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While the adult human brain has approximately 8.8 × 1010 neurons, this number is

dwarfed by its 1 1
× 10 5 synapses. From the point of view of neuromorphic engineering

and neural simulation in general this makes the simulation of these synapses a particularly

complex problem. SpiNNaker is a digital, neuromorphic architecture designed for

simulating large-scale spiking neural networks at speeds close to biological real-time.

Current solutions for simulating spiking neural networks on SpiNNaker are heavily

inspired by work on distributed high-performance computing. However, while SpiNNaker

shares many characteristics with such distributed systems, its component nodes have

much more limited resources and, as the system lacks global synchronization, the

computation performed on each node must complete within a fixed time step. We

first analyze the performance of the current SpiNNaker neural simulation software

and identify several problems that occur when it is used to simulate networks of

the type often used to model the cortex which contain large numbers of sparsely

connected synapses. We then present a new, more flexible approach for mapping

the simulation of such networks to SpiNNaker which solves many of these problems.

Finally we analyze the performance of our new approach using both benchmarks,

designed to represent cortical connectivity, and larger, functional cortical models. In a

benchmark network where neurons receive input from 8000 STDP synapses, our new

approach allows 4× more neurons to be simulated on each SpiNNaker core than has

been previously possible. We also demonstrate that the largest plastic neural network

previously simulated on neuromorphic hardware can be run in real time using our new

approach: double the speed that was previously achieved. Additionally this network

contains two types of plastic synapse which previously had to be trained separately but,

using our new approach, can be trained simultaneously.

Keywords: SpiNNaker, learning, plasticity, digital neuromorphic hardware, event-driven simulation, cortical

network, BCPNN

1. INTRODUCTION

Various types of hardware have been used as the basis for large-scale neuromorphic systems:
NeuroGrid (Benjamin et al., 2014) and BrainScaleS (Schemmel et al., 2010) use custom analog
hardware; True North (Merolla et al., 2014) uses custom digital hardware and SpiNNaker (Furber
et al., 2014) uses software programmable ARM processors.
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The design of SpiNNaker was based on the assumption that
each ARM processing core would be responsible for simulating
1000 spiking neurons (Jin et al., 2008). Each of these neurons
was expected to have around 1000 synaptic inputs each receiving
spikes at an average rate of 10Hz and, within these constraints,
large-scale cortical models with up to 50× 106 neurons have
already been successfully simulated on SpiNNaker (Sharp et al.,
2014).

However over recent years it has become clear that larger,
more realistic brain models are likely to break these assumptions.
For the purpose of this paper we concentrate on models of the
cortex where anatomical data (Beaulieu and Colonnier, 1989;
Pakkenberg et al., 2003; Braitenberg and Schüz, 2013) suggests
that, across species, cortical neurons received an average of
around 8000 synaptic inputs. In Sections 2.1, 2.2 we will analyze
the performance of the current SpiNNaker neural simulation
kernel and how it is impacted by these higher degrees of
connectivity.

Neuromorphic systems built from custom hardware have the
potential to simulate large neural models using many orders
of magnitude less power than software programmable systems
such as SpiNNaker. However, in these systems, a fixed number
of circuits for simulating individual neurons and synapses are
often directly cast into hardware. Therefore, coping with higher
degrees of connectivity than these systems’ designers intended
is, at worst, impossible and, at best, can only be achieved by
“borrowing” synapses from other neurons leaving some neuron
circuits without any synapses to provide them with input. For
example as Schemmel et al. (2010) discuss, by “borrowing”
multiple rows of 224 synapses from other neurons, each neuron
on the BrainScaleS system can receive up to 14,336 synaptic
inputs.

Because the basic computational unit of a SpiNNaker system is
a general-purpose processor, exactly how simulations of spiking
neural networks are mapped to the system is defined, largely, in
software. For example Mundy et al. (2015) used this flexibility
to map spiking neural networks—specified using the Neural
Engineering Framework (Eliasmith and Anderson, 2004)—to
SpiNNaker in a novel manner which removes the need to
simulate individual synapses. In this paper we take a very
different approach and, in Section 2.3, present a novel technique
for mapping spiking neural networks to SpiNNaker which we
call “synapse-centric mapping.” In Section 3 we demonstrate
the advantages of this new approach both in benchmarks
and in several large-scale cortical network models. Finally, in
Section 4, we discuss how this approach has the potential to
enable the simulation of multi-compartmental neuronmodels on
SpiNNaker and its applicability to current and future distributed
computing platforms.

2. MATERIALS AND METHODS

2.1. Simulating Spiking Neural Networks on
SpiNNaker
SpiNNaker is a massively parallel architecture designed primarily
for the simulation of spiking neural networks. The SpiNNaker
architecture can be used to build systems, ranging in size from

single boards to room-size machines, but all using the same
basic building block: the SpiNNaker chip (Furber et al., 2014).
As shown in Figure 1, a SpiNNaker chip contains 18, 200MHz
ARM cores, each equipped with two small tightly-coupled
memories (TCM): 32KiB for instructions and 64KiB for data.
The cores within a chip are then connected to each other, 128MiB
of external SDRAM and a multicast router using a network-on-
chip (NoC) known as the “System NoC.” Every chip’s router is
then connected to the routers in the six immediate neighboring
chips using a secondNoC known as the “Communications NoC.”

While SpiNNaker has a somewhat unusual memory hierarchy,
the lack of global shared memory means that many of the
problems related to simulating large spiking neural networks on
a SpiNNaker system are shared with more typical distributed
computer systems. On this basis the SpiNNaker neural simulator
follows a very similar approach to that developed by Morrison
et al. (2005) and Kunkel et al. (2012) for mapping large
spiking neural networks onto large distributed systems. Figure 2
illustrates this mapping in the context of SpiNNaker with each
processing core being responsible for simulating a collection of
neurons and their afferent synapses. The neurons are simulated
using a time-driven approach and their state is held in the tightly-
coupled data memory. Each neuron is uniquely identified by a
32 bit ID and, if a simulation step results in a spike, a packet
containing this ID is sent to the SpiNNaker router. These “spike”
packets are then routed across the network fabric to all the cores
on which neurons with afferent synaptic connections from the
spiking neuron are simulated.

