Supplementary Online Content

Kohli-Lynch CN, Moran AE, Kazi DS, et al. Cost-effectiveness of a polypill for cardiovascular disease prevention in an underserved population. *JAMA Cardiol*. Published online January 8, 2025. doi:10.1001/jamacardio.2024.4812

eMethods.

- eTable 1. Baseline Characteristics of Polypill Trial and the Simulated Cohorts
- eTable 2. Physician Office Visit Frequency and Blood Pressure Measurement Error
- eTable 3. Probability of Incident CVD and Non-CVD Mortality
- eTable 4. Health-Related Costs and Utility Values in CVDPM
- eTable 5. Validation of 1-Year Blood Pressure and Lipid Outcomes vs Polypill Trial
- eTable 6. Modeled SBP and LDL-C Reductions, Risk Adjustments, and Adverse Events
- eTable 7. Medication Prices
- eTable 8. Consolidated Health Economics Evaluation Reporting Standards Checklist
- eTable 9. Disaggregated Economic and Clinical Outcomes, Polypill Population
- eTable 10. Cost-Effectiveness in Scenario Analyses
- eTable 11. Cost-Effectiveness: Trial-Eligible Non-Hispanic Black Population
- eTable 12. Extended Cost-Effectiveness Results
- eFigure 1. Inclusion and Exclusion Criteria for NHANES Population
- eFigure 2. Discontinuation Curve, Polypill vs Usual Care (Both BP and LDL-C Medications)

eFigure 3. Recalibration/Validation Figures, Women and Men: Death Rates, Total Event Rates, and Incident Event Rates

- eFigure 4. Calibrating Treatment Effect
- eFigure 5. Cost-Effectiveness Outcomes With Different Numbers of Simulated Individuals
- eFigure 6. Cost-Effectiveness Acceptability Curve (Polypill Trial Population)
- eFigure 7. Tornado Diagram
- eFigure 8. ICER: Polypill vs Usual Care at Range of Time Horizons

eFigure 9. Polypill Price vs ICER: Trial-Eligible Non-Hispanic Black Individuals

eReferences.

This supplementary material has been provided by the authors to give readers additional information about their work.

Supplemental Methods

Blood Pressure Control-Cardiovascular Disease Policy Model

A discrete event simulation version of the Cardiovascular Disease (CVD) Policy Model (CVDPM), which simulates the healthcare delivery and patient interactions with healthcare providers in the U.S., was used. The discrete event simulation version of the CVDPM has been used in previous costeffectiveness analyses of preventive interventions for CVD.^{1–3} The CVDPM simulates time continuously, progressing from one event to the next. The events included are: (i) physician office visits (including polypill trial protocol visits in first year and all other physician office visits where BP and cholesterol could be managed), (ii) antihypertensive and statin medication-related adverse events, (iii) antihypertensive and statin medication for any reason, (iv) fatal or non-fatal CVD events, and (v) non-CVD death. When an event occurs, the model stores healthcare costs and quality of life outcomes, updates patient characteristics, and determines the time to the next event. In the absence of any event within a given year, the model updates patient characteristics, CVD risk factors, and predicts time to a CVD event and non-CVD death given these changes.

Competing risks Cox proportional hazards functions derived from the National Heart, Lung, and Blood Institute Pooled Cohorts Study (NHLBI-PCS) are used to predict incident CVD events and non-CVD mortality.^{1,4,5} The model was calibrated to match CVD event and mortality rates of non-Hispanic Black adults in the U.S. from the NHLBI-PCS, Centers for Disease Control and Prevention, National Hospital Discharge Survey, National Inpatient Sample, and National Vital Statistics System (Figure S3), and is cross validated against the original, dynamic population version of the CVDPM.^{2,6,7}

Simulation Cohort and CVD Risk Factor Trajectories

The model is populated by a cohort of individuals from the 1999-2018 National Health and Nutrition Examination Survey (NHANES) that are probabilistically selected, with replacement, to be included in analyses. NHANES is a large-scale, cross-sectional nationwide survey of health and nutritional status in which individuals are selected for inclusion using a multistage probability sampling design. The probability sampling design allowed for oversampling of low-response demographics. The weighted NHANES-based estimates reflect the civilian, non-institutionalized U.S. population. We used survey, examination, and laboratory data for key CVD risk factors from NHANES respondents aged 40-75 years to match the SCCS Polypill Trial.

From NHANES, we included individuals with complete data for the following CVD risk factors: age, systolic blood pressure (SBP), diastolic blood pressure (DBP), current antihypertensive medication use (yes/no), low-density lipoprotein cholesterol (LDL-C), high-desnity lipoprotein cholesterol (HDL-C), total cholesterol, current lipid-lowering medication use (yes/no), tobacco smoking (cigarettes per day), BMI, serum glucose, diabetes status (yes/no) and serum creatinine.

Fitting risk factor exposure trajectories from age 20 years until age 89 years or death

We imputed lifetime trajectories (each year from age 18 to 99 years) for each of the CVD risk factors described above in individuals in the NHLBI Pooled Cohort Project. The details of this approach are described elsewhere.^{4,8} Briefly, we leveraged the risk factor patterns observed in the younger cohorts to impute unobserved early adult exposures in the older cohorts and vice versa. We used a series of linear

mixed models to estimate latent trajectories underlying the observed values for each participant, and imputed risk factor levels annually from age 18 years until age 99 or death for each participant.

Reweighting NHANES for Analyses

Probabilistic sample weights are available for all NHANES individuals that provided a fasting blood sample. These weights were assigned to enable probability-weighted analyses which are representative of the non-incarcerated U.S. adult population.

In our base case analysis, we aimed to simulate polypill treatment in a cohort comparable to the SCCS polypill trial population. To do this, we redefined probability weights for individuals in the NHANES cohort. This was a two-step process, completed using *R* software (Version 4.2.2; Vienna, Austria). We excluded individuals who did not meet the trial inclusion criteria: individuals aged 40-75 years, SBP \geq 120 mm Hg, LDL-C <190 mg/dL, eGFR \geq 60 mL/min/1.73 m², potassium <5.5 mmol/L, not pregnant, current use of \leq 2 BP-lowering medications, and no reported history of CVD, cancer, liver disease, or insulin-dependent diabetes.

Next, we reweighted remaining NHANES individuals to create a cohort with covariate mean and SD values similar to those reported for the polypill trial (Table S1). We used a propensity score-based approached, employing the *ps()* function from the *twang* package in R.⁹ We aimed to replicate mean and SD values from the polypill trial and assumed the shape of probability distributions for key covariates. The covariates employed in this process (with corresponding probability distributions in parentheses) were: age (gamma, truncated between 45 and 75), SBP (gamma, truncated below 120 mm Hg), LDL-C (gamma, truncated above 190 mg/dL), race, sex, diabetes smoker – current, antihypertensive medication use, statin use, and income <\$15,000/year (binomial), BMI, DBP, and HDL-C (gamma), and ASCVD risk (beta). The propensity score method weights were then recalibrated to produce a probability-weighted cohort of NHANES participants with baseline characteristics representative of those who participated in the polypill trial population.

In a secondary analysis, we assessed the cost-effectiveness of polypill treatment in a population of non-Hispanic Black US adults meeting the polypill trial eligibility criteria. For this analysis, we only included non-Hispanic Black NHANES participants and used the NHANES survey weights to calculate the sampling probabilities.

Risk of CVD Events and Non-CVD Death

Individuals in the model are at risk of multiple CVD events: coronary heart disease – including myocardial infarction (MI), other coronary heart disease (including non-MI acute coronary syndrome, unstable angina, and stable angina), and cardiac arrest; new-onset ischemic or non-ischemic heart failure (HF); and stroke. The risk of incident coronary heart disease (CHD), non-ischemic HF, or stroke event and for non-CVD death were derived from competing risks Cox proportional hazards functions in the NHLBI-PCS (Table S3).^{2,5–7} The Cox proportional hazards models account for age, sex, race, SBP, DBP, body mass index, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), smoking status, estimated glomerular filtration rate (eGFR), and diabetes status. Each patient's detreated SBP and LDL-C (i.e., values if they never received treatment at any time) and observed values for other CVD risk factors were used to estimate underlying risk of CVD.

Risk of recurrent and secondary CVD events, revascularization procedures, and case fatality rates were derived from the Centers for Disease Control and Prevention, National Hospital Discharge Survey,

National Inpatient Sample, and National Vital Statistics System, and the original dynamic population version of the CVDPM.

Reductions in SBP and LDL-C when medications are initiated or intensified are associated with reductions in the risk of CVD events. The risk reductions from published meta-analysis per 10-mmHg SBP reduction and 38.67 mg/dL (1.0 mmol/L) LDL-C reduction from the detreated SBP and LDL-C, respectively are applied to the underlying risk of CVD.^{10,11}

Risk of Medication-Related Adverse Events

The probability of any adverse events (AEs), intolerable AEs (i.e., requiring antihypertensive discontinuation), and serious AEs (i.e., requiring an emergency department visit or hospitalization) with antihypertensive medication, and the case fatality rate associated with antihypertensive serious AEs, are described elsewhere.² The risk of AEs is associated with the number of full- and half-standard dose antihypertensive medications in an individual's regimen were estimated from published meta-analyses, other published literature, and NHANES.^{12–15}

Risk of adverse events for statin therapy were defined in the same way as for BP-reducing medication (i.e., any, intolerable, and serious adverse events). The probability of these events were derived from a published meta-analysis (Table S6).¹⁶ Individuals receiving LDL-C medication also experienced a 0.5% absolute increase in diabetes risk.¹⁷ Patients with statin-related diabetes experienced increased costs and increased risk of CVD events, both largely offset by the preventive benefit of statins.¹⁷

Processes of Care

Differences in the polypill intervention and usual care arms are accounted for in the CVDPM by differences in prescribed medications and processes of care. In the usual care arm, individuals continue their baseline medication and may attend physician visits and, when eligible, receive additional medications, as described below. In the polypill intervention arm, all individuals commence a polypill at baseline and attend screening visits at the same regularity as those in usual care after treatment initiation. In both the polypill and usual care arms, individuals undergo 'study visits' at 6 weeks and 1-year, to replicate the screening protocol of the polypill trial.

Physician Visit Frequency

For both treatment arms, the time between usual care physician visits was derived from the mean number of hypertension-related office visits per year from the Medical Expenditure Panel Survey (MEPS) available from the AHRQ. As in prior analyses, the time between physician visits with an uncontrolled BP was modified to account for differences due to individual and visit characteristics (e.g., increased SBP and DBP since last visit, age, and treatment intensification all reduced the number of weeks until the next visit).^{3,18} We disaggregated physician visits into those at which BP was screened and those at which both BP and LDL-C were screened (Table S2).

