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SUMMARY

Accurate optic disc (OD) segmentation has a great significance for computer-aided diagnosis of different
types of eye diseases. Due to differences in image acquisition equipment and acquisitionmethods, the res-
olution, size, contrast, and clarity of images from different datasets show significant differences, resulting
in poor generalization performance of deep learning networks. To solve this problem, this study proposes
a multi-level segmentation network. The network includes data quality enhancement module (DQEM),
coarse segmentation module (CSM), localization module (OLM), and fine segmentation stage module
(FSM). In FSM, W-Net is proposed for the first time, and boundary loss is introduced in the loss function,
which effectively improves the performance of OD segmentation. We generalized the model in the
REFUGE test dataset, GAMMA dataset, Drishti-GS1 dataset, and IDRiD dataset, respectively. The results
show that our method has the best OD segmentation performance in different datasets compared with
state-of-the-art networks.

INTRODUCTION

Accurate optic disc (OD) segmentation has a great significance for computer-aided diagnosis of different types of eye diseases. For example,

accurate OD segmentation can locate retinal blood vessels, which is one of the important steps to calculate central retinal artery equivalent

(CRAE) and central retinal vein equivalent (CRVE), and these two parameters are important for early detection and diagnosis of diabetes and

hypertension.1 In addition, OD segmentation also helps to establish a retinal frame, which can be used to determine the location of many

retinal abnormalities, such as exudates, edema, microaneurysms, and hemorrhages.2

Recently, convolutional neural networks (CNN) for medical image segmentation have been more satisfactory than traditional human-

based feature extraction methods. The fully convolutional neural network (FCN)3 solves the problem of pixel-by-pixel classification (i.e., se-

mantic segmentation) using CNN. The emergence of U-Net4 has contributed significantly to the wide application of CNNs in medical image

segmentation. To extend the use of U-Net, Zhou et al. added a multi-layer adaptive depth mechanism to U-Net and proposed U-Net++.5

Considering that the receptive field limits themodel, Google’s teamemployed a segmentation framework of theDeepLab series using atrous

convolution.6–9 Inspired by the U-Net, DeepLab v3+7 adopted a fusion strategy of multi-scale features to advance the segmentation perfor-

mance. In the field of OD segmentation of CFP, Hua zhu et al. presented amulti-stage segmentationmethod that firstly localizes theOD, then

performs spatial transformation using polar coordinate transformation, and finally uses M-Net for segmentation.10

Despite the demonstrated utility of OD segmentation, there is no universally accepted method capable of segmenting accurately and

efficiently across a wide variety of datasets. A fundamental assumption of deep learning is that the distribution of samples is independent

and identical. That is, themodel will performwell if the data distribution between the training and testing dataset is similar to the appearance

of the images. However, due to different acquisition devices and methods, the acquired images vary significantly in resolution, size, contrast,

sharpness, etc. We refer to this difference between datasets as domain shift. In this study, we use four OD datasets: GAMMAdataset, Drishti-

GS1 dataset, and IDRiD dataset. The differences between these datasets are meticulously presented and analyzed in Figure 1 and Table 1.

Current methods are usually trained on a particular dataset and can only performwell on the corresponding test set. However, in cases where

the differences between the test and training set images are more pronounced, or the image contrast is poor, the inference ability of the

model is often unsatisfactory. For example, M-Net10 shows outstanding segmentation performance on the REFUGE dataset, yet when the

model is used to infer other datasets, its performance becomes unsatisfying, as shown in Figure 2.

In order to obtain a model with good generalization performance and accurate OD segmentation results on different datasets, we pro-

pose a multi-level segmentation model, which is trained on a single dataset and has good OD segmentation results on different datasets.

Some researchers have proposed many effective methods, which can be divided into two categories based on whether the majority of

the network is generative adversarial networks (GAN)11–13 or semi-supervised.14–16
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Generative adversarial networks

The fundamental idea of the GANmethods is to learn the image distribution from the source and target domains. In the inference phase, the

images in the target domain are transformed into the source domain, and the transformed images are segmented. In clinical practice, the

generator adds extra and false information to the transformed images, which does not fully reflect the real situation of the patient. In addition,

this false information will also affect the segmentation accuracy.