However because of the large number of synapses and the
relatively low firing rate of single neurons, the synapses are
simulated in the event-driven manner discussed by Morrison
et al. (2005) only getting updated when they transfer a spike. On
SpiNNaker this event-driven approach is also advantageous as,
due to the sheer number of synapses, per-synapse data such as
synaptic weights must be stored in the off-chip SDRAM which

FIGURE 1 | The basic architecture of a SpiNNaker chip.
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FIGURE 2 | Standard mapping of a spiking neural network to

SpiNNaker. An example network consisting of 12 neurons is distributed

between two SpiNNaker cores. The synaptic matrix is split vertically and its

columns are distributed between the two cores responsible for simulating the

corresponding postsynaptic neurons (filled circles). Both cores contain

synaptic matrix rows corresponding to all 12 presynaptic neurons (non-filled

circles). The SpiNNaker router routes spikes from firing neurons (filled circles)

to the cores responsible for simulating the neurons these spikes target.

has insufficient bandwidth (Painkras et al., 2013) to transfer
every synapse’s parameters each simulation time step. Instead,
on receipt of a “spike” packet, cores initiate a DMA transfer to
fetch the row of the connectivity matrix associated with the firing
neuron from SDRAM (Sharp et al., 2011). Each of these rows
describes the synaptic connections between a presynaptic neuron
and the postsynaptic neurons simulated on the core. Once a
row is retrieved, the synaptic weights it contains are inserted

into an input ring-buffer, where they remain until any synaptic
delay has elapsed and they are added to the correct neuron’s
input current. Because of the large number of synapses the
performance of the synaptic row processing stage is critical and,
as such, has been significantly optimized since Sharp and Furber
(2013) measured its performance at 32 clock cycles per synapse.
These optimizations means that, in the current SpiNNaker tools,
profiling shows that processing each synapse in a row takes 21
clock cycles. Because updating each neuron takes 181 cycles we
can build the following approximate model of the maximum
number of neurons each core can simulate:

Nneurons =
200× 106

187
dt
+ 21µinput

= 300 (1)

Where the simulation time step dt = 1ms and the average input
spike rate each neuron receives µinput = 8000× 3Hz = 24 kHz.
Based on the approximate nature of this model and to aid various
low-level optimizations 256 neurons are typically simulated on
each core.

While the connectivity between cortical neurons varies widely,
it is always relatively sparse, with recent measurements in the
somatosensory cortex of rats (Perin et al., 2011) suggesting that
the maximum connection density is around 20%. In order to
measure the effect of connection sparsity on the performance
of the current simulator we developed a benchmark (similar
to that used by Diehl and Cook, 2014) in which a single
SpiNNaker core is used to simulate a population of leaky
integrate-and-fire neurons. We then stimulate each of these
neurons with independent 24 kHz Poisson spike input delivered
by multiple 10Hz sources simulated on additional SpiNNaker
cores. Figure 3 compares the performance measured using this
benchmark against the estimate provided by Equation (1). As
the connectivity becomes sparser each spike source connects
to fewer postsynaptic neurons via a shorter synaptic matrix
row. Therefore, in order to maintain the same synaptic event
processing rate, more input spikes and thus synaptic matrix
rows need to be processed. As Figure 3B shows this leads to
synaptic input processing performance dropping from 6× 106

to 3.6× 106 synaptic events per second as the connection
density drops from 100% to the maximum biological connection
density of 20%. This occurs because, beyond the 21 clock
cycles spent processing each synapse, there is a significant fixed
cost: in initiating the DMA transfer of the row; servicing the
interrupts raised in response to the arrival of the spike and the
completion of the DMA; and setting up the synapse processing
loop. Furthermore the only way to counteract the decreasing
performance, while maintaining the desired input rate, is to
further reduce the number of neurons simulated on each core
which further reduces the length of the synaptic matrix rows and
thus exacerbates the problem.

In order to increase temporal accuracy (Lagorce et al., 2015)
or improve the numerical precision with which the differential
equation used to model each neuron are solved (Hopkins and
Furber, 2015), it can be necessary to simulate the time-driven
components of the SpiNNaker simulation on a shorter time step
such as 0.1ms. Substituting dt = 0.1ms into Equation (1)
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FIGURE 3 | Static synaptic processing performance of a single SpiNNaker core simulating neurons using simulation time steps of 1 and 0.1ms. Each

neuron receives 24 kHz of synaptic input from multiple 10Hz Poisson spike sources, connected with varying degrees of connection sparsity. With a simulation time

step of 0.1ms it was impossible to run simulations with connectivity sparser than 20% in real time. Dotted lines illustrate the performance estimated using

Equation (1). (A) Performance in terms of the maximum number of these neurons that can be simulated on each core. (B) Performance in terms of the raw synaptic

event processing performance of each core.

suggests that, when using this smaller time step, a maximum of
84 neurons can be simulated on each core. However as Figure 3A
shows, even with 100% connectivity, the row length is sub-
optimal so only 70 neurons can be simulated on each core.
Furthermore, as the connectivity becomes sparser, performance
drops to the point where, at 10% connectivity, it is impossible to
simulate the benchmark in real time.

