 􏽩s(t) − ρ(t)‖s(t)‖

+ 􏽘
1

i�0

􏽢Ki(t) − K
∗
i􏽨 􏽩

_􏽢Ki(t).

(36)

)e approximation error is assumed to be bounded by

‖ξ(t) − ξ(t − h)‖≤ δ‖s(t)‖, (37)
where δ > 0.

Substituting (29) into (34), one can obtain

_V(E, t) � − [ξ(t) − ξ(t − h)]Ts(t) − 􏽢K0(t) + 􏽢K1(t)‖x(t)‖􏽨 􏽩‖s(t)‖ + 􏽐
1

i�0
􏽢Ki(t) − K∗i􏽨 􏽩

_􏽢Ki(t)

� − [ξ(t) − ξ(t − h)]Ts(t) − 􏽐
1

i�0
􏽢Ki(t)‖x(t)‖i‖s(t)‖ + 􏽐

1

i�0
􏽢Ki(t) − K∗i􏽨 􏽩

_􏽢Ki‖s(t)‖

≤ − [ξ(t) − ξ(t − h)]Ts(t) − 􏽐
1

i�0
􏽢Ki(t) − K∗i􏽨 􏽩‖x(t)‖i‖s(t)‖ + 􏽐

1

i�0
􏽢Ki(t) − K∗i􏽨 􏽩

_􏽢Ki(t)

� − [ξ(t) − ξ(t − h)]Ts(t)

− 􏽐
1

i�0
􏽢Ki(t) − K∗i􏽨 􏽩 ‖x(t)‖i‖s(t)‖ −

_􏽢Ki(t)􏼔 􏼕.

(38)
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Substituting (30) and (31) into (38), one can obtain

_V(E, t)≤ − [ξ(t) − ξ(t − h)]
T
s(t) − 􏽘

1

i�0

􏽢Ki(t) − K
∗
i􏽨 􏽩 · ‖x(t)‖

i
‖s(t)‖ − ‖s(t)‖ · ‖x(t)‖

i
+ αi

􏽢Ki(t)􏽨 􏽩

� − [ξ(t) − ξ(t − h)]
T
s(t) − 􏽘

1

i�0

􏽢Ki(t) − K
∗
i􏽨 􏽩αi

􏽢Ki(t)

� − [ξ(t) − ξ(t − h)]
T
s(t) − 􏽘

1

i�0
αi

􏽢Ki(t) − K
∗
i􏽨 􏽩

2
+ 􏽘

1

i�0
αi K
∗
i( 􏼁

2
.

(39)

Substituting (37) into (39), one can obtain

_V(E, t)≤ − δs
T
(t)s(t) − 􏽘

1

i�0
αi

􏽢Ki(t) − K
∗
i􏽨 􏽩

2
+ 􏽘

1

i�0
αi K
∗
i( 􏼁

2
.

(40)

Using the definition of V(E, t) in (33), condition (40)
can be simplified to the following:

_V(E, t)≤ − λV(E, t) + 􏽘

1

i�0
αi K
∗
i( 􏼁

2

� − σV(E, t) − (λ − σ)V(E, t) + 􏽘
1

i�0
αi K
∗
i( 􏼁

2
,

(41)

where λ � 2min δ, α0, α1􏼈 􏼉, 0< σ < λ.
It can be deduced that when V(E, t)≥ (􏽐

1
i�0αi

(K∗i )2/λ − σ), _V(E, t)≤ − σV(E, t).
V(E, t) will enter inside the ball in a finite time. From

(41), it can be deduced that selecting small α0, α1 can reduce
the size of the ball.

)erefore,

V(E, t)≤max V(0),
􏽐

1
i�0αi K∗i( 􏼁

2

λ − σ
􏼨 􏼩,∀t≥ 0. (42)

Based on the Lyapunov stability theory,V(E, t) will enter
inside the ball in finite time. )e system is uniform ultimate
bounded and independent of initial conditions.

A performance index is proposed to evaluate the pa-
rameters of the controller. It consists of the integration of the
input and the error between the expected state and the
output state. )e integral interval should be large enough.
)e performance index J is defined as follows:

J �
1
tf

􏽚
tf

0
xd(t) − x(t)( 􏼁

2
+ τ2(t)dt. (43)

Adjust the appropriate control parameters to reduce the
performance index as much as possible.

4. Simulation Studies

4.1. Example Introduction. In order to verify the control
effect of the adaptive sliding mode control algorithm for
two-wheel self-balancing vehicles with input delay, the main

parameters of the two-wheel self-balancing vehicle used for
testing are listed in Table 1.

4.2. SimulationResults. )e experiments were carried out on
Intel (R) Core (TM) i3-4150T CPU @ 3.00GHz 3.00GHz, a
64-bit operating system with 4.00GB memory and an x64-
based processor. )e initial inclination angle of the system
was 45。. )e initial angular velocity was 0 degrees/s. )e
initial displacement was 0.2m.)e initial velocity was 0m/s.
)e desired inclination angle was set to be 0 degrees. )e
desired angular velocity was 0 degrees/s. )e desired dis-
placement was 0m. )e desired velocity was 0m/s.

Figure 2 shows the response curve of inclination angle
and vehicle position. )e horizontal axis represents time in
seconds. )e longitudinal axis in the upper half of the figure
represents the inclination angle of the vehicle in degrees.)e
longitudinal axis in the lower half of the figure represents the
vehicle position in meters.

Figure 3 shows the inclination angle velocity and vehicle
body velocity. )e horizontal axis represents time in sec-
onds. )e longitudinal axis in the upper half of the figure
represents the inclination angle velocity in °/s. )e longi-
tudinal axis in the lower half of the figure represents the
vehicle body velocity in m/s.