Risk Factor Measurement Accuracy

The accuracy of BP measurements is captured in the CVDPM by randomly sampling measurement error (i.e., difference between the measured BP and the patient's underlying BP) at each office visit and is described elsewhere.^{3,18–20} Measurement error was derived from published literature and is inversely related to the number of office visits a patient has had. We assumed that LDL-C screening was not prone to systematic measurement error.

Probability of Treatment Intensification

As in prior analyses, the probability of antihypertensive treatment intensification after an uncontrolled BP measurement at a physician office visit was derived from published literature and stratified by prior treatment intensification during the simulation and how much the measured BP was above target (Table S2).^{3,18} Probability of commencing statin therapy when eligible equaled the proportion of patients in the simulation cohort who were eligible for statin therapy and receiving the treatment at baseline.

Adherence

The CVDPM simulates patient adherence through both the likelihood of discontinuing antihypertensive medications within one year of initiation and imperfect pill-taking adherence (i.e., not taking medications exactly as prescribed).^{3,18} In each run of the model. individuals were randomly assigned at baseline the percentage of doses they would take exactly as prescribed for one through five antihypertensive medications.¹⁸ Medication discontinuation rates were derived from published literature of statin usage,²¹ prior analyses of antihypertensive medication discontinuation,^{3,22} and data from the SCCS polypill trial (Figure S2).²³ Imperfect medication adherence attenuated SBP and LDL-C reductions from treatment. Adherence to the polypill was assumed to be 86%, as observed in the trial.²⁴ Antihypertensive pill-taking execution prescribed) to 75% (four or more medications).^{22,25} Pill-taking execution with statin therapy was assumed to be the same as with one antihypertensive medication, 90%.^{22,25} A recalibration factor was applied to adherence in the polypill trial arm to replicate observed 1-year BP and LDL-C reductions (Model Calibration). Pill-taking execution with statin therapy was assumed to be the same as with one antihypertensive medication factor was applied to adherence in the polypill trial arm to replicate observed 1-year BP and LDL-C reductions (Model Calibration). Pill-taking execution with statin therapy was assumed to be the same as with one antihypertensive medication factor was applied to adherence in the polypill trial arm to replicate observed 1-year BP and LDL-C reductions (Model Calibration). Pill-taking execution with statin therapy was assumed to be the same as with one antihypertensive medication, 90%.^{22,25}

Expected BP and LDL-C Reduction

As in prior analyses, usual care management of BP was assumed to be a traditional "start low and go slow" approach, with initial doses and titration of regimen dependent on BP and individual and visit characteristics.^{2,3,6,7,26} BP medication was started as a half-standard dose unless baseline SBP was \geq 20 mmHg above goal, then it was started at a standard dose. BP medications were intensified to a standard dose before initiation of additional BP medications.

As in prior analyses, the results of meta-analyses were to estimate the reduction in BP with each fulland half-standard dose medication added to a patient's regimen.^{3,13,18,20,27} As antihypertensive medication discontinuation was accounted for separately from BP reduction in the model, we increased the BP reduction from medications reported in the meta-analysis, to account for the fact that 25% of individuals were reported to discontinue treatment. This was achieved by dividing the expected change in BP by 0.75.²⁷ The expected BP reduction with incomplete pill-taking execution was derived from an analysis that estimated the percent of the total potential BP reduction achieved by incomplete execution values.^{18,28} The potential BP reduction was further divided by the expected percent of BP reduction achieved for each number of antihypertensive medications used to calculate the total potential BP reduction with treatment.¹⁸ If a patient discontinued their antihypertensive medication, it was assumed that they reverted back to their detreated BP. Percentage reduction in untreated LDL-C from intermediate-intensity statin therapy with full adherence was 37%, derived from a meta-analysis of randomized controlled trials of atorvastatin (Table S6).²⁹

Cost and Health-Related Quality of Life Inputs

Background Health Care Costs © 2025 Kohli-Lynch CN et al. JAMA Cardiology. All costs were inflated to 2023 US dollars when needed using the medical care component of the Consumer Price Index for medical care, available from the U.S. Bureau of Labor Statistics.³⁰ As in previous analyses, annual background healthcare costs of US adults (age ≥ 18 years), were estimated accounting for differences due to age, sex, race, selected comorbidities, history of CVD events, and long-term care.^{2,6,7} Background healthcare costs were defined as total healthcare costs to all payers excluding the cost of CVD events (i.e., emergency room visits and inpatient stays) and treating BP (i.e., antihypertensive medications and BP-related office visits), as they are simulated independently. Pooled 2006-2015 MEPS data available from the AHRQ, the 2010 U.S. Census, 2013-2014 long-term care service utilization from the National Center for Health Statistics, published annual long-term care costs from Genworth Financial Inc., and the 2018 U.S. Renal Data System Annual Report were used to estimate these costs.³¹⁻³³

Medication Costs

The mean cost per unit of oral (i.e., tablet or capsule) antihypertensive and statin medications was estimated using MEPS data available from the AHRQ, which are nationally representative of all U.S. payers (e.g., Medicare, Medicaid, private, Veterans Affairs, patients). MEPS costs include ingredient costs, dispensing fees, taxes, and out-of-pocket costs, but do not include manufacturer rebates. In a sensitivity analysis, we employed national average drug acquisition costs (NADAC) for the polypill ingredients, representing the cap on prices that Medicaid pays for multiple source drug products.^{34,35} NADAC represents the utilization-weighted average acquisition cost for medications reimbursed by Medicaid. Drug costs obtained from NADAC represent ingredient costs and do not include dispensing fees, out-of-pocket costs, or manufacturer rebates. Hence, we added a \$10.50 dispensing fee per 90-day refill in this analysis, which is the median Medicaid prescribing fee.³⁶

CVD Events and Serious Adverse Event Hospitalization Costs

The hospitalization facility costs associated with CVD events and antihypertensive medication-related serious AEs were estimated using National Inpatient Sample (NIS) data from the first quarter of 2012 through the third quarter of 2015 (Table S4).³⁷ The NIS is available from the AHRQ and provides nationally representative utilization and charge estimates for all payer types. Charges in NIS do not include rehabilitation or long-term acute care hospitals. Charges were converted to costs using the hospital cost-to-charge ratios provided by NIS for each hospital in the sample.

As in Arth et al.,³⁸ a published professional fee ratio was used, which was developed for use with data from publicly-available discharge datasets such as NIS, to incorporate professional fees and estimate total hospitalization costs.^{38,39} Hospitalization costs were converted to 30-day costs using ratios of costs for admissions estimated from the California Office of Statewide Health Planning and Development (OSHPD) to costs over 30-days following discharge measured in the MEPS in 1999-2008.

Health-Related Quality of Life

Health benefits in the CVDPM are accumulated as individuals pass through health states and experience health-related quality of life values assigned to health states (Table S4). Quality-adjusted life years (QALYs) are used to reflect health-related quality of life in the model. This measure reflects the quality and longevity of health, where 1.0 represents perfect health, and QALYs less than 1.0 represent health loss due to illness or imperfect health.

Health-related quality of life inputs were derived from a combination of data on CVD event rates in the U.S.^{40,41} and utility weights derived from international analysis.⁴² Each health state has an attributed

annual QALY penalty. Additionally, all acute events in the model (e.g., hospitalizations, fatalities) have an associated acute (30-day) QALY penalty. While receiving a treatment, individuals may experience treatment-related disutility.

Model Calibration and Validation

Model CVD Event and Non-CVD Death Recalibration

The CVDPM was recalibrated to reproduce contemporary CVD incidence and total event rates, and CVD and non-CVD mortality rates for, and using a population representative of, non-Hispanic Black adults in the U.S. (Figure S3). The event rate calibration was restricted non-Hispanic Black U.S. adults as more than 95% of SCCS polypill trial population was Black. As in prior analyses, the calibration targets were derived from the NHLBI-PCS, Centers for Disease Control and Prevention, National Hospital Discharge Survey, National Inpatient Sample, and National Vital Statistics System, and cross-validated against the original, dynamic population version of the CVDPM.^{2,6,7}

SCCS Polypill Trial Patient Characteristics and Processes of Care Validation

To ensure that the CVDPM accurately reproduced the polypill population, baseline characteristics of the simulated population were compared to published polypill trial data (Figure S4, Table S1). We also recalibrated medication adherence and probability of treatment intensification to (i) replicate one-year BP and LDL-C reductions observed in the polypill and usual care arms of the polypill trial and (ii) replicate the attenuation of risk factor control observed in a meta-analysis of fixed-dose BP medication trials (i.e., 35% lower BP reduction at five versus one year; Table S6, Figure S4).⁴³

Supplemental Tables

Characteristics	Polypill Trial Population	NHANES: Polypill Population (SD ^b)	NHANES: Polypill-Eligible N-HB Population ^a (SD ^b)
Ν	303	3,720	782
N represented in population	n/a	33,131,379	3,602,427
Age at Observation (Years)	$56.0\pm\!\!6.0$	56.9 (5.9)	55.4 (7.6)
Male (%)	39.9	38.2	44.3
African American (%)	96.0	97.3	100.0
Systolic Blood Pressure (mmHg)	$140 \pm \! 17.5$	140.2 (15.0)	139.5 (16.4)
Diastolic Blood Pressure (mmHg)	$83.0 \pm .8.0$	82.1 (8.7)	77.3 (11.6)
LDL-C (mg/dL)	113 ±34.6	113.5 (29.5)	119.3 (32.0)
HDL-C (mg/dL)	62.5 ±22.0	62.4 (21.1)	59.4 (17.3)
Body Mass Index (kg/m ²)	$30.8\pm\!\!8.4$	30.7 (7.7)	30.7 (7.4)
Hypertension Medication (%)	53.5	49.3	37.0
Statin at Baseline (%)	17.5	17.9	13.6
Diabetes Mellitus (%)	12.5	15.0	17.7
Current Smoker (%)	48.1	43.0	26.6
Annual Income <\$15,000 (%)	74.6	67.3	26.3
Annual Income \$15,000-\$25,000 (%)	10.9	14.1	10.2
10-Year ASCVD Risk Score	12.7 ±9.5	12.5 (9.5)	11.0 (9.0)

eTable 1. Baseline characteristics of polypill trial and the simulated cohorts

BMI – Body Mass Index, HDL-C – High-Density Lipoprotein Cholesterol, LDL-C – Low-Density Lipoprotein Cholesterol, NHANES - National Health and Nutrition Examination Survey, N-HB - Non-Hispanic Black, SD – Standard Deviation, UI – uncertainty interval

^aWider population only includes individuals who meet polypill trial inclusion and exclusion criteria, but was not propensity score matched to polypill trial