Lagorce et al. (2015) recently presented an alternative means
of simulating neurons with 1 µs temporal accuracy on SpiNNaker
using an event-driven neuron model. While some sensory
neurons (Gerstner et al., 1996) may require this degree of
temporal accuracy, in cortical networks of the type considered
in this paper, spike timings are typically only synchronized to
within several ms (Riehle et al., 1997). Additionally only a small
subset of neuron models can be simulated in an event-driven
manner and, if we again consider our model of cortical neurons
where each receives an average input rate of 24 kHz, multiple
events would need to be processed every 0.1ms time step by
an event-driven model. This would mean that any potential
performance advantage would dwindle when compared to a
time-driven approach. For these reasons, in the rest of this paper,
we will only consider time-driven neural models.

2.2. Simulating Synaptic Plasticity on
SpiNNaker
In addition to enabling large-scale simulations with static
synapses, the event-driven approach outlined in Section 2.1 can
be extended to handle any type of plastic synapse whose state can
be updated when a spike arrives based on:

1. The previous state of the synapse.
2. The time at which the last spike was transferred.
3. Information available from the postsynaptic neurons

simulated on the local core.

However, when compared to static synapses, simulating plastic
synapses is more costly in terms of memory and CPU: both

very limited resources on SpiNNaker. Jin et al. (2010) and
Diehl and Cook (2014) both developed different solutions to
this problem which follow this general event-driven model. In
the wider context of distributed computing Morrison et al.
(2007) extended their technique for the distributed simulation
of static networks to support synaptic plasticity. This approach
employed a restricted model of synaptic delay which guarantees
that the axonal delay is always shorter than the dendritic delay.
Because the dendritic delay is also used to delay backpropagating
postsynaptic spikes this restriction means that presynaptic spikes
can be processed immediately as no postsynaptic spikes emitted
before the axonal delay has elapsed will ever “overtake” the
presynaptic spike and hence need to be processed before it.
This simplifies the algorithm considerably, reducing CPU and
memory usage. The current SpiNNaker simulator combines this
simplified delay model and the general approach developed by
Diehl and Cook (2014) into Algorithm 1. This algorithm is
called whenever the connectivity matrix row associated with an
incoming “spike” packet is retrieved from the SDRAM. Each of
these rows contains the weights of the synapses that connect the
presynaptic neuron to the postsynaptic neurons simulated on the
local core (wij); the time at which the presynaptic neuron last
spiked (tlastSpike) and its state at that time (si); and the time at
which the row was last updated (tlastUpdate). What data the state
(si) contains depends on the plasticity rule being employed, but
as only the presynaptic spike times are available at the synapse,
the state often contains one or more low-pass filtered versions of
this spike train.

The algorithm begins by looping through each postsynaptic
neuron (j) in the row and retrieving a list of the times (tj) at
which that neuron spiked between tlastUpdate and t; and its state
at that time (sj). In the SpiNNaker implementation these times
and states are stored in a fixed-length circular queue located in
the tightly-coupled data memory. Whenever a neuron emits a
spike a new entry gets added to this structure. As Diehl and Cook
(2014) discuss, using a fixed sized data structure instead of the
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type of dynamic structure described by Morrison et al. (2007)
means that postsynaptic spikes can be lost. This will occur if more
postsynaptic spikes are emitted between presynaptic spikes than
there are buffer entries to store them in. We estimated an optimal
size for these buffers based on the lognormal ratio distributions
between the cortical firing rates presented by Buzsáki and
Mizuseki (2014). From the cumulative density functions of these
distributions we found that a 10 entry buffer covers over 90% of
the ratio distribution. However, in order to prevent postsynaptic
spikes being lost when the pre and postsynaptic neurons have
very different firing rates, we developed an additional simple
mechanism we call “flushing” to force the processing of these
spikes. This mechanism uses one bit in the 32 bit ID associated
with each neuron to signify whether the neuron is emitting a
“flush” or an actual spike event. To determine when these events
should be sent, each postsynaptic neuron tracks its interspike
interval (ISI) and, if this is bufferSize times longer than the ISI
equivalent to the maximum firing rate of the network, a flush
event is emitted.

Algorithm 1 continues by looping through each postsynaptic
spike and calling the applyPostSpike function to apply the
effect of the interaction between the postsynaptic spike and the
presynaptic spike that occurred at tlastSpike to the synapse. If the
update was instigated by a presynaptic spike rather than a flush,
the applyPreSpike function is called to apply the effect of the
interaction between the presynaptic spike and the most recent
postsynaptic spike to the synapse. Once all events are processed
the fully updated weight is added to the input ring buffer. If the
update was instigated by a presynaptic spike rather than a flush,
after all the synapses are processed, the presynaptic state stored
in the header of the row (si) is updated by calling the addPreSpike
function; and tlastSpike and tlastUpdate are set to the current time. If
however the update was instigated by a flush event, only tlastUpdate
is updated to the current time, meaning that the interactions
between future postsynaptic events and the last presynaptic spike
will continue to be calculated correctly.

Algorithm 1 Algorithmic Implementation of STDP

function processRow(t, flush)
for each j in postSynapticNeurons do

history← getHistoryEntries(j, tlastUpdate, t)

for each (tj, sj) in history do
wij ← applyPostSpike(wij, tj, tlastSpike, si)

if not flush then
(tj, sj)← getLastHistoryEntry(t)
wij ← applyPreSpike(wij, t, tj, sj)
addWeightToRingBuffer(wij, j)

if not flush then
si ← addPreSpike(si, t, tlastSpike)
tlastSpike ← t

tlastUpdate ← t

We profiled this algorithm in conjunction with
applyPostSpike, applyPreSpike, addPreSpike, and addPostSpike
functions that implement pair-based STDP with an additive
weight dependence (Song et al., 2000). As the cost of evaluating
Algorithm 1 depends on the number of events stored in history
(h) this results in the following approximate model:

Nneurons =
200× 106

187
dt
+ (131+ 31h)µinput

= 49 (2)

Where again dt = 1ms and µinput = 24 kHz; and the pre and
postsynaptic neurons are firing at approximately the same rate
(h = 1). In order to measure the effect of connection sparsity
and the relative postsynaptic firing rate on actual performance,
we extended the benchmark developed in Section 2.1 to use
STDP synapses and induced different postsynaptic firing rate by
applying a DC input current to the neurons. Figure 4 compares
the result of this benchmark against the estimate provided by
Equation (2). This benchmark shows that—at just over 1× 106

synaptic events per second with no postsynaptic activity—the
peak performance of our STDP synapses is approximately double
the 500× 103 synaptic events per second performance reported
by Diehl and Cook (2014). However, similarly to the static
synaptic processing performance discussed in Section 1, the
performance drops as low as 191× 103 synaptic events per
second at 20% connectivity due to very short row lengths.