Figure 4 shows the speed response curve of control input.
)e horizontal axis represents time in seconds, and the
longitudinal axis represents the control input in N·m.

Figures 2–4 show that the adaptive sliding mode control
can make the vehicle achieve autonomous balance.

4.3. Performance Comparison of Different Algorithms. In
order to verify the effectiveness of the proposed algorithm,
the control effects of the proposed algorithm are compared
with other algorithms. )e remaining parameters remain
unchanged.

Figure 5 shows the response curve of inclination angle
and vehicle position of different algorithms. )e horizontal
axis represents time in seconds. )e longitudinal axis in the
upper half of the figure represents the inclination angle of the
vehicle in degrees. )e longitudinal axis in the lower half of
the figure represents the vehicle position in meters.

Figure 6 shows the inclination angle velocity and vehicle
body velocity of different algorithms. )e horizontal axis
represents time in seconds. )e longitudinal axis in the
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upper half of the figure represents the inclination angle
velocity in °/s. )e longitudinal axis in the lower half of the
figure represents the vehicle body velocity in m/s.

Figure 7 shows the speed response curve of control input
of different algorithms. )e horizontal axis represents time

in seconds, and the longitudinal axis represents the control
input in N·m.

Figures 5–7 show that, compared with other algorithms,
the proposed algorithm can achieve less adjustment time
and require less control input.

Table 1: Main parameters of two-wheel self-balancing vehicle.

Parameter Value Unit
M 9 kg
m 5 kg
l 0.95 m
R 0.2 m
J 12 kg·m2

Jw 0.13 kg·m2

τ1 0.1 S
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Figure 2: Response curve of inclination angle and vehicle position.
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Figure 3: Inclination angle velocity and vehicle body velocity.
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Figure 4: Control input curve.
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Figure 6: Inclination angle velocity and vehicle body velocity of different algorithms.
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Figure 5: Inclination angle and vehicle position of different algorithms.
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Figure 7: Control input of different algorithms.
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Figure 8: Inclination angle and vehicle position curve under disturbance.
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4.4. Disturbance. In order to verify the effectiveness of the
proposed algorithm under disturbance, set d� 0.2× sin(3.5× t).
)e remaining parameters remain unchanged. Figure 8 shows
the response curve of inclination angle and vehicle position
under disturbance. )e horizontal axis represents time in sec-
onds. )e longitudinal axis in the upper half of the figure
represents the inclination angle of the vehicle in degrees. )e
longitudinal axis in the lower half of the figure represents the
vehicle position in meters.

Figure 9 shows the inclination angle velocity and vehicle
body velocity under disturbance. )e horizontal axis rep-
resents time in seconds. )e longitudinal axis in the upper
half of the figure represents the inclination angle velocity in
°/s. )e longitudinal axis in the lower half of the figure
represents the vehicle body velocity in m/s.

Figure 10 shows the speed response curve of control
input under disturbance.)e horizontal axis represents time
in seconds, and the longitudinal axis represents the control
input in N·m.

Figures 8–10 show when appropriate disturbance is
introduced, the vehicle can adjust itself and quickly restore
its stable state.

5. Experiment Results

In this experiment, gyroscope MPU-6050 and accelerometer
constituted a vehicle attitude detection device for a two-
wheel self-balancing vehicle. A motor driving circuit was
composed of a TB6612FNG chip. Fusion of the gyroscope
data and accelerometer data was completed using a Kalman
filter. )e system used STM32F103x8B as the control core
and completed processing of a sensor signal, realization
of a filtering algorithm, body control, human-computer

interaction, and so on. )e vehicle could achieve autono-
mous balance without any intervention. When introducing
appropriate disturbance, the vehicle could adjust itself and
quickly restore its stable state. )e vehicle could also
complete basic movements, such as forward, backward, left
turn, and right turn. Figure 11 is a photo of the two-wheel
self-balancing vehicle system.

)e control circuit included ARM, three attitude sen-
sors, filtering circuits, power circuit, power supply voltage
conversion, and voltage stabilization. Its acceleration was
measured by accelerometer, and the rotation angular ve-
locity was measured by gyroscope. )e motor used 7.4V
DC.

Figure 12 shows the acceleration curve measured with an
acceleration sensor. )e horizontal axis represents time in
seconds, and the longitudinal axis represents the accelera-
tion in m/s2.
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Figure 9: Velocity curve with disturbance.
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Figure 10: Control input curve with disturbance.

Figure 11: Two-wheel self-balancing vehicle system.
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Figure 12: Acceleration curve.

Figure 13: Angular velocity of rotation.

Figure 14: Acceleration, rotation angular velocity, and filtering curve.
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Figure 13 shows the angular velocity of rotation mea-
sured by a gyroscope. )e horizontal axis represents time in
seconds, and the longitudinal axis represents the angular
velocity in ° /s.

Figure 14 shows acceleration, rotation angular velocity,
and filtering curve. )e horizontal axis represents time in
seconds.)e red line represents the acceleration in m/s2.)e
green line represents the angular velocity in °/s. )e blue line
represents the Klaman filtered acceleration in m/s2.

Figures 12 to 14 show that the vehicle can adjust itself
and restore its stability rapidly with the introduction of
appropriate disturbance.

6. Conclusion

In this paper, a time-delayed fractional order adaptive
sliding mode control algorithm for a two-wheel self-bal-
ancing vehicle system with input delay is proposed, and the
stability of the closed-loop system is proved. )e experi-
mental results show that the adaptive sliding mode control
algorithm can make the car achieve autonomous balance.
When appropriate disturbance is introduced, the vehicle can
adjust itself and quickly restore its stable state.

)e next step in research should be to improve the
control algorithm to better control accuracy and robustness
of the two-wheel self-balancing vehicle.
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