Semi-supervised networks

The semi-supervised approach obtains a segmentor by gold-standard learning of the source domain data, then applies the model to images

in the target domain to obtain pseudo-labels. Again, researchers will fine-tune themodel under the supervision of pseudo-labels to solve the

problem of the data domain transfer. The deficiencies of these methods can already be reflected in principle. If we want to generalize the

model on a new dataset, we need to retrain or fine-tune the model with the new dataset. Accordingly, the generalization performance of

this model will be limited. Zhu et al. developed a generic OD and OC segmentation network for multi-device CFP to address these issues.17

The authors mixed CFPs from different datasets and then trained and tested them on the mixed dataset. This approach performs well on the

hybrid dataset but may not work well for images without similar distribution in the hybrid dataset.

RESULTS

Evaluation metric

In this study, the segmentation performance is evaluated by Dice Coefficient, IOU, and Hausdorff Distance, respectively:

Dice
�
pred;gt

�
=

23
�
predXgt

�
pred+gt

(Equation 1)

Figure 1. Examples of different datasets

From left to right are REFUGE’s training dataset, validation dataset, test dataset, Drishiti-GS1 dataset, and IDRiD dataset.

Table 1. An overview of the datasets

Dataset Number of images Resolution R G B

Train 400 2056 3 2124 27.37 G 7.10 42.79 G 9.51 71.86 G 15.18

Val 400 1634 3 1634 54.88 G 9.77 68.92 G 10.88 104.37 G 12.79

Test 400 1634 3 1634 56.51 G 9.15 69.03 G 10.48 102.99 G 12.48

Drishti-GS1 101 (1741–1845) 3 (2046–2468) 12.95 G 5.82 40.80 G 12.09 85.61 G 21.31

GAMMA 100 2000 3 2992

1934 3 1956

10.23 G 8.47 33.08 G 10.58 66.73 G 16.16

IDRiD 81 2848 3 4288 17.01 G 14.63 57.83 G 10.34 118.32 G 15.03

Train, Val, and Test are three subsets of the REFUGE dataset. Drishti-GS1 and IDRiD contain Train and Test, respectively, in the corresponding datasets. GAMMA

contains only the Train subset. (1741–1845)3 (2046–2468) indicates that in the Drishti-GS1 dataset, the horizontal resolution is distributed from 1741 to 1845, and

the vertical resolution is distributed from 2046 to 2468.
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IOU
�
pred;gt

�
=

predXgt

predWgt
(Equation 2)

HðA;BÞ = maxðhðA;BÞ;hðB;AÞÞ (Equation 3)

wherepred is the prediction result, and gt is the annotation information of the dataset. In our experiments, pred and gt are binary images.We

use the average Dice and the minimum Dice to represent the generalization performance. The average Dice can reflect the segmentation

performance for most cases, whereas the minimum Dice can reflect the performance for the worst quality images. In a sense, the minimum

Dice represents the generalization performance more correctly.

Figure 2. Segmentation performance of M-Net in different OD datasets

Table 2. The average Dice of ablation experiments

Avg Dice REFUGE Train REFUGE Val REFUGE Test Drishiti-GS1 GAMMA IDRiD

FCN 0.9596 0.9577 0.9543 0.9534 0.858 0.8095

UNet 0.9532 0.954 0.9534 0.9423 0.8723 0.8173

Unet++ 0.9525 0.9488 0.9459 0.4247 0.6197 0.7963

PSPNet 0.9593 0.9554 0.955 0.9469 0.8894 0.8403

deeplabV3+ 0.9563 0.956 0.9519 0.8808 0.8967 0.8605

Mnet 0.9625 0.9619 0.7953 0.9498 0.898 0.739

pOSAL 0.9696 0.9536 0.9601 0.9533 0.9383 0.913

CE-Net 0.9796 0.9519 0.9512 0.9217 0.8862 0.9077

W-Net 0.9783 0.9749 0.9611 0.9534 0.941 0.9525
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Comparison experiments results

On each dataset, we trained FCN, UNet, UNet++, PSPNet, deeplabv3+, MNet, CE-Net, pOSAL, and W-Net, respectively. In this study, we

produce the average Dice Coefficient, Hausdorff Distance, and IOU of W-Net and each SOTA model to compare the average segmentation

performance of the models. In addition, we also produce the minimum Dice Coefficient to compare the worst segmentation performance of

the models. In addition, we also calculate theminimumDice Coefficient to compare the worst segmentation performance of themodels. The

larger the Dice Coefficient and IOU, the better the segmentation performance, and the smaller the Hausdorff Distance, the better the seg-

mentation performance.