^bMean PSA iteration-level standard deviation

eTable 2. Physician office visit frequency and blood pressure measurement error

Model Input	Mean	SD	Min	Max	Distribution	Source		
Office visit frequency								
Off-treatment								
Weeks between BP+Lipid	111	36.5	74.5	147.5	Gamma	MEPS ³¹		
screening								
Weeks between BP	66.8	20.0	46.8	86.8	Gamma	MEPS ³¹		
screening alone								
On treatment								
Weeks between visits	66.8	20.0	46.8	86.8	Gamma	MEPS ³¹		
when BP controlled								
Change in weeks between v	visits when	measured H	3P uncontro	olled				
Age (per year)	-0.147	0.012	-0.117	-0.164	Normal			
Change in SBP since last	0.052	0 000	0.074	0.030	Normal			
visit (per mmHg increase)	-0.032	0.009	-0.074	-0.039	normai			
Change in DBP since last	-0.056	0.008	-0.065	-0.035	Normal	Bellows et al 3		
visit (per mmHg increase)	-0.050	0.000	-0.005	-0.055	Norman	Denows et al.		
Antihypertensive								
medication added at the	-2.080	0.199	-2.470	-1.690	Normal			
visit								
Intensification probabilities								
Adding/titrating first antihy	pertensive	medication			1			
SBP $\geq 160 \text{ mmHg or}$								
BP >14/90 mmHg								
with diabetes of	0.333	0.032	0.313	0.440	Beta			
chronic kidney								
disease								
SBP uncontrolled but								
<160 mmHg or BP								
uncontrolled but	0.208	0.026	0.207	0.310	Beta	Bellows et al. ³		
<140/90 mmHg with	0.200	0.020	0.207	0.010	Detta			
diabetes or chronic								
kidney disease								
Adding/titrating								
additional	0.130	0.033	0.065	0.195	Beta			
antihypertensive								
medications								
BP measurement accuracy	1 1 //		<u> </u>					
Difference between measure	ed and "true	e" BP by to	otal number	of visits a	nd measuremen	ts per visit ^a		
SBP	[
1 visit with 1	0.000	8.100	-	-	Normal	Kronish et		
measurement						al. ¹⁹		
1 visit with ≥ 3	0.000	6.200	-	-	Normal	Bryant et al. ²		
measurements						,		

Model Input	Mean	SD	Min	Max	Distribution	Source																																																													
2 visits with 1	0.000	5 940	-	_	Normal																																																														
measurement	0.000	5.540			Ttoffild																																																														
2 visits with ≥ 3	0.000	4 390	_	_	Normal																																																														
measurements	0.000	4.570			Toma																																																														
\geq 3 visits with 1	0.000	5 000			Normal																																																														
measurement	0.000	5.000	-	-	Normai																																																														
\geq 3 visits with \geq 3	0.000	3 650			Normal																																																														
measurements	0.000	5.050	-	-	Inormat																																																														
DBP																																																																			
1 visit with 1	0.000	5 450			Normal																																																														
measurement	0.000	5.450	-	-	Inormat																																																														
1 visit with ≥ 3	0.000	4 270			Normal																																																														
measurements	0.000	4.370	4.370	ч.970	ч.370	H. 370	4.570	4.370	4.370	4.570	4.570	4.570	4 .370	4.570	т.570	т.370	4.370	4 .370	т.570	4.370	4.370	4.370	4.370	4.370	т.570	4.370	4 .370	4.370	т.570	т.570	т.370	4.370	4.370	4.370	4.370	4.370	4.3/0	4.370	4.370	4.3/0	4.370	4.370	4.370	4.3/0	4.370	4.370	т.370	т.570	4.370	4.370	4.370	4.370	4.370	4.370	4.370	4.370	4.370	т.370	т.570	4.370	4.3/0	4.3/0	4.3/0	-	-	Inormat	
2 visits with 1	0.000	2 000			Normal	Vranish at																																																													
measurement	0.000	3.900	-	-	Inormat	al 19																																																													
2 visits with ≥ 3	0.000	2 1 2 0			Normal	al.																																																													
measurements	0.000	5.120	-	-	Inormat	Di yanî ci al.																																																													
\geq 3 visits with 1	0.000	2 1 8 0			Normal																																																														
measurement	0.000	5.160	-	-	Inoffilat																																																														
\geq 3 visits with \geq 3	0.000	2 550			Normal																																																														
measurements	0.000	2.330	-	-	Inormal																																																														

BP – Blood Pressure, DBP – Diastolic Blood Pressure, SD – Standard Deviation

^aIncreasing the number of visits and measurements per visit increases the diagnostic accuracy of measured BP. At each visit, the difference between the patient's underlying "true" BP and the BP measured at the visit is estimated by sampling from normal distributions with a mean of 0 (i.e., no difference between "true" and measured BP) and a standard deviation that decreases with more visits and more measurements per visit.

|--|

Model Input	Mean	Standard Deviation	Distribution	Source					
Risk of primary CHD event (logistic risk function)									
Age	0.10178	0.0084							
Non-Hispanic Black	-0.1979	0.0386							
Former smoker	0.1841	0.0324							
Current smoker	0.4602	0.0639							
Cigarettes per day	0.0064	0.0026							
SBP	0.0130	0.0007		CU NUU DI DOG					
DM	0.5963	0.0374	Maltinanista	CU-NHLBI PCS:					
HDL-C	-0.0158	0.0013	Multivariate	$\frac{1}{2}$					
LDL-C	0.0058	0.0004	Normai	Σ and Σ a					
eGFR	-0.0058	0.0009		Bryant et al.					
Current smoker * age	-0.0139	0.0026							
SBP * age	-0.0003	0.00004							
DM * age	-0.0096	0.0026							
HDL-C * age	0.0003	0.00008							
LDL-C * age	-0.0002	0.00003							
Risk of non-ischemic HF (logistic risk function)									
Age	0.1306	0.01066							
Non-Hispanic Black	0.5217	0.0500							
BMI	0.0535 0.0034								
Former smoker	0.2938	0.0433	Multivariate Normal						
Current smoker	0.7945	0.0806							
Cigarettes per day	0.0152	0.0034		CU-NHLBI PCS:					
SBP	0.0126	0.0011		Oelsner et al. ⁵ Zhang et al. ⁴					
DM	0.6309	0.0479							
LDL-C	-0.0031	0.0006							
eGFR	-0.0114	0.0012							
Non-Hispanic Black * age	-0.0274	0.0040							
SBP * age	-0.0002	0.0001							
DM * age	-0.0139	0.0037							
Risk of primary stroke (logisti	c risk function)								
Age	0.1420	0.0107							
Non-Hispanic Black	0.4790	0.0611							
Current smoker	0.6011	0.0607							
SBP	0.0204	0.0011							
DM 0.649		0.0573	Multivoriata	CU-NHLBI PCS:					
HDL-C	-0.0050 0.0016		Normal	Oelsner et al. ⁵					
LDL-C	0.0018	0.0007	Inoffiliat	Zhang et al. ⁴					
eGFR	-0.0044	0.0015]						
Non-Hispanic Black * age	-0.0226	0.0044]						
Current Smoker * age	-0.0126	0.0042							
SBP * age	-0.0005	0.0001							

Model Input	Mean	Standard Deviation	Distribution	Source
Risk of non-CVD death (logist	tic risk function	ı)		
Age	0.0985	0.0035		
Non-Hispanic Black	0.3496	0.0378		
BMI	-0.0984	0.0121		
BMI2	0.0012	0.0002		
Former smoker	0.2322	0.0310	N / 14:	CU-NHLBI PCS:
Current smoker	0.6883	0.0570	Multivariate	Oelsner et al. ⁵
Cigarettes per day	0.0189	0.0023	Inormai	Zhang et al. ⁴
DM	0.3662	0.0397		
eGFR	-0.0047	0.0001		
Non-Hispanic Black * age	-0.0121	0.0025		
BMI2 * age	0.00001	0.00001		
Heart Failure				
Probability, Concurrent HF wi	th MI, by age			
<55	0.1209	n/a	n/a	
55-64	0.1999	n/a	n/a	
65-74	0.2904	n/a	n/a	McManus et al. ⁴⁵
75-84	0.3874	n/a	n/a	Spencer et al.
>85	0.4768	n/a	n/a	
Probability, HF within 1	0.1613	0.0003	Beta	Hernandez et al. ⁴⁶
Annual probability HF from	0.0861	n/a	n/a	
1-5 years after MI	0.0001	11/ a	11/ a	Gerber et al. ⁴⁸
Probability, Develop ischaemi	c HF within fiv	e vears		
Male		-)		
45-64	0.130	n/a	n/a	Beniamin et al.49
65-74	0.200		n/a	Hernandez et al. ⁴⁶
				McManus et al.44
75+	0.230	n/a	n/a	Spencer et al.45
				Steg et al.47
Female				
45-64	0.250	n/a	n/a	Benjamin et al.49
65-74	0.320	n/a	n/a	Hernandez et al. ⁴⁶
75+				McManus et al.44
	0.190	n/a	n/a	Spencer et al. ⁴⁵
				Steg et al.47
Concurrent MI and HF 30-day	case fatality ra	te, by age		
<55	0.1455	n/a	n/a	
55-64	0.1707	n/a	n/a	
65-74	0.2202	n/a	n/a	Spencer et al.45
75-84	0.2663	n/a	n/a	
>85	0.2959	n/a	n/a	
Mortality Rates				

Model Input	Mean	Standard Deviation	Distribution	Source					
CHD – Angina (30-day mortality), by age									
35-44	0.0103	n/a	n/a						
45-54	0.0150	n/a	n/a	Demonstration 1^2					
55-64	0.0196	n/a	n/a	Bryant et al. \mathbf{Pry}					
65-74	0.0242	n/a	n/a	Bryan et al 6					
75-84	0.0332	n/a	n/a	Di yali Ci al.					
>85	0.0559	n/a	n/a						
CHD – MI, Primary (30-day n	nortality), by ag	ge							
Male									
35-44	0.0302	n/a	n/a						
45-54	0.0307	n/a	n/a	Demonstration 1^2					
55-64	0.0541	n/a	n/a	Bryant et al. Dryant et al 7					
65-74	0.0860	n/a	n/a	Bryan et al 6					
75-84	0.1500	n/a	n/a	Di yali Ci al.					
>85	0.2000	n/a	n/a						
Female									
35-44	0.0302	n/a	n/a						
45-54	0.0455	n/a	n/a	Derive that $a1^2$					
55-64	0.0800	n/a	n/a	Bryant et al. ⁻					
65-74	0.1093	n/a	n/a	Divant et al. Pryon et al 6					
75-84	0.1186	n/a	n/a	Diyali et al.					
>85	0.1786	n/a	n/a						
CHD – MI, Recurrent (30-day	mortality), by a	age							
Male									
35-44	0.0484	n/a	n/a						
45-54	0.0491	n/a	n/a	Demonstration 1^2					
55-64	0.0866	n/a	n/a	Bryant et al. ⁻					
65-74	0.1376	n/a	n/a	Bryant et al. ⁶					
75-84	0.1816	n/a	n/a	Di yali Ci al.					
>85	0.2858	n/a	n/a						
Female									
35-44	0.0483	n/a	n/a						
45-54	0.0728	n/a	n/a	Demonstration 1^2					
55-64	0.1279	n/a	n/a	Bryant et al. \mathbf{Pry}					
65-74	0.1748	n/a	n/a	Bryan et al 6					
75-84	0.1819	n/a	n/a	Di yali Ci al.					
>85	0.2411	n/a	n/a						
CHD – cardiac arrest (survive	to hospital), by	age							
35-44	0.1537	n/a	n/a						
45-54	0.0684	n/a	n/a	Bryant et al. ²					
55-64	0.0508	n/a	n/a	Bryant et al. ⁷					
65-74	0.0753	n/a	n/a	Bryan et al. ⁶					
75-84	0.0672	n/a	n/a						