Galluppi et al. (2014) developed a very different approach
for simulating synaptic plasticity on SpiNNaker compared to
the event-driven approaches we have discussed so far in this
section. Galluppi et al. (2014) simulate neurons and their synaptic
inputs using the standard approach described in Section 2.1 but
use extra cores to simulate plasticity using a more time-driven
approach. These “plasticity cores” operate on a relatively slow
time step of 128ms, within which, they read back the entire
synaptic matrix row-by-row. Then, based on a record of pre
and postsynaptic activity recorded into shared memory during
the previous 128ms by the “neuron core,” the plasticity core
updates the synaptic weights. Galluppi et al. (2014) reported that,
with the neuron core simulating 100 neurons, this system can
perform STDP synaptic processing at rates of up to 1.5× 106

synaptic events per second per core. However this is based on a
benchmark in which the population of neurons being simulated
received input from just 195 densely connected, high frequency
Poisson inputsmeaning that just 195 rows needed to be processed
within each 128ms plasticity time step. If however we consider
the model of cortical connectivity described in Section 1 where
each neuron has 8000 sparsely connected inputs, even if the
connection sparsity is 20%, the synaptic matrix will contain
40,000 rows. If we assume the lowest mean cortical firing rate
of around 2Hz measured by Buzsáki and Mizuseki (2014),
each row will contain approximately 20 synapses (based on the
100 neurons per core used in the benchmark) and each row
update will have to process an average of 5 postsynaptic events
during each 128ms plasticity time step. As each of the updates
performed by the plasticity cores use a trace-based approach
similar toAlgorithm 1, we can estimate the cost of each resultant
update based on the performance model of our own approach.
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FIGURE 4 | STDP synaptic processing performance of a single SpiNNaker core simulating neurons with postsynaptic firing rates of 0, 10, and 20Hz.

Each neuron receives 24 kHz of synaptic input from multiple 10Hz Poisson spike sources, connected with varying degrees of connection sparsity. Dotted lines

illustrate the performance estimated using Equation (2). (A) Performance in terms of maximum number of these neurons that can be simulated on each core.

(B) Performance in terms of raw synaptic event processing performance of each core.

Ourmodel suggests that updating each rowwill take around 2800
CPU cycles meaning that, as a SpiNNaker core has 256× 105

clock cycles available within each 128ms plasticity time step,
each plasticity core would be able to update approximately
9100 rows within this time. Therefore the updating of all
40,000 rows would need to be distributed between 5 plasticity
cores. This would result in a per-core synaptic processing
performance of just 350× 103 synaptic events per second: only
a marginal improvement over the 289× 103 synaptic events per
second achieved by the approach described in this section when
simulating neurons with 20% connectivity.

2.3. Synapse-Centric Simulation
In Sections 2.1, 2.2 we identified two main problems with the
current approach to mapping large, highly-connected spiking
neural networks to SpiNNaker.

1. Synaptic processing performance decreases as connectivity
becomes sparser due to shorter synaptic matrix rows over
which to amortize the fixed costs of servicing interrupts,
initiating the DMA transfer of the synaptic matrix row etc.

2. The only way to reduce the load on a single SpiNNaker core
and thus allow neurons with a given synaptic input rate to
be simulated in real time is to reduce the number of neurons
being simulated on the core, exacerbating the first problem.

In this section we present a novel solution to mapping spiking
neural networks with both plastic and static synapses to
SpiNNaker which alleviates both of these problems. The key
intuition behind this approach is that, if we split the synaptic
matrix in a row-wise manner over multiple cores rather than
column-wise with the neurons, row lengths can be kept as long
as local memory restrictions allow and are unaffected by dividing
the synapses amongst multiple cores. As shown in Figure 5 we
achieve this by using separate cores to simulate the neurons
and their afferent synapses. The afferent synapses associated with
the population are split between one or more synapse processors
based on the following criteria:

1. By synapse type meaning that each synapse processor only
needs to have sufficient local memory for a single input ring-
buffer and different synaptic plasticity rules can be simulated
on separate cores.

2. Postsynaptically (vertically) based on the local memory
requirements of the ring-buffer structure and, if the core
is simulating plastic synapses, the postsynaptic history
structure required for the plasticity algorithm (as discussed in
Section 2.2).

3. Presynaptically (horizontally) based on an estimate of the
presynaptic processing cost derived from the firing rate of the
presynaptic neurons and their connectivity.

The local memory requirements of the input ring-buffer
limits each synapse processor to simulating the static synapses
associated with 1024 postsynaptic neurons. The extra local
memory required for the postsynaptic history structure discussed
in Section 2.2 limits synapse processors to simulating the STDP
synapses associated with 512 postsynaptic neurons. The synapse
processors process the synaptic input using the same event-
driven approach outlined in Sections 2.1, 2.2. However, at the
beginning of each simulation time step, the synapse processors
initiate a DMA transfer to write the input current or conductance
accumulated in the ring-buffer (which in the current approach
would be passed directly to the neuron model) to a buffer located
in the external SDRAM.