It can be seen from Table 2 that W-Net is only slightly lower than CE-Net on the training set of REFUGE and does not exceed 0.7 percent-

age points. However, in the Drishiti-GS1, GAMMA, and IDRiD datasets, the segmentation performance of W-Net is better than other

SOTA models. Especially on the IDRiD dataset, W-Net is 3.95% higher than the best performing pOSAL model. In addition, as shown in

Tables 3 and 4, we also calculated the average Hausdorff Distance and average IOU, further verifying that the average segmentation

performance of W-Net in the other three datasets is better than other SOTA models.

More importantly, W-Net’s OD segmentation performance is significantly better than other SOTA models when segmenting OD images

with large differences in training datasets. It can be seen from Table 5 that when the image is segmented with a large difference from the

training dataset, some SOTA models will appear in the extreme case of dice = 0, and the OD image cannot be segmented. At this time,

the minimum Dice Coefficient of W-Net can still get 64.57%, which is 18.62% higher than the best performing Mnet model, and its OD seg-

mentation performance is significantly better than other SOTA models. In summary, compared with other SOTA models, the average seg-

mentation performance of W-Net trained with a single dataset in the other three datasets is slightly improved, and it has obvious advantages

in the segmentation of pictures with large differences. Therefore, the model has better generalization performance.

Ablation experiments results

To verify the effectiveness of the multi-level segmentation framework and boundary loss function, two ablation experiments are conducted.

Because the backbone of W-Net is CE-Net,23 CE-Net is used to verify the effectiveness of the multi-level segmentation framework. CE-Net1

was OD segmentation only by CE-Net, and CE-Net2 is OD segmentation using CE-Net as FEM in the multi-level segmentation framework.

The ablation results are shown in Tables 6 and 7. By comparing the average Dice of CE-Net1 and CE-Net2, we can conclude that the multi-

stage segmentation model is less effective than the single stage in the case of a similar image (test dataset). Nevertheless, the advantages of

the multi-stage model can be fully revealed by generalizing images from other datasets. We believe that there are two reasons for the

Table 3. The average IOU of ablation experiments

Avg IOU REFUGE Train REFUGE Val REFUGE Test Drishiti-GS1 GAMMA IDRiD

FCN 0.9232 0.9196 0.9137 0.9124 0.7942 0.7385

UNet 0.9124 0.9129 0.9119 0.8946 0.81 0.756

Unet++ 0.9108 0.9041 0.9008 0.3324 0.6326 0.7029

PSPNet 0.9224 0.9154 0.9147 0.9014 0.8153 0.7699

deeplabV3+ 0.9175 0.9165 0.9094 0.8331 0.8345 0.7905

Mnet 0.9286 0.9272 0.676 0.907 0.8306 0.5925

pOSAL 0.9414 0.9123 0.924 0.9118 0.8968 0.8533

CE-Net 0.9602 0.9097 0.9079 0.8721 0.804 0.8535

W-Net 0.9568 0.9517 0.9512 0.9137 0.8898 0.9078

Table 4. The average Hausdorff Distance of ablation experiments

Avg Hausdorff REFUGE Train REFUGE Val REFUGE Test Drishiti-GS1 GAMMA IDRiD

FCN 0.2357 0.1891 0.2348 0.4252 1.1667 7.3951

UNet 0.4243 0.2515 0.2578 0.7203 1.5006 13.7276

Unet++ 0.4107 0.6188 1.0824 55.0164 16.2824 38.4777

PSPNet 0.2346 0.2027 0.225 0.5845 1.4459 2.3588

deeplabV3+ 0.3427 0.2147 0.2689 2.2018 1.8171 14.4152

Mnet 0.2171 0.1741 4.873 0.5499 1.9571 7.9059

pOSAL 0.1202 0.2238 0.1678 0.3594 4.6172 1.5848

CE-Net 0.0584 0.2663 0.3309 1.9567 2.9993 5.844

W-Net 0.0675 0.0688 0.0711 0.3835 0.555 0.5354
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composition of this phenomenon. On the one hand, information reduction is caused by cropping and resampling. On the other hand, the

interpolation method adopted cannot be adapted to the original image in the postprocess. By comparing the minimum Dice of CE-Net1

and CE-Net2, we can clearly find that themulti-stage segmentationmodel can handle relatively difficult images to segment in the OD region.