Model Input	Mean	Standard Deviation	Distribution	Source					
>85	0.0424	n/a	n/a						
CHD – cardiac arrest (30-day survival post hospital), by age									
35-44	0.0113	n/a	n/a						
45-54	0.0389	n/a	n/a	D					
55-64	0.1154	n/a	n/a	Bryant et al. ²					
65-74	0.0838	n/a	n/a	Bryant et al. ⁶					
75-84	0.0342	n/a	n/a	Diyali et al.					
>85	0.0342	n/a	n/a						
HF (30-day mortality), by age									
35-44	0.0353	n/a	n/a						
45-54	0.0353	n/a	n/a						
55-64	0.0421	n/a	n/a	AHRQ HCUP ⁵⁰					
65-74	0.0598	n/a	n/a	Krumholz et al. ⁵¹					
75-84	0.0776	n/a	n/a						
>85	0.1440	n/a	n/a						
Stroke (initial hospitalization r	nortality), by ag	ge							
Male									
35-44	0.0542	n/a	n/a						
45-54	0.0516	n/a	n/a	Derive that $a1^2$					
55-64	0.0462	n/a	n/a	Bryant et al. ⁻					
65-74	0.0458	n/a	n/a	Bryant et al. \mathbf{P} much of al. ⁶					
75-84	0.0625	n/a	n/a	Diyali et al.					
>85	0.0922	n/a	n/a						
Female									
35-44	0.0444	n/a	n/a						
45-54	0.0508	n/a	n/a	Demonstration 1^2					
55-64	0.0457	n/a	n/a	Bryant et al. Dryant et al 7					
65-74	0.0471	n/a	n/a	Divance et al. Bryan et al 6					
75-84	0.0696	n/a	n/a	Diyali et al.					
>85	0.0947	n/a	n/a						
Stroke (1-year mortality), by a	ge								
Male									
35-44	0.0795	n/a	n/a						
45-54	0.0800	n/a	n/a	Demonstration 1^2					
55-64	0.0850	n/a	n/a	Bryant et al. ⁻					
65-74	0.0900	n/a	n/a	Bryan et al 6					
75-84	0.1375	n/a	n/a	Diyali Ci al.					
>85	0.2650	n/a	n/a						
Female									
35-44	0.0574	n/a	n/a	Derrort at a1 2					
45-54	0.0630	n/a	n/a	Bryant et al. ²					
55-64	0.0630	n/a	n/a	$\frac{DIyallt et al.}{Rman et al.}$					
65-74	0.0700	n/a	n/a	Diyan et al.					

Model Input	Mean	Standard Deviation	Distribution	Source					
75-84	0.1100	n/a	n/a						
>85	0.2700	n/a	n/a						
CABG operative mortality									
Male									
35-44	0.0082	n/a	n/a						
45-54	0.0054	n/a	n/a	Derive in the 1^2					
55-64	0.0054	n/a	n/a	Bryant et al. ⁻					
65-74	0.0144	n/a	n/a	Dryallt et al. \mathbf{P} much et al. ⁶					
75-84	0.0270	n/a	n/a	Diyali et al.					
>85	0.1196	n/a	n/a						
Female									
35-44	0.0413	n/a	n/a						
45-54	0.0413	n/a	n/a	Derive in the 1^2					
55-64	0.0172	n/a	n/a	Bryant et al. ⁻					
65-74	0.0107	n/a	n/a	Bryant et al.					
75-84	0.0561	n/a	n/a	Diyali et al.					
>85	0.1675	n/a	n/a						
PTCA case fatality rate									
Male									
35-44	0.0000	n/a	n/a						
45-54	0.0006	n/a	n/a	Derive in the 1^2					
55-64	0.0004	n/a	n/a	Bryant et al. ⁻					
65-74	0.0029	n/a	n/a	Dryallt et al. \mathbf{P} much et al. ⁶					
75-84	0.0056	n/a	n/a	Diyali et al.					
>85	0.0044	n/a	n/a						
Female									
35-44	0.0000	n/a	n/a						
45-54	0.0037	n/a	n/a	Derive in the 1^2					
55-64	0.0026	n/a	n/a	Dryallt et al. Dryallt et al. 7					
65-74	0.0054	n/a	n/a	Bryan et al.					
75-84	0.0196	n/a	n/a	Diyan et al.					
>85	0.0268	n/a	n/a						

BMI – Body Mass Index, CA – Cardiac Arrest, CABG – Coronary Artery Bypass Graft, CU-NHLBI PCS – Columbia University-NHLBI Pooled Cohorts Study, CVD – Cardiovascular Disease, DM – Diabetes Mellitus, eGFR – Estimated Glomerular Filtration Rate, HDL-C – High-Density Lipoprotein Cholesterol, HF – Heart Failure, LDL-C – Low-Density Lipoprotein Cholesterol, MI – Myocardial Infarction, PTCA – Percutaneous Transluminal Coronary Angioplasty, SBP – Systolic Blood Pressure, SD – Standard Deviation

Model Input	Mean	SD	Min	Max	Distribution	Source	
Costs							
Office visits							
Routine visit	75.32	6.92	68.81	96.49	Gamma		
Intolerable AE	110.28	10.31	101.17	142.41	Gamma	CMS Physician	
Serious AE	147.76	14.06	135.73	191.96	Gamma	Fee Schedule ³²	
Chronic (non hospital	ization) he	alth state co	osts			L	
CHD <70	12.072						
Year after event	13,273	-	-	-	-		
CHD ≥70	20.294						
Year after event	20,284	-	-	-	-		
Stroke <70	10 557					Regression	
Year after event	18,557	-	-	-	-	analysis in MEPS ³¹	
Stroke ≥70	10 557						
Year After events	18,337	-	-	-	-		
Background health	Vary acco	ording to ag	ge, sex, race	e, selected	comorbidities,		
state costs	history of	CVD ever	nts, and lon	g-term care			
Non-MI ACS hospital	ization, no	n-fatal					
18-34	14,087	665	13,098	15,038	Gamma		
35-44	18,121	622	17,625	18,602	Gamma		
45-54	20,075	653	19,777	20,402	Gamma	NIS ³⁷	
55-64	22,796	733	22,513	23,078	Gamma	Arth et al. ³⁸	
65-74	24,492	786	24,218	24,771	Gamma	Peterson et al. ³⁹	
74-84	23,706	768	23,355	24,040	Gamma		
84+	17,543	604	17,090	18,030	Gamma		
Non-MI ACS hospital	ization, fat	al					
18-64	67,116	9,236	49,853	85,141	Gamma	NHC ³⁷	
65-74	65,724	4,072	58,963	72,451	Gamma	NIS ³⁷	
74-84	55,990	3,411	50,495	62,037	Gamma	Arth et al. ³⁰	
84+	32,420	4,107	24,942	40,602	Gamma	Peterson et al.	
Cardiac arrest hospital	lization, no	on-fatal					
18-54	30,878	3,621	24,209	37,621	Gamma		
55-64	31,695	2,661	26,941	36,802	Gamma	NIS ³⁷	
65-74	33,876	2,923	28,518	39,057	Gamma	Arth et al. ³⁸	
74-84	25,360	1,772	22,379	28,707	Gamma	Peterson et al. ³⁹	
84+	11,884	907	10,300	13,565	Gamma		
Cardiac arrest hospitalization, fatal							
18-34	16,886	1,255	14,840	19,248	Gamma		
35-44	16,755	1,103	14,839	18,637	Gamma		
45-54	15,835	827	14,602	17,210	Gamma	NIS ³⁷	
55-64	13,929	623	13,085	14,798	Gamma	Arth et al. ³⁸	
65-74	12,422	574	11,592	13,265	Gamma	Peterson et al. ³⁹	
74-84	10,678	499	10,028	11,465	Gamma	1	
84+	8,709	495	7,930	9,509	Gamma	<u> </u>	

eTable 4. Health-related costs and utility values in CVDPM

Model Input	Mean	SD	Min	Max	Distribution	Source
HF hospitalization, no	n-fatal					
18-34	20,314	1,164	18,386	22,355	Gamma	
35-44	15,563	637	14,740	16,372	Gamma	
45-54	14,753	544	14,229	15,328	Gamma	NIS ³⁷
55-64	15,134	522	14,732	15,563	Gamma	Arth et al. ³⁸
65-74	13,973	465	13,679	14,272	Gamma	Peterson et al. ³⁹
74-84	11,861	383	11,703	12,032	Gamma	
84+	9,936	319	9,816	10,058	Gamma	
HF hospitalization, fat	tal					
18-44	101,719	16,926	73,487	138,401	Gamma	
45-54	63,123	6,859	51,169	76,047	Gamma	NHC37
55-64	55,783	3,919	49,352	63,248	Gamma	NIS ³⁷
65-74	36,391	2,055	33,096	39,893	Gamma	Arth et al. ³⁹
74-84	23,928	1,143	22,307	25,604	Gamma	Peterson et al.
84+	15,456	669	14,481	16,350	Gamma	
MI hospitalization, no	n-fatal					
18-34	18,341	766	17,360	19,363	Gamma	
35-44	20,885	691	20,480	21,303	Gamma	
45-54	22,107	710	21,844	22,363	Gamma	NIS ³⁷
55-64	23,724	761	23,450	23,997	Gamma	Arth et al. ³⁸
65-74	23,951	769	23,684	24,231	Gamma	Peterson et al. ³⁹
74-84	22,058	711	21,768	22,357	Gamma	
84+	15,782	516	15,507	16,050	Gamma	
MI hospitalization, fat	tal					
18-44	47,092	6,373	35,523	59,965	Gamma	
45-54	40,837	2,203	37,393	44,648	Gamma	NIC37
55-64	38,593	1,695	36,243	40,860	Gamma	$1N1S^{2}$
65-74	35,285	1,462	33,486	37,143	Gamma	Poterson et al. ³⁹
74-84	28,902	1,183	27,370	30,295	Gamma	releison et al.
84+	16,131	775	14,975	17,304	Gamma	
Stroke hospitalization	, non-fatal					
18-34	27,462	1,144	26,013	28,939	Gamma	
35-44	23,109	870	22,204	24,055	Gamma	
45-54	18,961	643	18,494	19,432	Gamma	NIS ³⁷
55-64	16,611	549	16,273	16,932	Gamma	Arth et al. ³⁸
65-74	14,286	466	14,062	14,528	Gamma	Peterson et al. ³⁹
74-84	13,151	424	12,971	13,320	Gamma	
84+	11,900	386	11,731	12,078	Gamma	
Stroke hospitalization	, fatal					
18-34	36,824	5,401	26,714	47,086	Gamma	
35-44	32,382	2,202	28,550	36,258	Gamma	NIS ³⁷
45-54	29,399	1,376	27,310	31,556	Gamma	Arth et al. ³⁸
55-64	26,944	1,130	25,488	28,420	Gamma	Peterson et al. ³⁹
65-74	22,964	934	21,910	24,138	Gamma	