As the input currents for each neuron now come from several
synapse processors, dedicated neuron processors are required to
sum each neuron’s input currents and update its dynamics. The
time-driven simulation of the neurons is split between these
neuron processors until memory and real time CPU constraints
are met. Without having to also simulate the afferent synapses,
each neuron processor can simulate many more neurons than
is possible using the current approach. For example 1024 leaky
integrate-and-fire neurons with exponential synapses simulating
on a 1ms time step can be simulated on a single core.

At the beginning of each simulation time step each neuron
processor initiates a series of DMA reads to fetch the buffers
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FIGURE 5 | Synapse-centric mapping of a spiking neural network to

SpiNNaker. The example network used in Figure 2 is distributed between

three SpiNNaker cores using the synapse-centric approach. The neuron core

is responsible for simulating all 12 neurons (filled circles). The synaptic matrix is

split horizontally with the rows associated with the presynaptic

neurons (non-filled circles) distributed between two synapse cores. Double

arrows indicate how input currents or conductances are transferred from the

synapse processors to the neuron processors through shared memory.

containing the input currents or conductances written by its
associated synapse processors. The current or conductance
inputs associated with each of the neuron model’s receptors are
then summed together and passed to the neuron model.

Although the postsynaptic splitting of neurons and synapses
can be independent, because the neuron and synapse processors
communicate through shared memory buffers only accessible
to the 16 cores on the same SpiNNaker chip, this is somewhat
restricted. For example if we consider a population of simple
leaky-integrate fire neurons—1024 of which can be simulated on
a single core—with complex plastic synapses whose local memory
requirements mean that theymust be split postsynaptically at 256
neurons. If, presynaptically, 4 synapse processors are required to
handle the input to these 256 neurons then 17 cores would need
to access the same sharedmemory buffer: more than is present on
the SpiNNaker chip. The solution to this problem is to reduce the

number of neurons simulated on each neuron processor to 512
meaning that only 9 cores would need to access the same shared
memory buffer.

As well as the inputs they receive from other neurons in the
network, neurons in cortical models are often kept in an excitable
regime by a source of background input. This background
input often takes the form of independent Poisson spike trains
and, when using the approach discussed in Section 2.1, these
are delivered to the neurons using the interconnect network.
However the mechanism for providing input to a neuron
processor through external memory buffers can be re-used to
allow the background input to be delivered from current input
processors directly to the neuron processors. The current input
processors generate a Poisson spike vector every time step,
multiply it by a weight vector to convert the spikes into current or
conductance values and write the resulting vector to the external
memory buffers. The approach described in Section 2.2 would
also be difficult to extend to allow populations of neurons to
have multiple learning rules on their afferent synapses. This
would require the postsynaptic history structure to be extended
to include postsynaptic state (sj) for each learning rule adding
to its already considerable memory requirements with each
additional learning rule. Algorithm 1 would also have to be
extended to select the correct learning rule for each synapse and
call the appropriate applyPostSpike and applyPreSpike functions
increasing the cost of this, performance critical, algorithm.
However supporting multiple learning rules is trivial when using
the synapse-centric approach: additional synapse processors can
simply be instantiated to simulate each required synapse type.

3. RESULTS

3.1. Static Synaptic Processing
Performance
Weprofiled the performance of our new static synapse processors
and found that the performance has improved over the current
approach: down to 15 cycles to process a synapse. This saving
comes about because, as each synapse processor only has to
process a single type of synapse, the synapse processing loop can
be further optimized. Using this figure we can estimate the rate of
incoming synaptic events that each synapse processor can handle.

µevents =
200× 106

15
= 13× 106 (3)

Therefore if we assume—based on our model of cortical
connectivity described in Section 1—that each neurons receives
24 kHz of synaptic input we can estimate that 1024 such neurons’
afferent synapses could be simulated using 2 synapse processors.
In order to verify these results we repeated the benchmark
described in Section 2.1 on a population of 1024 neurons
mapped to one neuron processor and one synapse processor
using our new synapse-centric approach. Figure 6 shows that
the peak performance of the synapse processor is indeed almost
13× 106 synaptic events per second although this reduces
significantly with sparser connectivity. However, because the
number of postsynaptic neurons does not need to be reduced
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FIGURE 6 | Performance of a synapse processor simulating the

afferent static synapses associated with 1024 neurons. Each data point

represents the maximum input rate (provided by multiple 10Hz Poisson spike

sources) that the core can handle in real time. Dotted line illustrates the

performance estimated using Equation (3).

until all of the afferent synapses can be simulated on a single
core and because the length of a row representing the same
connectivity is 4× longer than it would be when using the current
approach, this effect is significantly less pronounced. On this
basis, just 2 synapse processors can handle 100% connectivity
and 3 can handle the same situation with 10% connectivity.
Therefore, including the neuron processor, 341 neurons can be
simulated per core at 100% connectivity and 256 per core at 10%
connectivity: a significant improvement over the 256 and 155
achieved using the current approach.

One potential downside of the synapse-centric approach is
that transferring input via SDRAM from the synapse to the
neuron processors every simulation time step requires extra
external memory bandwidth. In order to determine whether this
affects the scaling of our synapse-centric approach, we extended
our benchmark to use multiple synapse processors with the
inputs divided evenly between them. Figure 7 shows that with
up to 9 synapse processors, synaptic processing performance
grows linearly as more synapse processors are added, with each
additional synapse processor adding approximately 10× 106

synaptic events per second to the total performance. However
the performance plateaus with 12 synapse processors delivering
a synaptic processing performance of around 100× 106 synaptic
events per second. Fetching the synaptic matrix rows required by
a single synapse processor requires approximately 40MiB s−1 of
external memory bandwidth and transferring the input currents
associated with 512 neurons every 1ms simulation time step
requires approximately another 2MiB s−1. Figure 8A shows the
external memory read bandwidth usage in our benchmark and—
similarly to the performance shown in Figure 7—this increases
linearly with up to 9 synapses processors and plateaus at
420MiB s−1. If we reduce the simulation time step to 0.1ms
the bandwidth required to transfer the input currents from each
synapse processor increases to 20MiB s−1. Figure 8B shows the
results of repeating our benchmark on a 0.1ms simulation time
step with 8 neuron processors and up to 8 synapse processors.