This fully reflects the effectiveness of this method in improving the robustness of the model.

In order to verify the effectiveness of the loss function, an ablation experiment of boundary loss is carried out. It can be seen from Equa-

tion 15 that the loss function of the left branch inW-Net consists of boundary loss and Dice loss. When setting a = 1, b = 0.5, there is only dice

loss and no boundary loss in the loss function. The experimental results are shown in the "W-Net-no-BL" rows of Tables 6 and 7.When setting

a = b = 0.4, the loss function of W-Net consists of boundary loss and dice loss and achieves the best generalization performance. The exper-

imental results are shown in the "W-Net" row of Tables 6 and 7.

Influence of super parameter

In order to make our proposed method work with better performance, we conducted the following experiments. First, we analyzed the pa-

rametersa and b, and the results are shown in Table 8. The generalization performance is best andmost stablewhen a= 0.4 and b= 0.4. At this

point, the output is equivalent to being influenced by the left and right branches.Our explanation for this is that the nature ofW-Net is a voting

mechanism, and the performance of the left and right branches is comparable, so it can achieve good results under the same influence. Sec-

ondly, we wanted to knowwhich strategy facilitates generalization in the case of using boundary loss, fine-tune training, or direct training.We

set the same parameters to direct training and fine-tune training, and the experimental results are shown in Table 8. With these experiments,

we can conclude similarly to that in18: when using boundary loss, we first need to learn the region information and then fine-tune the model

under boundary supervision.

DISCUSSION

In this study, we combine the prior knowledge of manual segmentation of OD and develop amulti-stage segmentation framework to accom-

modate the problem of data domain shift. This framework can be divided into four modules: data quality enhancement module (DQEM), OD

coarse segmentation module (CSM), OD localization module (OLM), and fine segmentation stage module (FSM). Our proposed model’s

average Dice and minimum Dice metrics are more advanced in all four datasets than the state-of-the-art (SOTA) method. Particularly, for

the FSM module, we innovatively proposed W-Net. With multiple branches, W-Net learned boundary information while learning the region

information, and the multi-branch structure can also achieve the purpose of ensemble learning.

More importantly, we implement cross-dataset testing in this paper. The comparative experiments show that our proposed method can

achieve comparable performance with the SOTA method with good-quality images and far outperforms the SOTA method in images with

poor contrast. This can be clearly seen in our comparative experiments that the robustness of the multi-stage W-Net model is far superior to

other SOTA methods. These experiments show that our proposed method dramatically improves robustness without retraining on new

datasets.

Table 5. The minimum Dice of ablation experiments

Min Dice REFUGE Train REFUGE Val REFUGE Test Drishiti-GS1 GAMMA IDRiD

FCN 0.6891 0.8651 0.7836 0.7375 0 0

UNet 0.4485 0.7702 0.7291 0.7615 0 0

Unet++ 0.5713 0.6642 0.1111 0 0 0

PSPNet 0.8148 0.8693 0.7533 0.7676 0 0

deeplabV3+ 0.6474 0.8238 0.6968 0 0 0

Mnet 0.6877 0.8131 0.3834 0.7661 0.4595 0.5418

pOSAL 0.8304 0.8212 0.8177 0.8135 0 0

CE-Net 0.9396 0.7161 0.7822 0.0006 0.3937 0

W-Net 0.9326 0.9259 0.8722 0.8654 0.6457 0.856

Table 6. The average Dice of ablation experiments

Method Train Val Test Drishti-GS1 GAMMA IDRiD

CE-Net1 0.9796 0.9519 0.9512 0.9217 0.8862 0.9077

CE-Net2 0.9735 0.9751 0.9464 0.9699 0.9264 0.9450

W-Net-no-BL 0.9782 0.9767 0.9602 0.9546 0.9386 0.9516

W-Net 0.9783 0.9749 0.9611 0.9534 0.941 0.9525
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Limitations of the study

Our work can effectively improve the robustness of OD segmentation; unfortunately there are two main limitations. On the one hand, the

multi-stage cascading method has defects, and on the other hand, our method cannot effectively improve the segmentation performance

of images with better quality.