Model Input	Mean	SD	Min	Max	Distribution	Source		
74-84	18,903	763	18,015	19,933	Gamma			
84+	13,576	557	12,904	14,283	Gamma			
Long-term care costs								
Men <65	87	1	85	90	Gamma			
Men 65-74	839	11	818	861	Gamma			
Men 75-84	2,851	38	2,776	2,927	Gamma	TT 1 (133		
Men ≥85	13,480	183	13,115	13,845	Gamma	Howden et al. ⁵⁵		
Women <65	171	2	167	176	Gamma	Harris-Kotjetin et		
Women 65-74	1,482	20	1,443	1,521	Gamma	al		
Women 75-84	4,255	57	4,141	4,370	Gamma			
Women ≥85	13,620	187	13,247	13,993	Gamma			
ESRD annual cost	91,645	3,933	79,392	94,811	Gamma	U.S. Renal Data System ⁵³		
Utilities								
Adverse events								
Intolerable ^a	0.2000	0.03	0.17	0.23	Beta	Bryant et al. ²		
Serious ^b	0.1000	0.03	0.08	0.13	Beta	Bress et al. ⁵⁴		
Acute CVD event ^b								
Angina	0.0936	0.0150	0.0636	0.1236	Beta	Moran et al. ⁴⁰		
						Moran et al. ⁴¹		
						Murray et al.42		
Cardiac arrest	0.0948	0.0150	0.0648	0.2340	Beta	Moran et al. ⁴⁰		
						Moran et al. ⁴¹		
						Murray et al. ⁴²		
HF	0.1000	0.0150	0.0700	0.1300	Beta	King et al. ⁵⁵		
						Bress et al. ⁵⁴		
MI	0.0948	0.0150	0.0648	0.2340	Beta	Moran et al. ⁴⁰		
						Moran et al. ⁴¹		
						Murray et al. ⁴²		
Stroke	0.1356	0.1056	0.1056	0.1356	Beta	Moran et al. ⁴⁰		
						Moran et al. ⁴¹		
						Murray et al. ⁴²		
Chronic utilities	0.0440			[
Intercept	0.9442	-	-	-	-			
Age	-0.000/	-	-	-	-			
Male sex	0.0007	-	-	-	-			
Obese	-0.0500	-	-	-	-			
# of comorbidities	-0.0546	-	-	-	-	G 11' 1 56		
# of comorbidities	0.0031	-	-	-	-	Sullivan et al. ³⁰		
squared	0.0410							
Angina	-0.0412	-	-	-	-			
Uardiac arrest	-0.0190	-	-	-	-			
	-0.0635	-	-	-	-			
MI Q: 1	-0.0409	-	-	-	-			
Stroke	-0.0524	-	-	-	-			

Model Input	Mean	SD	Min	Max	Distribution	Source
Diabetes	-0.0351	-	-	-	-	
ESRD	-0.0603	1	1	-	-	
Hyperlipidemia	-0.0049	-	-	-	-	
Hypertension	-0.0250	-	-	-	-	
Pill-taking disutility	0.0020	0.0008	0.0000	0.0083	Beta	Kohli-Lynch et al. ¹
						Hutchins et al.57
						Hutchins et al.58

ACS – Acute Coronary Syndrome, BP – Blood Pressure, CHD – Coronary Heart Disease, CMS – Centers for Medicare and Medicaid Services, CVD – Cardiovascular Disease, DBP – Diastolic Blood Pressure, ESRD – End-Stage Renal Disease, FPL – Federal Poverty Level, HF – Heart Failure, LDL-C – Low-Density Lipoprotein Cholesterol, MEPS – Medical Expenditure Panel Survey, MI – Myocardial Infarction, SBP – Systolic Blood Pressure, SD – Standard Deviation

^aApplied for two days

^bApplied for up to four weeks

eTable 5. Validation of one-year blood pressure and lipid outcomes vs polypill trial

Outcome	Polypill Trial	Simulated Outcomes (95% UI)
Systolic Blood Pressure (mr	m Hg)	
Baseline	140	140.2 (140.1-140.3)
Usual Care, after 1 year	138	139.6 (139.5-139.7)
Polypill, after 1 year	131	131.9 (131.5-132.0)
Difference, after 1 year	7.0	7.6 (7.5-7.9)
LDL Cholesterol (mg/dL)		
Baseline	113	113.5 (113.3-113.7)
Usual Care, after 1 year	109	109.7 (109.5-109.8)
Polypill, after 1 year	98	98.4 (98.3-98.6)
Difference, after 1 year	11	11.2 (11.1-11.3)

LDL – Low-Density Lipoprotein, UI – Uncertainty Interval.

Notes: The table shows one-year outcomes of the SCCS polypill trial compared with the simulated outcomes. The simulated outcomes values are the mean and 95% UI (2.5th to 97.5th percentiles of means) from 100 probabilistic runs the model.

Model Input	Mean	Standard Deviation	Min	Max	Distribution	Source				
Blood pressure medications parameters										
Blood pressure change with medication: per full sta	Blood pressure change with medication: per full standard dose added									
Mean DBP reduction at 90 mmHg	4.700	0.421	2.350	7.050	Gamma					
Coefficient of reduction per mmHg decrease in pretreatment DBP	0.110	0.028	0.055	0.165	Gamma	Law, Morris, and Wald. ²⁷				
Mean SBP reduction at 150 mmHg	8.700	0.357	4.350	13.050	Gamma	Law et al. ¹³				
Coefficient of reduction per mmHg decrease in pretreatment SBP	0.100	0.025	0.050	0.150	Gamma					
Blood pressure change with medication: per half st	andard do	ose added								
Mean DBP reduction at 90 mmHg	3.700	0.306	3.100	4.300	Gamma					
Coefficient of reduction per mmHg decrease in pretreatment DBP	0.088	0.022	0.045	0.132	Gamma	Law, Morris, and Wald. ²⁷				
Mean SBP reduction at 150 mmHg	6.700	0.281	6.100	7.200	Gamma	Law et al. ¹³				
Coefficient of reduction per mmHg decrease in pretreatment SBP	0.078	0.020	0.039	0.117	Gamma					
Blood pressure change with medication: per two ha	ulf standa	rd doses								
Mean DBP reduction at 90 mmHg	7.300	0.536	6.200	8.300	Gamma					
Coefficient of reduction per mmHg decrease in pretreatment DBP (multiplied by 2 medications)	0.088	0.022	0.045	0.132	Gamma	Law et al ¹³				
Mean SBP reduction at 150 mmHg	13.300	0.434	12.400	14.100	Gamma	Law et al.				
Coefficient of reduction per mmHg decrease in pretreatment SBP (multiplied by 2 medications)	0.078	0.020	0.039	0.117	Gamma					
Risk adjustment attributable to reduced blood press	Risk adjustment attributable to reduced blood pressure									
Relative risk of CVD events per 10 mmHg reduction	on in SBP	•								
CHD	0.830	-	0.780	0.880	Lognormal	Ettebad et al ¹⁰				
HF	0.720	-	0.670	0.780	Lognormal	Etitenau et al.				

eTable 6. Modeled SBP and LDL-C reductions, risk adjustments, and adverse events

Model Input	Mean	Standard Deviation	Min	Max	Distribution	Source
Stroke	0.730	-	0.680	0.770	Lognormal	
Hazard ratio of mortality risk with HF						
CVD mortality	2.94	-	2.41	3.58	Lognormal	Corbor at al ⁴⁸
Non-CVD Mortality	2.10	-	1.74	2.55	Lognormal	Gerber et al.
Adverse events with blood pressure medication						
Any adverse events, by number of standard dose m	edication	s				
1 half	0.031	0.024	0.001	0.093	Beta	
1 full	0.055	0.018	0.024	0.096	Beta	
1 full + 1 half	0.066	0.010	0.055	0.096	Beta	
2 full	0.087	0.008	0.073	0.103	Beta	27
2 full + 1 half	0.101	0.010	0.087	0.125	Beta	Law, Morris, and Wald. ²⁷
3 full	0.117	0.008	0.103	0.134	Beta	NHANES ⁵⁹
3 full + 1 half	0.130	0.009	0.117	0.154	Beta	
4 full	0.147	0.008	0.133	0.164	Beta	
4 full + 1 half	0.161	0.010	0.147	0.186	Beta	
5 full	0.177	0.008	0.162	0.194	Beta	
Intolerable adverse events, by number of antihyper	tensive m	edication cla	isses			
1 class	0.005	0.002	0.001	0.011	Beta	
2 classes	0.009	0.005	0.003	0.021	Beta	Law, Morris, and Wald. ²⁷
3 classes	0.016	0.008	0.005	0.035	Beta	Law et al. ¹³
4 classes	0.023	0.011	0.007	0.050	Beta	NHANES ³⁹
5 classes	0.030	0.014	0.009	0.064	Beta	
Serious adverse events, by number of antihypertens	sive medi	cation classe	S			
≤2 classes	0.009	0.001	0.006	0.010	Beta	Xie et al. ¹⁵