FIGURE 7 | Performance of SpiNNaker chip containing one neuron

processor simulating population of 512 neurons and increasing

numbers of synapse processor simulating the afferent static synapses

associated with the population. Each data point represents the maximum

input rate (provided by multiple 10Hz Poisson spike sources) that the core can

handle in real time. 20% connection sparsity is used for all data points. The

dotted line shows the linear scaling of the performance with one synapse

processor.

Because of the increased bandwidth required to transfer input
currents every 0.1ms, this configuration has a significantly higher
peak bandwidth of 450MiB s−1, but shows no sign of the
performance plateauing.

In order to illustrate the advantages of our new simulator in
the context of a more realistic network we ran several simulations
of the network developed by Vogels and Abbott (2005).
This network was designed as a medium for experimentation
into signal propagation through cortical networks, but has
subsequently been widely used as a benchmark (Brette et al.,
2007). The network consists of 10,000 integrate-and-fire neurons,
split between an excitatory population of 8000 cells and an
inhibitory population of 2000 cells. In order to be representative
of long-range cortical connectivity these populations are
randomly connected with a very low connection probability of
2%. Table 1 shows that if we run a 500ms simulation of this
network on SpiNNaker, using either 1 or 0.1ms time steps, our
new approach requires fewer cores than the current approach.
However, due to its small size and sparse connectivity, each
neuron in this network only receives 200 synaptic inputs: far
below the degree of connectivity seen in the cortex and the
performance limits of our synapse processors. Therefore, we
increased the connection density of the network to 10% (the
highest density at which Vogels and Abbott (2005) suggests their
results hold) and increased the total number of neurons to 80,000
so that each neuron in the network receives 8000 inputs. Because
the neurons in this network have both inhibitory and excitatory
synapse, in our synapse-centric approach, they are simulated
on separate synapse processors. Therefore, an extra synapse
processor—beyond the 3 we previously calculated—is required
to simulate the synapses associated with each 1024 neurons. As
discussed in Section 2.3 each neuron processor can simulate up
to 1024 leaky-integrate fire neurons. However processing this
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FIGURE 8 | External memory read bandwidth used by SpiNNaker chip containing increasing numbers of synapse processors simulating the afferent

static synapses associated with 512 neurons. Colors indicate how much of this bandwidth is used transferring synaptic matrix rows and how much for

transferring input currents to the neuron processor(s). 20% connection sparsity is used for all data points. (A) With a simulation time step of 1ms where the 512

neurons are simulated on a single neuron processor. (B) With a simulation time step of 0.1ms where the 512 neurons are simulated across 8 neuron processors.

TABLE 1 | Simulations of the Vogels Abbott benchmark networks on SpiNNaker using synapse-centric and standard approaches.

Number of

neurons

Connectivity [%] Simulator Simulation time step [ms] Number of cores Neurons per core

Neuron Synapse Total

10,000 2 Standard 1.0 40 40 250

Synapse-centric 1.0 10 20 30 333

10,000 2 Standard 0.1 157 157 64

Synapse-centric 0.1 99 26 125 80

80,000 10 Synapse-centric 1.0 157 314 471 170

many neurons leaves insufficient time within a simulation time
step to process the input from 4 synapse processors. Therefore,
we reduced the number of neurons simulated on each neuron
processor to 512, resulting in an average of 170 neurons being
simulated on each core. This is a significant improvement over
the 60 neurons per core our benchmark–shown in Figure 3–
suggests the standard approach can achieve.

3.2. Plastic Synaptic Processing
Performance
We profiled the performance of one of our synapse processor
cores simulating synapses with pair-based STDP and an additive
weight dependence (Song et al., 2000). Similarly to the static
synapse processors, due to the optimizations made possible as
only a single type of synapse is simulated on each synapse
processor, the performance was somewhat improved over that of
the current approach. Based on the model obtained through this
profiling we can estimate the rate of incoming synaptic events
that each STDP synapse processor can handle.

µevents =
200× 106

107+ 30h
= 1.4× 106 (4)

Where the pre and postsynaptic neurons are firing at
approximately the same rate (h = 1). As discussed in Section 2.3
the local memory requirements of the postsynaptic history
structure mean that each STDP synapse processor can simulate
the afferent synapses associated with 512 neurons. Therefore,
if we divide the total estimated performance between 512
neurons and again use our model of cortical connectivity we
can estimate that the afferent synapses associated with our
512 neurons can be simulated using 9 synapse processors.
In order to verify this performance we repeated the STDP
benchmark described in Section 2.2 using a population of
512 neurons mapped to one neuron processor and one
synapse processor using our new synapse-centric approach.
The results of this benchmark are presented in Figure 9 and
show that the peak performance is indeed nearly 1.4× 106

synaptic events per second. Because processing an STDP
synapse is significantly more costly than processing a static
synapse, the fixed cost of processing a row is amortized over
fewer synapses, meaning that 10 STDP synapse processors
are sufficient to deliver our model of cortical connectivity
down to just over 10% connection sparsity. Therefore taking
into account the core used by the neuron processor, with
20% connectivity, 46 neurons can be simulated per core:
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FIGURE 9 | Performance of a synapse processor simulating the

afferent STDP synapses associated with 512 neurons. Each data point

represents the maximum input rate (delivered by multiple 10Hz Poisson spike

sources) that the synapse processor can handle in real time with varying levels

of connectivity when postsynaptic neurons are firing at 0, 10, or 20Hz. Dotted

lines illustrate the performance estimated using Equation (4).

more than 4× the number possible when using the current
approach.