In themulti-stage cascadingmethod, we only used CycleGAN as the DQEMmodule and used two data sets as the training sets of DQEM.

In order to further improve the generalization of the model, we can use multiple advanced generative adversarial networks, such as

MedGAN,27 stylegan,28–31 Pixel2style2pixel GAN,32 and Encoder4Editing33 to perform data enhancement on the four data sets respectively.

Through adversarial learning, synthetic images are generated from the source domain to the target domain and from the target domain to the

source domain, and the synthetic images are added to the training set for training together. Ultimately, the types of annotated images can be

greatly increased, thereby improving the generalization of the model.

There are three main reasons why our model cannot improve the segmentation performance of good-quality images: the performance

ceiling of OD segmentation, the accuracy loss caused by the resampling process of our method, and the limitation of the way the model ex-

tracts features. The limitation caused by the second reason can be improved by directly training the segmentation network through the GAN

method described earlier instead of multi-stage method. For the limitation of the way the model extracts features, inspired by ViT,25 it is

necessary to have a deeper understanding of the reasons why Transformer34 is successful in natural language processing. Models like

Swin Transformer,35 SegFormer,36 SegNeXt, etc. can be used for feature extraction.

Future expectations

One of our future research focuses on replacing our CFM with the newly proposed self-attention-based structure24–26 to enhance the perfor-

mance of OD localization, which may combine positional information to determine the location of OD. We propose a generalized ODmulti-

stage segmentation framework andW-Net. Furthermore, we will explore other segmentation tasks in the future using theW-Net proposed in

this paper, such as retinal blood vessel segmentation and arterial and vein segmentation in CFP.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Data quality enhancement module (DQEM)

Table 7. The minimum Dice of ablation experiments

Method Train Val Test Drishti-GS1 GAMMA IDRiD

CE-Net1 0.9396 0.7161 0.7822 0.0062 0.3937 0

CE-Net2 0.9302 0.9386 0.8218 0.8372 0.5844 0.7149

W-Net-no-BL 0.9178 0.877 0.8764 0.8044 0.6413 0.8304

W-Net 0.9326 0.9259 0.8722 0.8654 0.6457 0.8560

Table 8. The average Dice of parameter setting experiments

Fine-tune a b Train Val Test Drishti-GS1 GAMMA IDRiD

1 False 0.7 0.3 0.9771 0.9780 0.9593 0.9507 0.9377 0.9506

2 False 0.6 0.4 0.977 0.9763 0.9594 0.9564 0.9383 0.9510

3 False 0.5 0.5 0.9782 0.9767 0.9602 0.9546 0.9388 0.9525

4 False 0.4 0.6 0.9772 0.9774 0.9599 0.9538 0.9384 0.9512

5 True 0.45 0.45 0.9783 0.9767 0.9604 0.9559 0.9388 0.9526

6 True 0.4 0.4 0.9783 0.9749 0.9611 0.9534 0.941 0.9525

7 False 0.45 0.45 0.9733 0.9715 0.9597 0.9431 0.9386 0.9505

8 False 0.4 0.4 0.9672 0.9652 0.9589 0.9303 0.9403 0.9487
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B Coarse segmentation module (CSM)

B OD localization module (OLM)

B Fine segmentation module (FSM)

B DAC module and RMP module
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All experiments in this paper were runwith python3.8.0 coding on ubuntu 20.04. The framework used for implementation is Pytorch onNVIDIA

GTX1080Ti with 11GB memory. Our training process consists of 4 modules, and the training details are shown in below table. It should be

noted that in the FSM, we adopted themechanism of early termination to avoid overfitting. That is, the trainingwill be terminated if the overall

loss does not drop in 20 epochs or the learning rate for 10 epochs is less than 5e� 7.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

REFUGE Orlando J I et al.18 https://refuge.grand-challenge.org/

Drishti-GS1 Sivaswamy J19 http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/enter.php