Model Input	Mean	Standard Deviation	Min	Max	Distribution	Source
>2 classes	0.013	0.002	0.011	0.017	Beta	Wright et al. ¹⁴
Probability serious adverse event is fatal, by age						
18-44	0.004	0.001	0.004	0.007	Beta	
45-64	0.011	0.003	0.005	0.017	Beta	AHRQ HCUP ⁵⁰ Wright at al ¹⁴
65-84	0.019	0.007	0.003	0.031	Beta	Bress et al. ⁵⁴
≥85	0.031	0.010	0.015	0.053	Beta	
Blood pressure medication adherence, by number of	of medica	tion classes				
1 class	0.900	0.070	0.681	0.963	Beta	
2 classes	0.845	0.057	0.700	0.927	Beta	Claxton et al. ²⁵
3 classes	0.823	0.055	0.712	0.932	Beta	Vrijens et al. ²²
≥4 classes	0.747	0.053	0.669	0.881	Beta	
BP medication discontinuation within 1 year of initiation	0.430	0.049	0.340	0.535	Weibull	Bellows et al. ³
LDL-C reducing medication parameters						
LDL-C reduction with full adherence (%)**	37.1	4.7	27.8	46.3	Normal	Adams et al. ²⁹
Relative risk of CVD events per 1.0 mmol/L (38.67	7 mg/dL)	LDL-C redu	ction			
CHD	0.76	0.015	0.73	0.79	Normal	Mihaylaya at al 11
Stroke	0.85	0.023	0.80	0.89	Normal	Minaylova et al.
Adverse events, annual probability						
Any adverse event	0.0050	0.0013	0.0024	0.0076	Beta	C 116
Intolerable adverse event	0.0010	0.0151	0.0893	0.1488	Beta	Cai et al. ¹⁰ Newman et al. ⁶⁰
Serious adverse event	0.0001	0.00002	0.00008	0.00014	Beta	r tewnian et al.
Statin-induced diabetes	0.0050	0.0023	0.0010	0.010	Beta	Finegold et al. ⁶¹
Adherence	0.792	0.078	0.694	1.000	Beta	Recalibrated

Model Input	Mean	Standard Deviation	Min	Max	Distribution	Source
Probability of discontinuation within one year of initiation	0.430	0.049	0.340	0.535	Weibull	Bellows et al. ³
Polypill medication parameters						
Adherence	0.860	0.025	0.810	0.910	Beta	Muñoz et al. ²⁴
Probability of discontinuation within one year of initiation	0.220	0.028	0.165	0.275	Weibull	Muñoz et al. ²⁴

BP – Blood Pressure, CHD – Coronary Heart Disease, CVD – Cardiovascular Disease, DBP – Diastolic Blood Pressure, HF – Heart Failure, LDL-C – Low-Density Lipoprotein Cholesterol, SBP – Systolic Blood Pressure, SD – Standard Deviation

eTable 7. Medication prices (USD 2023)

Model Input	Value	SD	Min	Max	Distribution	Source				
Base Case: MEPS Median, Utilization-Weighted										
BP medication costs, annual (\$)										
1 half	117	8	101	133	Gamma					
1 full	122	9	104	139	Gamma					
1 full + 1 half	205	13	180	230	Gamma					
2 full	210	13	184	236	Gamma					
2 full + 1 half	357	20	317	397	Gamma	MEDO31				
3 full	358	21	317	400	Gamma	MEPS ³¹				
3 full + 1 half	509	51	410	609	Gamma					
4 full	515	54	408	621	Gamma					
4 full + 1 half	563	52	462	665	Gamma					
5 full	581	52	480	683	Gamma					
Other medication costs,	annual (\$)									
Intermediate-intensity statin therapy	112	31	41	164	Gamma	MEPS ³¹				
Polypill medication ^a	463	n/a	349	577	Gamma	Assumption ^b				
Pricing Scenario 1: MEI	PS Mean, Util	ization-We	eighted							
BP medication costs, and	nual (\$)									
1 half	212		n/a		Gamma					
1 full	244		n/a		Gamma					
1 full + 1 half	433		n/a		Gamma					
2 full	462		n/a		Gamma					
2 full + 1 half	677		n/a		Gamma	MEDS ³¹				
3 full	709		n/a		Gamma	MEP5				
3 full + 1 half	984		n/a		Gamma					
4 full	1,025		n/a		Gamma					
4 full + 1 half	1,047		n/a		Gamma					
5 full	1,050		n/a		Gamma					
Other medication costs,	annual (\$)									
Intermediate-intensity statin therapy	238		n/a		Gamma	MEPS ³¹				
Polypill medication ^a	872		n/a		Gamma	Assumption ^b				
Pricing Scenario 2: National Average Drug Acquisition Cost ^c										

BP medication costs, annual (\$)									
Amlodipine 2.5 mg	48	n/a	Gamma						
Losartan 25 mg	59	n/a	Gamma	NADAC ³⁵					
HCTZ 12.5 mg	61	n/a	Gamma						
Other medication costs,	annual (\$)								
Atorvastatin 10 mg	54	n/a	Gamma	NADAC ³⁵					
Polypill	222	n/a	Gamma	Assumption ^b					

BP – Blood Pressure, HCTZ – Hydrochlorothiazide, MEPS – Medical Expenditure Panel Survey, NADAC – National Average Drug Acquisition Cost, SD – Standard Deviation

^aVaried extensively in sensitivity analyses

^bCombined price of component medications

^cNominal dispensing fee applied to all costs (\$10.50 per prescription, assuming 90-day refills³⁶)

Item Description		Guidance for Reporting	Reported in section
Title			
Title	1	Identify the study as an economic evaluation and specify the interventions being compared.	Title Page
Abstract			
Abstract	2	Provide a structured summary that highlights context, key methods, results and alternative analyses.	Pages 2-3
Introduction			
Background and objectives	3	Give the context for the study, the study question and its practical relevance for decision making in policy or practice.	Page 4
Methods			
Health economic analysis plan	4	Indicate whether a health economic analysis plan was developed and where available.	Page 4
Study population	5	Describe characteristics of the study population (such as age range, demographics, socioeconomic, or clinical characteristics).	Page 5 Figure S1 Table S1
Setting and location	6	Provide relevant contextual information that may	Pages 4-5
Comparators	7	Describe the interventions or strategies being compared and why chosen.	Pages 4-5
Perspective	8	State the perspective(s) adopted by the study and why chosen.	Page 6
Time horizon	9	State the time horizon for the study and why appropriate.	Page 6
Discount rate	10	Report the discount rate(s) and reason chosen.	Page 6
Selection of outcomes	11	Describe what outcomes were used as the measure(s) of benefit(s) and harm(s).	Page 6
Measurement of outcomes	12	Describe how outcomes used to capture benefit(s) and harm(s)were measured.	Pages 5-7 Pages S4-S5 Figure 1
Valuation of outcomes	13	Describe the population and methods used to measure and value outcomes.	Page 6 Pages S7-S8 Table S4
Measurement and valuation of resources and costs	14	Describe how costs were valued.	Page 6 Page S7 Table S4
Currency, price date, and conversion	15	Report the dates of the estimated resource quantities and unit costs, plus thecurrency and year of conversion.	Page 6 Page S6 Table 1 Table S4, Table S7
Rationale and description of model	16	If modelling is used, describe in detail and why used. Report if the model is publicly available and where it can be accessed.	Page 5 Pages S3-S6 Tables S2-S7 Figure 1 Figure S2
Analytics and assumptions	17	Describe any methods for analysing or statistically transforming data, any extrapolation methods, and approaches for validating any model used.	Pages 7-8 Pages S3-S6 Table S5 Figure S3

eTable 8. Consolidated Health Economics Evaluation Reporting Standards (CHEERS) 2022 checklist⁶²

Characterizing heterogeneity	18	Describe any methods used for estimating how the results of the studyvary for sub-groups.	Page 5 Page 8 Tables S10-S11
Characterizing distributional effects	19	Describe how impacts are distributed across different individuals or adjustments made to reflect priority populations.	Page 5 Table S12
Characterizing uncertainty	20	Describe methods to characterize any sources of uncertainty in the analysis.	Page 8 Tables S2-S4
Approach to engagement with patients and others affected by the study	21	Describe any approaches to engage patients or service recipients, the general public, communities, or stakeholders (e.g., clinicians or payers) in the design of the study.	Not included
Results			
Study parameters	22	Report all analytic inputs (e.g., values, ranges, references) including uncertainty or distributional assumptions.	Page 6 Pages 8-9 Table 1
Summary of main results	23	Report the mean values for the main categories of costs and outcomes of interest and summarise them in the most appropriate overall measure.	Pages 9-10 Figures 2-3 Table 2 Table S9
Effect of uncertainty	24	Describe how uncertainty about analytic judgments, inputs, or projections affect findings. Report the effect of choice of discount rate and time horizon, if applicable.	Pages 9-10 Figure 2 Figures S5-S9
Effect of engagement with patients and others affected by the study	25	Report on any difference patient/service recipient, general public, community, or stakeholder involvement made to the approach or findings of the study	Not included
Discussion			
Study findings, limitations, generalizability, and current knowledge	26	Report key findings, limitations, ethical or equity considerations not captured, and how these could impact patients, policy, or practice.	Pages 10-11
Other relevant information			
Source of funding	27	Describe how the study was funded and any role of the funder in the identification, design, conduct, and reporting of the analysis	Page 1
Conflicts of interest	28	Report authors conflicts of interest according to journal or International Committee of Medical Journal Editors requirements.	Reported in journal portal

	Usual Care			Polypill		Incremen	tal (Polypill vs Us	ual Care)	
Outcome	95% UI		UI Mean 95% UI		Mean	95%	UI		
	Mean	Lower	Upper		Lower	Upper		Lower	Upper
Total Costs ^a	9,022,294,890	8,995,824,430	9,045,412,670	9,032,447,242	9,011,510,334	9,053,567,045	10,152,352	-13,329,689	36,618,357
Background	7,721,985,998	7,707,802,172	7,737,993,005	7,731,228,253	7,717,416,816	7,743,101,645	9,242,255	-3,891,652	25,043,053
Physician visits	76,108,459	76,007,776	76,190,672	74,997,648	74,893,083	75,095,366	-1,110,809	-1,256,947	-983,189
Medication	103,561,325	102,922,941	104,192,118	240,310,489	239,287,253	241,256,560	136,749,164	136,067,360	137,498,504
Acute CVD	488,981,263	480,797,844	499,268,803	427,722,942	418,678,268	434,764,180	-61,258,321	-76,803,030	-49,681,963
Chronic CVD	629,305,844	619,553,045	639,912,017	544,389,875	535,829,598	551,950,718	-84,915,969	-99,252,318	-73,453,522
AEs	2,352,002	2,028,399	2,605,179	13,798,035	13,112,784	14,632,368	11,446,033	10,763,000	12,348,863
Total QALYs ^a	601,599	600,642	602,526	602,786	602,081	603,530	1,187	287	2,159
Background	608,789	607,856	609,713	609,304	608,612	610,017	515	-379	1,480
Pill-taking disutility	-887	-891	-883	-1,079	-1,083	-1,075	-191	-195	-189
Acute CVD	-154	-156	-152	-134	-135	-132	20	17	23
Chronic CVD	-6,148	-6,259	-6,048	-5,300	-5,387	-5,209	848	719	998
AEs	-1	-1	-1	-5	-6	-5	-5	-5	-4
Total CVD Events	21,964	21,679	22,347	19,225	18,959	19,477	-2,738	-3,246	-2,374
CHD events	8,923	8,729	9,098	7,925	7,764	8,104	-997	-1,216	-755
HF	5,729	5,539	5,942	5,063	4,895	5,227	-666	-930	-445
Stroke	7,311	7,137	7,457	6,237	6,088	6,385	-1,074	-1,287	-844
Incident CVD events	18,635	18,435	18,899	16,455	16,262	16,649	-2,179	-2,511	-1,903
Other Events									
Life years	930,415	929,103	931,725	931,262	930,205	932,403	847	-576	2,341
Intolerable AEs	114	93	134	1,050	990	1,117	936	873	1,003
Serious AEs	198	171	219	1,079	1,024	1,146	881	826	950
CABG	589	539	640	520	478	572	-68	-142	11
PTCA	1,843	1,761	1,943	1,636	1,560	1,715	-207	-343	-81
Physician Office Visits	1,039,177	1,037,712	1,040,372	1,024,296	1,022,811	1,025,711	-14,881	-16,993	-13,063

eTable 9. Disaggregated economic and clinical outcomes, polypill population

AE – Adverse Event, CABG – Coronary Artery Bypass Graft, CVD – Cardiovascular Disease, HF – Heart Failure, PTCA - Percutaneous Transluminal Coronary Angioplasty, QALY – Quality-Adjusted Life Year, UI – Uncertainty Interval