Knight et al. (2016) demonstrated how the spiking BCPNN
learning rule (Tully et al., 2014) could be implemented efficiently
on SpiNNaker within the algorithm outlined in Section 2.2.
Knight et al. (2016) then showed how this learning rule could
be used to learn temporal sequences of neural activity within a
modular attractor network. For more details on the biological
underpinnings of this network and further examples of its
function see Tully et al. (2016). This network was based on
a cortical microcircuit model developed by Lundqvist et al.
(2006) consisting of a number of hypercolumns arranged in a
grid. Each hypercolumn consists of 250 inhibitory and 1000
excitatory cells evenly divided between 10 minicolumns. While
this was the largest plastic neural network ever to be simulated
on neuromorphic hardware, the training process was hampered
by the inability of the approach described in Section 2.2 to
simulate neurons with different learning rules on their afferent
synapses. This limitation meant that separate networks had to be
simulated to train the AMPA and NMDA synapses, the learned
weights downloaded, combined together and finally re-uploaded
to the SpiNNaker machine for testing. This model also had
several features that placed high demands on the local memory
available to each core. Firstly BCPNN requires 32 bit of state to
be stored with each event in the postsynaptic history structure
rather than the 16 bit required by STDP synapses meaning that
a 10 entry postsynaptic history requires an extra 20 B of local
memory for each neuron. Additionally the model uses three
synapse types (AMPA, NMDA, and GABA)—each of which
require a separate input ring-buffer—and each neuron in the
network also has several extra parameters used to configure a
simple spike frequency adaption mechanism (Liu and Wang,
2001). These factors conspired to reduce the local memory

available and, when combined with the high cost of simulating
BCPNN synapses, meant that, although each neuron in the
model only had 4000 inputs, only 75 neurons could be simulated
on each core and the network could only be run at 0.5× real
time.

We repeated the training regime performed by Knight
et al. (2016) and trained each hypercolumn with a repeating
temporal sequence of minicolumn activations (a subset of
this training regime is shown in Figure 10A). Using our new
approach we trained both the AMPA and NMDA plastic
synapses simultaneously on separate synapse processors each
with different BCPNN configurations. The AMPA synapses are
trained using spiking BCPNN configured to detect correlations
within a short, symmetrical time window resulting in the
learned connectivity shown in Figure 11A which acts to sharpen
and stabilize activity within a single minicolumn. However
the spiking BCPNN learning rule used to learn NMDA
connectivity is configured to detect correlations in a much
longer, asymmetrical time window resulting in the connectivity
shown in Figure 11B. When combined with the spike frequency
adaption mechanism, this asymmetrical connectivity acts to
enable sequence transitions, allowing learned sequences of
minicolumn activation to be replayed as shown in Figure 10B

when plasticity is turned off and the first element of the sequence
is stimulated.

Table 2 summarizes the results of simulations of this modular
attractor network with 4, 9, and 16 hypercolumns using
both the synapse-centric and standard approaches. While the
synapse-centric approach requires more cores in all but the 4
hypercolumn configuration, it allows the network to be simulated
in real time in all configurations. The standard approach can
only simulate the network in real time with 4 hypercolumns and
would require the neural populations to be further sub-divided
to achieve real time performance at larger scales. Furthermore
the comparison is a somewhat unfair as, when using the standard
approach, only one synapse type is learned at once meaning that,
during the training phase when plasticity is enabled, each core
only needs to be capable of handling half the rate of incoming
synaptic events.

4. DISCUSSION

The contribution of this study is threefold. Firstly we present an
in-depth analysis of the performance of the current SpiNNaker
simulator in the context of highly-connected cortical models.
Secondly we present a novel approach for mapping the
simulation of such models to SpiNNaker and show how this can
significantly increase the size of network that can be simulated
on a given SpiNNaker machine. Thirdly we show that, not
only does our approach offer even more significant efficiency
savings when simulating cortical models with plastic synapses,
but it also enables the simulation of neurons with multiple types
of plastic synapse. Finally, in this section, we will discuss the
performance of our novel approach, some of the new possibilities
it enables and its applicability to current and future hardware
platforms.
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FIGURE 10 | Spike rasters of excitatory cells and the average firing rate within each minicolumn during subset of (A) training and (B) replaying of

temporal sequences of minicolumn activation in 16 hypercolumn modular attractor network.

FIGURE 11 | Average weights learned between minicolumns after training modular attractor network using BCPNN learning rule. (A) AMPA weights. (B)

NMDA weights.

4.1. Synapse-Centric Simulation
In Section 3.1 we analyze the peak synaptic processing
performance of an entire SpiNNaker chip using our new synapse-
centric approach. We find that with up to 9 synapse processors
running on each SpiNNaker chip, performance scales linearly,
but plateaus with 12 synapse processors at around 100× 106

synaptic events per second. Maintaining this throughput
requires 420MiB s−1 of external memory read bandwidth. This
is significantly lower than the peak external memory read
bandwidth of 600MiB s−1 measured by Painkras et al. (2013).
Therefore, we believe that this plateau occurs when contention
for access to the external memory increases the duration of each
DMA transfer to the point where double-buffering can no longer
hide the external memory latency. However if we reduce the

simulation time step to 0.1ms—requiring input currents to be
transferred from the synapse processors to the neuron processors
10× more frequently—450MiB s−1 of external memory read
bandwidth can be obtained. This supports the view that the
plateauing of performance is not due to the memory bandwidth
being saturated. Furthermore, by simulating a more realistic
network of 80,000 neurons each with 8000 sparsely connected
inputs, we demonstrate that 8 synapse processors and 4 neuron
processors running on a SpiNNaker chip is likely to be a more
typical configuration for simulating cortical networks with static
synapses. This configuration is well within the region where
Figures 7, 8 show linear performance scaling and leaves 4 cores
free to provide additional background noise or stimuli to the
neurons.
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TABLE 2 | SpiNNaker simulations of the BCPNN modular attractor network

at varying scales using synapse-centric and standard approaches.