GAMMA Wu J et al.38 https://aistudio.baidu.com/aistudio/competition/detail/90

IDRiD Porwal P20 https://idrid.grand-challenge.org/

Software and algorithms

Cycle-GAN Zhu J-Y et al.11 https://github.com/junyanz/CycleGAN

Resnet �101 He K et al.22 https://github.com/zhanghang1989/ResNeSt

SA-Unet Guo, Changlu et al.39 https://github.com/clguo/SA-UNet

CE-Net Gu Z et al.23 https://github.com/Guzaiwang/CE-Net

W-net This paper https://github.com/ts66666/OD

Pytorch Version1.11.0 https://pytorch.org/docs/1.11/

Python Version 3.8.0 https://www.python.org/downloads/release/python-380/

The training settings in our work

Module Network Optimizer Epochs Learning rate Loss function

QSEM Cycle-GAN Adam betas: (0.5, 0.999) 200 Strategy: poly learning rate

Initial: 0.0002

Decay iters: 50

Adversarial loss

Cycle loss

CSM SA-UNet SGD momentum = 0.9 100 Strategy: plateau

Patience: 50

Factor: 0.9

Initial: 0.01

Dice loss

(Continued on next page)
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The training sets used in DQEM are Val and IDRiD. The training set of domain A is IDRiD, and domain B is IDRiD. The input image is the

original image cropped out of the retinal foreground region and resampled to 256 3 256. Moreover, the IDRiD dataset is used here as the

training set for domain B because the data contrast in this dataset is deficient. We can use any dataset, even a clinically collected dataset, to

replace it.

We collect training sets from Train and Val. First, we translate the images into the target domain using the trained model in DQEM. Our

training data consit of both translated and augmented images (three times random rotations, three times random color transformation, and

three times random noise added to translated images). The input size of CSM is 256 3 256.

The training datasets of OLM are from Train and Val. Firstly, the foreground regions of these two datasets are cropped.We augment these

foreground images with the data augmentation of CFM, and we call these images the original images. Then we resize the original image to

128 3 128. Afterward, we crop the images with a kernel (stride 8 and size 32). Next, we perform an inverse transformation with the cropped

position information to get the corresponding patches from the original image. Then we resample these patches to 224 3 224. We definite

the patch containing the entireODarea as positive examples and the other patches as negative examples. Finally, we randomly remove nega-

tive examples so that the number of positive samples is comparable to negative ones.

The training data sources for FSM are Train and Val. We follow the steps in the flowchart in Figure 2 to obtain images that only contain the

whole OD and their annotation results. The input of this module is 256 3 256.

METHOD DETAILS

The multi-stage OD segmentation is presented in below figure, which maintains four modules: data quality enhancement module (DQEM),

OD coarse segmentationmodule (CSM), OD localizationmodule (OLM), and fine segmentationmodule (FSM). In FSM, we propose theW-net

structure, as shown in below figure.

Continued

Module Network Optimizer Epochs Learning rate Loss function

OLM ResNet101 SGD momentum = 0.9 100 Strategy: plateau

Patience: 50

Factor: 0.9

Initial: 0.0001

Cross-entropy loss

FSM W-Net Adam 1000 Strategy: poly learning rate

Initial: 0.0002

Power: 0.9

Boundary loss

Dice loss

Multi-stage OD segmentation in CFP flowchart

In the order of the arrows, the sequence is preprocessing, data quality enhancement, coarse optic disc segmentation, optic disc positioning, optic disc fine

segmentation, and postprocessing.
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For the convenience of description, we denote the image to be segmented as I˛Rh3w33, where h andw represent the height andwidth of

each input scan, respectively.

Data quality enhancement module (DQEM)

To apply OD segmentation to different data domains and improve model inference’s robustness, we first use Cycle-GAN11 for data quality

enhancement. The DQEMmodule transforms various CFPs into similar image domains, thus improving the contrast of the OD region of the

CFPs. In this way, we achieve the purpose of improving the robustness of the CSM. In this process, the foreground needs to be cropped

initially, and we denote it as Icrop ˛R256325633. The output of this module is Icycle ˛R256325633. In general, the computational procedure of

DQEM can be summarized as:

Icycle = GA
�
Icrop

�
(Equation 4)

Icrop = R ðI � ImaskÞ (Equation 5)

Here, Rð,Þ stands for resampling function, which interpolates the input image to 256 3 25633 by bilinear interpolation. Imask is an image

generated by thresholding the grayscale image of image I that only contains the retinal foreground. When the gray level of the gray image of

image I is greater than 5, the pixel value of Imask is 1, otherwise it is 0. Then we use the largest connected area as Imask .

It is worth noting that the images generated by Cycle-GAN may change the original features, such as generating structures that are not

present in the input.