^aDiscounted 3.0% annually

	Polypill Trial Population								
Mean Outcomes	Usual Care	Polypill	Incremental, Polypill vs Usual Care						
Treat subset of polyp	ill trial with baseline m	edication use (n=1,511	in NHANES cohort)						
Costs (\$000's)	9,536,220	9,546,815	10,595						
QALYs	589,237	590,602	1,364						
ICER (\$/QALY)	n/a	n/a	7,767						
CVD Events	19,324	15,793	-3,531						
Life Years	928,223	929,019	796						
Increased pill-taking	disutility for ≥2 medica	tions							
Costs (\$000's)	9,022,295	9,032,447	10,152						
QALYs	601,222	602,780	1,557						
ICER (\$/QALY)	n/a	n/a	6,519						
CVD Events	21,964	19,225	-2,738						
Life Years	930,415	931,262	847						
Lifetime horizon									
Costs (\$000's)	24,315,568	24,433,766	118,197						
QALYs	1,155,021	1,168,043	13,022						
ICER (\$/QALY)	n/a	n/a	9,077						
CVD Events	55,356	50,586	-4,770						
Life Years	2,394,772	2,421,603	26,831						

eTable 10. Cost-effectiveness in scenario analyses. 100,000 simulated individuals.

CVD – Cardiovascular Disease, ICER – Incremental Cost-Effectiveness Ratio, QALY – Quality-Adjusted Life Year, UI – Uncertainty Interval

<u>eTable 11. Cost-effectiveness in non-Hispanic Black U.S. population that meets polypill trial eligibility</u> <u>criteria (n=3,602,427).</u>

	Polypill Trial Population (95% UI)							
Outcomes	Usual Care	Polypill	Incremental, Polypill vs Usual Care					
Discounted Costs (\$000's)	321,103,034 (320,213,292-322,089,673)	321,627,775 (320,891,292-322,562,068)	524,741 (-438,285-1,720,149)					
Discounted QALYs	21,966,267 (21,939,573-21,992,529)	22,005,317 (21,977,362-22,031,975)	39,050 (6,592-75,795)					
ICER (\$/QALY)	n/a	n/a	13,438 (Cost Saving-52,021)					
Total CVD Events	773,081 (762,490-786,230)	682,372 (671,817-693,179)	-90,709 (-104,29077,776)					
Life Years	33,930,323 (33,896,569-33,963,322)	33,963,538 (33,915,733-34,009,505)	33,214 (-19,741-92,510)					
Probability polypill preferred strategy at:								
\$50,000/QALY	97%							
\$100,000/QALY	98%							
\$150,000/QALY	98%							

CVD – Cardiovascular Disease, ICER – Incremental Cost-Effectiveness Ratio, QALY – Quality-Adjusted Life Year, UI – Uncertainty Interval

Household Income to Poverty Ratio	Baseline 10-Year ASCVD Risk (%)	Number of Individuals		QALYs Gained		ICER
		Sum	% of Total	Sum	% of Gains	(\$/QALY)
<1.5 (poorest)	11.1	38,788	38.8	419	33.8	14,598
1.5-3.0	11.8	29,502	29.5	558	45.1	Cost Saving
>3 (richest)	9.9	31,710	31.7	260	21.0	41,508

CET – Cost-Effectiveness Threshold, ICER – Incremental Cost-Effectiveness Ratio, NMB – Net Monetary Benefit, QALY – Quality-Adjusted Life Year

One deterministic run of model with 100,000 simulated non-Hispanic Black U.S. individuals that meet polypill trial eligibility criteria

Supplemental Figures

CHD – Coronary Heart Disease, eGFR – Estimated Glomerular Filtration Rate, LDL-C – Low-Density Lipoprotein Cholesterol, NHANES – National Health and Nutrition Examination Survey, SBP – Systolic Blood Pressure

eFigure 2. Discontinuation curve, polypill versus usual care (both BP and LDL-C medications)

eFigure 3. Recalibration/Validation Figures, Women and Men: Death Rates, Total Event Rates, and Incident Event Rates

A. Recalibration/validation figures, women: death rates

B. Recalibration/validation figures, women: total event rates

© 2025 Kohli-Lynch CN et al. JAMA Cardiology.

C. Recalibration/validation figures, women: incident event rates

D. Recalibration/validation figures, men: death rates

90

90

© 2025 Kohli-Lynch CN et al. JAMA Cardiology.

E. Recalibration/validation figures, men: total event rates

F. Recalibration/validation figures, men: incident event rates

Т

90

Age (Years)

LDL – Low-Density Lipoprotein

eFigure 4. Calibrating treatment effect

eFigure 5. Modeled cost-effectiveness outcomes with different numbers of simulated individuals

QALY – Quality-Adjusted Life Year

eFigure 7. Tornado diagram

AE – Adverse Event, BP – Blood Pressure, CHD – Coronary Heart Disease, LDL – Low-Density Lipoprotein Cholesterol, QALY – Quality-Adjusted Life Year, RR – Relative Risk

No sensitivity analyses resulted in polypill being dominated (i.e., fewer QALYs, more costs), so all negative ICERs denote cost savings © 2025 Kohli-Lynch CN et al. *JAMA Cardiology*.

eFigure 8. Incremental cost-effectiveness ratio for polypill versus usual care at range of time horizons

 $ICER-Incremental\ Cost-Effectiveness\ Ratio,\ QALY-Quality-Adjusted\ Life\ Year$

Polypill 'dominated' (more costs, less QALYs) with 1-year and 2-year time horizons. ICER=\$424,000/QALY at 3-year time horizon

eFigure 9. Polypill price vs. ICER, polypill trial-eligible Non-Hispanic Black individuals

QALY – Quality-Adjusted Life Year

Black circle marks base case cost-effectiveness estimate.

eReferences

- Kohli-Lynch CN, Bellows BK, Thanassoulis G, et al. Cost-effectiveness of Low-density Lipoprotein Cholesterol Level-Guided Statin Treatment in Patients With Borderline Cardiovascular Risk. *JAMA Cardiol*. 2019;4(10):969-977. doi:10.1001/jamacardio.2019.2851
- 2. Bryant KB, Moran AE, Kazi DS, et al. Cost-Effectiveness of Hypertension Treatment by Pharmacists in Black Barbershops. *Circulation*. 2021;143(24):2384-2394. doi:10.1161/CIRCULATIONAHA.120.051683
- 3. Bellows BK, Ruiz-Negrón N, Bibbins-Domingo K, et al. Clinic-Based Strategies to Reach United States Million Hearts 2022 Blood Pressure Control Goals. *Circulation: Cardiovascular Quality and Outcomes*. 2019;12(6):e005624. doi:10.1161/CIRCOUTCOMES.118.005624
- 4. Zhang Y, Vittinghoff E, Pletcher MJ, et al. Associations of Blood Pressure and Cholesterol Levels During Young Adulthood With Later Cardiovascular Events. *Journal of the American College of Cardiology*. 2019;74(3):330-341. doi:10.1016/j.jacc.2019.03.529
- Oelsner EC, Balte PP, Cassano P, et al. Harmonization of Respiratory Data From Nine US Population-Based Cohorts: The NHLBI Pooled Cohorts Study. *Am J Epidemiol*. Published online June 30, 2018. doi:10.1093/aje/kwy139
- Bryan AS, Moran AE, Mobley CM, et al. Cost-effectiveness analysis of initial treatment with single-pill combination antihypertensive medications. *J Hum Hypertens*. 2023;37(11):985-992. doi:10.1038/s41371-023-00811-3
- Bryant KB, Rao AS, Cohen LP, et al. Effectiveness and Cost-Effectiveness of Team-Based Care for Hypertension: A Meta-Analysis and Simulation Study. *Hypertension*. 2023;80(6):1199-1208. doi:10.1161/HYPERTENSIONAHA.122.20292
- Kohli-Lynch CN, Bellows BK, Zhang Y, et al. Cost-Effectiveness of Lipid-Lowering Treatments in Young Adults. *Journal of the American College of Cardiology*. 2021;78(20):1954-1964. doi:10.1016/j.jacc.2021.08.065
- 9. Ridgeway G, McCaffrey DF, Morral AR, et al. *Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the R TWANG Package*. RAND Corporation; 2022. Accessed July 13, 2023. https://www.rand.org/pubs/tools/TLA570-5.html
- Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. *The Lancet*. 2016;387(10022):957-967. doi:10.1016/S0140-6736(15)01225-8
- Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. *Lancet*. 2012;380(9841):581-590 p 588. doi:10.1016/S0140-6736(12)60367-5
- 12. Law M, Wald N, Morris J. Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy. In: *NIHR Health Technology Assessment Programme: Executive Summaries*. NIHR Journals Library; 2003. Accessed July 6, 2023. https://www.ncbi.nlm.nih.gov/books/NBK62259/
- Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. *BMJ*. 2003;326(7404):1427. doi:10.1136/bmj.326.7404.1427
- 14. SPRINT Research Group, Wright JT, Williamson JD, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. *N Engl J Med.* 2015;373(22):2103-2116. doi:10.1056/NEJMoa1511939