Number of Simulator Real time Heterogeneous Number of

hypercolumns learning rules cores

4 Standard X 7 88

Synapse-centric X X 68

9 Standard 7 7 198

Synapse-centric X X 252

16 Standard 7 7 352

Synapse-centric X X 576

In Section 3.2 we analyze the performance of pair-based
STDP synapses with an additive weight dependence (Song
et al., 2000) and find that they are between 6.5× and
10× more costly to simulate than static synapses. This
reduction in performance compared to static synapse processors
corresponds to similarly reductions in memory read bandwidth
requirements meaning that the static network represents
the worst case in terms of external memory bandwidth
requirements.

4.2. Multi-Compartmental Neural
Simulation
As we demonstrated in Section 3.2 our approach enables neurons
with heterogeneous plastic synapses to be simulated. However
neurons in the cortex have many more degrees of heterogeneity
particularly in the morphology and complexity of their dendritic
trees (Elston, 2003). This dendritic complexity is mirrored in
the hierarchical organization of cortical areas (Riesenhuber and
Poggio, 1999) and there is mounting evidence to suggest that
single dendritic branches rather than individual neurons may,
in fact, be the brain’s fundamental functional units (Branco and
Häusser, 2010).

However the type of point neuron models—which have
thus far been used in SpiNNaker simulations—do not model
the affects of this structural complexity. Typically models with
more complex dendritic trees are simulated by splitting the
dendritic tree into compartments within which the membrane
voltage is assumed to be constant. Each of these compartments
is then simulated numerically with ohmic channels being used
to exchange current with neighboring compartments (Dayan
and Abbott, 2001, p. 217). Potentially our new simulator
could provide the basis for mapping such a model onto
SpiNNaker by adding dendritic compartment processors. The
dendritic compartment processors would, like the current
neuron processors, receive synaptic input from synapse
processors through memory buffers. Additionally they would
also receive membrane voltages from neighboring neuron
and dendritic compartment processors through additional
memory buffers. During each simulation time step the dendritic
compartment processors would update the state of their dendritic
compartment and write its membrane voltages to a memory
buffer.

4.3. Design of Future Neuromorphic
Hardware
The synapse-centric simulator we present in Section 2.3 transfers
input currents or conductances between cores via buffers in
external memory because SpiNNaker provides no other means of
bulk on-chip communications. The SpiNNaker communications
NoC is designed for the low latency transfer of the small
packets used to represent spikes rather than bulk transfers
and the system NoC does not support direct core-to-core
communications (Plana et al., 2007).

In Section 3.1 we demonstrate that the extra external memory
bandwidth this requires is unlikely to saturate the memory
bandwidth of the current SpiNNaker system. However, while
the basic computational units of future, software-programmable
neuromorphic systems are likely to be somewhat more powerful
than those used by SpiNNaker, such systems are likely to
obtain improved performance largely through taking advantage
of smaller process sizes in order to integrate more cores
into each chip-multiprocessor (CMP) (Olukotun et al., 1996).
Furthermore, the gap in performance between DRAM and
CPUs has only increased since the SpiNNaker architecture
was originally conceived, meaning that providing sufficient
external memory bandwidth for a CMP with a larger number
of cores is likely to present a significant challenge. These
architectural pressures act to make external memory bandwidth
more precious, meaning that the extra demands of the synapse-
centric approach may be unacceptable. It is also likely that
future systems will target the simulation of more complex
neuron models, perhaps even the type of multi-compartmental
model discussed in Section 4.2. As Hopkins and Furber (2015)
discussed, in order to accurately simulate more complex models,
smaller simulation time steps are likely to be necessary but, as
Figure 8B shows, the increased frequency at which buffers have
to be exchanged further exacerbates the problem.

Beyond our synapse-centric approach, the ability to share data
between cores without sacrificing external memory bandwidth
allows any application to extract a second level of finer-grained
parallelism than message passing alone allows. This capability
could be incorporated into the design of future systems by
employing a NoC architecture that allows cores to access other
cores’ local memory, either directly or via a DMA controller. This
would have additional benefits for the system’s fault tolerance as
it would allow the contents of a crashed core’s local memory to be
transferred to another core allowing it to continue from the same
state.

4.4. General Applicability of the Approach
Typically, when large distributed computer systems are used
for simulating spiking neural networks (Morrison et al., 2005;
Kunkel et al., 2012), the simulations are run as batch processes
and the primary concern has been to minimize their memory
footprint so that the large networks can fit in the systems
memory. However, more recently, these distributed systems have
been used to run simulations in a closed-loop with virtual
robotic environments (Weidel et al., 2016): a situation in which
running in real time, or more generally, reducing run time
becomes more important. Knight et al. (2016) reported that,
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in order to approximately half the simulation time of the
modular attractor network discussed in Section 3.2, it had to
be distributed between more than 4× as many cores of a
Cray-XC30 supercomputer (Cray, 2013) resulting in each core
only simulating around 100 neurons. While large distributed
computer systems use a wide variety of MPI interconnect
technologies, the bandwidth they deliver generally drops as
message size reduces (Liu et al., 2003), meaning that in the
situation where each core is only simulating 100 neurons
packet size is likely to be sub-optimal. However, if a variant
of our synapse-centric approach was used on these systems,
synapses and neurons could be distributed between the cores
of each shared-memory compute node and the larger number
of neurons simulated on each neuron core would be able to
employ MPI to transmit spikes more efficiently. Additionally
because—unlike the SpiNNaker communications NoC—MPI is
not a multicast technology reducing the postsynaptic splitting of
synaptic matrices would reduce the number of cores spikes need
to be sent to.
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