This false information generated by GANs will affect the segmentation accuracy. The reason we can use a GAN is that our next stage of

segmentation is a coarse segmentation whose purpose is to localize the OD region rather than segmentation.

Coarse segmentation module (CSM)

CSM segments the image Icycle generated by DQEM. CSMdoes not need to produce fine segmentation, i.e., we allow themodel to recognize

non-OD regions as OD regions and tolerate rough boundaries as well. In other words, we do not pursue accuracy, but only the recall of CSM.

We use SA-UNet to perform a coarse segmentation of OD. As shown in the below figure, compared with the U-Net block, the SA-UNet block

adds DropBlock and batch normalization (BN) layer,39 which can enhance important features and suppress unimportant features, thereby

improving the network’s representation ability. In addition, Spatial AttentionModule (SAM) is introduced into SA-UNet, aggregates the chan-

nel information of a feature map by using the maximum pooling and average pooling, generates two 2D maps Fsmp, and Fsmp, and then

concatenated and convolved by a standard convolution layer, producing our 2D spatial attention map. Spatial attention can enhance

Illustration of the proposed W-Net

The left branch is to learn boundary information of OD. The right branch is to learn region information. The backbone is similar to CE-Net. The last down-sampling

layer adopts a dense atrous convolution module (DAC) and residual multi-kernel pooling module (RMP).
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important features and suppress unimportant ones, thus improving the representation ability of the network, the final output of SAM is calcu-

lated as:

PCS = F ,MSðFÞ
= F , s

�
f 73 7ð½MaxPoolðFÞ;AvgPoolðFÞ�Þ

�

= F ,s
�
f 73 7

�h
FS
mp;F

S
ap

i

where the input image is F ˛RH3W3C and the output image is PCS ˛RH3W3C . f7 3 7($) denotes a convolution operation with a kernel size of 7

and s ($) represents the Sigmoid function.

We denote the probability map of the SA-UNet outputs as Pcs, and the output of this module as ODcs.

ODcs =

�
1 Pcs RT
0 Pcs < T

(Equation 6)

where T is the threshold value. In this paper, T = 0.33max (Pcs). This way, this stage’s output can contain at least one OD region.

OD localization module (OLM)

Due to the settingmethod of T, there are many false positive regions inODcs, and the role of OLM is to determine which region contains OD.

The positional between the ODcs and image I has a corresponding mapping relationship. Therefore, for each connected region Ri of ODcs,

the corresponding region R0i can be found in image I. According to the actual situation, we crop out IPi ˛Rhi3wi33 in the image I as the cor-

responding region Ri. After that, we use ResNet10122 to divide IPi into patches that contain the wholeOD and patches that do not contain the

Original U-Net block (left), SA-Unet block (right)
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OD, and keep only the IPi that contains the wholeOD, which we denote as IP. The cropping strategy is to crop the hi3wi region on the image I

with the center of each connected region as the center. In this paper, hi = wi = 0:43 min ðh;wÞ, and we can express this process as

IP =
X
i

IPi � øi (Equation 7)

øi =

�
1 POL RT
0 POL < T

(Equation 8)

where i is the index of the connected region. POL is the output probability of the OD localization model ResNet101. T is the threshold value,

T = max (POL).

Fine segmentation module (FSM)

Figure in method details showsW-net with a W-shaped decoder (left branch) -encoder (middle) -decoder (right branch) structure, which con-

sists of two branches similar to CE-Net23 and shares the same down sampling feature maps. In the encoder module, we use the first four

feature extraction blocks of the pre-trained ResNet-3422 without the average pooling layer and the fully connected layer. Between the

encoder and decoder is the context extractor module, which is composed of DAC block and RMP block. This module is described in detail

in DACmodule and RMPmodule. In each step of the decoder includes a 13 1 convolution, 33 3 transpose convolution and 13 1 continuous

convolution, the number of feature channels is halved. Then, the corresponding feature map of the encoder is connected by skip connection

block, the final output is the same size as the original input mask. Prior knowledge suggests that the boundary of OD is circular or elliptical.

Accordingly, we use the boundary loss inspired by21 tomake themodel learn the edge information of OD. For the left branch, boundary loss21

is used as the loss function so that the network can learn more edge information. For the right branch, dice loss is used to get more region

information. Combining the boundary features and region features of both left and right branches, the loss functions of the left and right

branches are added together as the final loss function, and finally the output image of OD segmentation is obtained.