- 15. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. *Lancet*. 2016;387(10017):435-443. doi:10.1016/S0140-6736(15)00805-3
- Cai T, Abel L, Langford O, et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: systematic review with pairwise, network, and dose-response meta-analyses. *BMJ*. 2021;374:n1537. doi:10.1136/bmj.n1537
- 17. Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. *Lancet*. 2010;375(9716):735-742 p 741. doi:10.1016/S0140-6736(09)61965-6
- Bryant KB, Jannat-Khah DP, Cornelius T, et al. Time-Varying Depressive Symptoms and Cardiovascular and All-Cause Mortality: Does the Risk Vary by Age or Sex? *Journal of the American Heart Association*. 2020;9(19):e016661. doi:10.1161/JAHA.120.016661
- Kronish IM, Edmondson D, Shimbo D, Shaffer JA, Krakoff LR, Schwartz JE. A Comparison of the Diagnostic Accuracy of Common Office Blood Pressure Measurement Protocols. *Am J Hypertens*. 2018;31(7):827-834. doi:10.1093/ajh/hpy053
- Fontil V, Bibbins-Domingo K, Kazi DS, et al. Simulating Strategies for Improving Control of Hypertension Among Patients with Usual Source of Care in the United States: The Blood Pressure Control Model. J Gen Intern Med. 2015;30(8):1147-1155. doi:10.1007/s11606-015-3231-8
- 21. Lin I, Sung J, Sanchez RJ, et al. Patterns of Statin Use in a Real-World Population of Patients at High Cardiovascular Risk. *J Manag Care Spec Pharm*. 2016;22(6):685-698. doi:10.18553/jmcp.2016.22.6.685
- 22. Vrijens B, Vincze G, Kristanto P, Urquhart J, Burnier M. Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. *BMJ*. 2008;336(7653):1114-1117. doi:10.1136/bmj.39553.670231.25
- 23. Wood F, Salam A, Singh K, et al. Process evaluation of the impact and acceptability of a polypill for prevention of cardiovascular disease. *BMJ Open*. 2015;5(9):e008018. doi:10.1136/bmjopen-2015-008018
- 24. Muñoz D, Uzoije P, Reynolds C, et al. Polypill for Cardiovascular Disease Prevention in an Underserved Population. *N Engl J Med.* 2019;381(12):1114-1123. doi:10.1056/NEJMoa1815359
- 25. Claxton AJ, Cramer J, Pierce C. A systematic review of the associations between dose regimens and medication compliance. *Clin Ther.* 2001;23(8):1296-1310. doi:10.1016/s0149-2918(01)80109-0
- Bryant KB, Sheppard JP, Ruiz-Negrón N, et al. Impact of Self-Monitoring of Blood Pressure on Processes of Hypertension Care and Long-Term Blood Pressure Control. J Am Heart Assoc. 2020;9(15):e016174. doi:10.1161/JAHA.120.016174
- Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. *BMJ*. 2009;338:b1665. doi:10.1136/bmj.b1665
- Lowy A, Munk VC, Ong SH, et al. Effects on blood pressure and cardiovascular risk of variations in patients' adherence to prescribed antihypertensive drugs: role of duration of drug action. *Int J Clin Pract*. 2011;65(1):41-53. doi:10.1111/j.1742-1241.2010.02569.x
- 29. Adams SP, Tsang M, Wright JM. Atorvastatin for lowering lipids. *Cochrane Database Syst Rev.* 2015;2015(3):CD008226. doi:10.1002/14651858.CD008226.pub3
- 30. *Consumer Price Index Databases*. U.S. Bureau of Labor Statistics; 2023. Accessed February 27, 2023. https://www.bls.gov/cpi/data.htm
- 31. Medical Expenditure Panel Survey 2020.; 2020. http://meps.ahrq.gov/mepsweb/

- 32. Harris-Kojetin L, Sengupta M, Park-Lee E, et al. Long-Term Care Providers and services users in the United States: data from the National Study of Long-Term Care Providers, 2013-2014. *Vital Health Stat 3*. 2016;(38):x-xii; 1-105.
- Howden L, Meyer J. Age and Sex Composition: 2010. U.S. Department of Commerce Economics and Statistics Administration: U.S. Census Bureau; 2011. https://www.census.gov/library/publications/2011/dec/c2010br-03.html
- 34. *Affordable Care Act Federal Upper Limit.* Centers for Medicare and Medicaid Services; 2023. Accessed January 4, 2024. https://www.medicaid.gov/medicaid/prescription-drugs/federal-upper-limit/index.html
- 35. *NADAC (National Average Drug Acquisition Cost)*. Centers for Medicare and Medicaid Services; 2023. Accessed January 5, 2024. https://data.medicaid.gov/nadac
- 36. *Medicaid Covered Outpatient Prescription Drug Reimbursement Information by State*. Centers for Medicare and Medicaid Services; 2023. Accessed January 5, 2024. https://www.medicaid.gov/medicaid/prescription-drugs/state-prescription-drug-resources/medicaid-covered-outpatient-prescription-drug-reimbursement-information-state/index.html
- 37. *National Inpatient Sample 2012-2015*. Agency for Healthcare Research and Quality; 2019. https://hcup-us.ahrq.gov/nisoverview.jsp
- 38. Arth AC. Inpatient Hospitalization Costs Associated with Birth Defects Among Persons of All Ages United States, 2013. *MMWR Morb Mortal Wkly Rep.* 2017;66. doi:10.15585/mmwr.mm6602a1
- 39. Peterson C, Xu L, Florence C, Grosse SD, Annest JL. Professional Fee Ratios for US Hospital Discharge Data. *Med Care*. 2015;53(10):840-849. doi:10.1097/MLR.000000000000410
- 40. Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. *Circulation*. 2014;129(14):1483-1492. doi:10.1161/CIRCULATIONAHA.113.004042
- Moran AE, Forouzanfar MH, Roth GA, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. *Circulation*. 2014;129(14):1493-1501. doi:10.1161/CIRCULATIONAHA.113.004046
- 42. Murray CJL, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. *The Lancet*. 2012;380(9859):2197-2223. doi:10.1016/S0140-6736(12)61689-4
- 43. Joseph P, Roshandel G, Gao P, et al. Fixed-dose combination therapies with and without aspirin for primary prevention of cardiovascular disease: an individual participant data meta-analysis. *The Lancet*. 2021;398(10306):1133-1146. doi:10.1016/S0140-6736(21)01827-4
- 44. McManus DD, Chinali M, Saczynski JS, et al. Thirty-Year Trends in Heart Failure in Patients Hospitalized With Acute Myocardial Infarction. *Am J Cardiol*. 2011;107(3):353-359. doi:10.1016/j.amjcard.2010.09.026
- 45. Spencer FA, Meyer TE, Gore JM, Goldberg RJ. Heterogeneity in the Management and Outcomes of Patients With Acute Myocardial Infarction Complicated by Heart Failure. *Circulation*. 2002;105(22):2605-2610. doi:10.1161/01.CIR.0000017861.00991.2F
- 46. Hernandez GA, Lemor A, Blumer V, et al. Trends in Utilization and Outcomes of Pulmonary Artery Catheterization in Heart Failure With and Without Cardiogenic Shock. *J Card Fail*. 2019;25(5):364-371. doi:10.1016/j.cardfail.2019.03.004
- 47. Steg PG, Dabbous OH, Feldman LJ, et al. Determinants and prognostic impact of heart failure complicating acute coronary syndromes: observations from the Global Registry of Acute Coronary Events (GRACE). *Circulation*. 2004;109(4):494-499. doi:10.1161/01.CIR.0000109691.16944.DA

- Gerber Y, Weston SA, Enriquez-Sarano M, et al. Mortality Associated With Heart Failure After Myocardial Infarction: A Contemporary Community Perspective. *Circ Heart Fail*. 2016;9(1):e002460. doi:10.1161/CIRCHEARTFAILURE.115.002460
- 49. Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. *Circulation*. 2019;139(10):e56-e528. doi:10.1161/CIR.0000000000659
- 50. *Healthcare Cost and Utilization Project (HCUP)*. Agency for Healthcare Research and Quality; 2006. www.hcup-us.ahrq.gov/databases.jsp
- Krumholz HM, Normand SLT, Wang Y. Trends in hospitalizations and outcomes for acute cardiovascular disease and stroke, 1999-2011. *Circulation*. 2014;130(12):966-975. doi:10.1161/CIRCULATIONAHA.113.007787
- 52. Centers for Medicare and Medicaid Services: Physician Fee Schedule. Accessed December 7, 2023. https://www.cms.gov/medicare/payment/fee-schedules/physician
- 53. Unites States Renal Data System Annual Data Report 2020. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2020. Accessed February 27, 2023. https://adr.usrds.org/
- 54. Bress AP, Bellows BK, King JB, et al. Cost-Effectiveness of Intensive versus Standard Blood-Pressure Control. *New England Journal of Medicine*. 2017;377(8):745-755. doi:10.1056/NEJMsa1616035
- 55. King JB, Shah RU, Bress AP, Nelson RE, Bellows BK. Cost-Effectiveness of Sacubitril-Valsartan Combination Therapy Compared With Enalapril for the Treatment of Heart Failure With Reduced Ejection Fraction. JACC Heart Fail. 2016;4(5):392-402. doi:10.1016/j.jchf.2016.02.007
- 56. Sullivan PW, Ghushchyan V. Preference-Based EQ-5D Index Scores for Chronic Conditions in the United States. *Med Decis Making*. 2006;26(4):410-420. doi:10.1177/0272989X06290495
- 57. Hutchins R, Pignone MP, Sheridan SL, Viera AJ. Quantifying the utility of taking pills for preventing adverse health outcomes: a cross-sectional survey. *BMJ Open*. 2015;5(5):e006505. doi:10.1136/bmjopen-2014-006505
- Hutchins R, Viera AJ, Sheridan SL, Pignone MP. Quantifying the utility of taking pills for cardiovascular prevention. *Circ Cardiovasc Qual Outcomes*. 2015;8(2):155-163. doi:10.1161/CIRCOUTCOMES.114.001240
- 59. National Health and Nutrition Examination Survey Data. Centers for Disease Control and Prevention. National Center for Health Statistics. U.S. Department of Health and Human Services. Centers for Disease Control and Prevention; 1999. https://wwwn.cdc.gov/Nchs/Nhanes/
- Newman CB, Preiss D, Tobert JA, et al. Statin Safety and Associated Adverse Events: A Scientific Statement From the American Heart Association. *Arterioscler Thromb Vasc Biol.* 2019;39(2):e38-e81. doi:10.1161/ATV.00000000000073
- 61. Finegold JA, Manisty CH, Goldacre B, Barron AJ, Francis DP. What proportion of symptomatic side effects in patients taking statins are genuinely caused by the drug? Systematic review of randomized placebocontrolled trials to aid individual patient choice. *Eur J Prev Cardiolog*. 2014;21(4):464-474. doi:10.1177/2047487314525531
- 62. Husereau D, Drummond M, Augustovski F, et al. Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: updated reporting guidance for health economic evaluations. *BMC Medicine*. 2022;20(1):23. doi:10.1186/s12916-021-02204-0