DAC module and RMP module

The backbone of the network is borrowed from CE-Net.23 The dense atrous convolution module (DAC) and the residual multi-kernel pooling

module (RMP) are used in the last down-sampling layer. As shown in below figure, the DACmodule has three branches. The atrous rate fields

of the convolution kernel of each branch are 3, 7, 9, and 19. Finally, a 13 1 convolution in each branch is used for feature channel sorting, while

the other branch does not perform any operation. Using a large atrous rate broadens the atrous rate field of the model without enlarging the

computational effort, allowingmore comprehensive features to be extracted, while using a smaller atrous rate convolution allowsmore subtle

features. We can express it as,

Fout ½j� =
X4

k = 0
ConvðFin½j�Þ (Equation 9)

where for the jth input feature map Fin½j�, its output Fout ½j� is the sum of the five branches. Convð,Þ is a cascaded atrous convolution operation

performed on each branch.

In semantic segmentation, pooling layers can broaden37 the atrous rate field of convolution kernels, but reduce the accuracy. To solve this

problem, we use an RMP module like CE-Net. The RMP module has multiple pooling kernels that can extract different levels of contextual

information. And we use 1 3 1 convolution at each layer of the pooling operation to reduce the dimensionality of the feature map to 1/N

of the original dimensionality, whereN is the number of channels of the original featuremap. Then, we up-sample the low-dimensional feature

Illustration of DAC and RMP module

On the left is the DACmodule, which has 5 branches: 4 atrous convolution branches and 1 feature branch. The DACmodule improved the receptive field without

increasing the number of parameters. On the right is the RMP module, which has 4 pooling kernels (23 2, 33 3, 53 5, 63 6) and a 13 1 convolution layer. The

RMP module improved the ability to learn features of different scales.
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map and obtain features of the same size as the original feature map through bilinear interpolation. Finally, we concatenate the original fea-

tures with the up-sampled feature map as output. This process can be expressed as follows,

Fpool½i� = up
�
conv1

�
MaxpoolðFinÞ½i�

	

(Equation 10)

Fout = Fpool½0�;Fpool½1�; ,,,;Fpool½k� (Equation 11)

where Fpool½i� represents the output corresponding to the i-pooling kernel. upð,Þmeans to interpolate in a bilinear fashion. conv1ð,Þ is a 1*1

convolution operation. K is the number of pooling kernels, which is taken as k = 4 in this paper. The sizes of the pooling kernels are 23 2, 33 3,

5 3 5, and 6 3 6, respectively.

The decoding structure uses 1 3 1 convolution-333 deconvolution-131 convolution. The skip connection part is performed with the re-

sidual connection module in CE-Net, i.e., the output feature is the sum of different input features.

QUANTIFICATION AND STATISTICAL ANALYSIS

To accommodate the circular structure of the OD, in the left boundary branch, we add boundary loss21 to the training process of W-Net. The

theory of adding boundary loss has been verified in.21 The computational procedure can be formulated as follows

BLðy; yÞ =
X
q

4y

�
q
�
Sq

�
q
�

(Equation 12)

4y

�
q
�
=

�
Dy

�
q
�

q;y
�Dy

�
q
�

q˛ y
(Equation 13)

where SqðqÞ is the forward output result of the network model yl at point q, and DyðqÞ is the distance between point q and the closest point

ZvGðqÞ on the contour vy.

Thus, the loss of our left branch can be expressed as,

Diceðy; yÞ = 1 � 23
y3 y

y+y
(Equation 14)

LLðy; ylÞ = bDiceðy; ylÞ + ð0:5 � bÞ3BLðy; ylÞ (Equation 15)

where yl is the output of the left branch and y is the label corresponding to the input. b is a hyperparameter that will be discussed in the in-

fluence of super parameter section. In the right branch, the loss we use is Dice loss, which is,

LRðy; yr Þ = Diceðy; yrÞ (Equation 16)

where yr is the output of the left branch and y is the label corresponding to the input. We use the weighted loss as our final loss function:

Lðyl; yr ; yÞ = LLðy; ylÞ+aLRðy; yr Þ (Equation 17)

where a is a hyperparameter, which we will explain in detail in the experiments and results section.
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