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Neurophysiological evidence from animal studies suggests that frontal corticolimbic sys-
tems support early stages of learning, whereas later stages involve context representation
formed in hippocampus and posterior cingulate cortex. In dense-array EEG studies of
human learning, we observed brain activity in medial prefrontal cortex (the medial frontal
negativity or MFN) was not only observed in early stages, but, surprisingly, continued to
increase as learning progressed. In the present study we investigated this finding by exam-
ining MFN amplitude as participants learned an arbitrary associative learning task over three
sessions. On the fourth session the same task with new stimuli was presented to assess
changes in MFN amplitude.The results showed that MFN amplitude continued to increase
with practice over the first three sessions, in contrast to P3 amplitudes. Even when partic-
ipants were presented with new stimuli in session 4, MFN amplitude was larger than that
observed in the first session. Furthermore, MFN activity from the third session predicted
learning rate in the fourth session.The results point to an interaction between early and late
stages in which learning results in corticolimbic consolidation of cognitive context models
that facilitate new learning in similar contexts.

Keywords: learning, ERP, context, expertise, medial frontal cortex, executive control

INTRODUCTION
An important question in neurophysiological studies of human
cognition is how limbic circuits regulate cortical networks in the
motivational control of learning and memory (Tucker and Luu,
2007). Animal studies have identified two separate circuits under-
lying discriminative learning: one supports the rapid acquisition
of new skills under changing conditions, and a second system
supports gradual development of the animal’s cognitive represen-
tation of the environmental context, allowing fast, and efficient
regulation of actions that are congruent with the context model
(Gabriel et al., 2002). The early and late systems allow learning
to be graded: there is a progression from intensive monitoring
and control early in the learning cycle, when stimulus–response
contingencies remain undeveloped, toward more efficient and
automated control once the stimulus–response contingencies have
been sufficiently mapped. The first stage is marked by rapid learn-
ing, in which considerable improvement in performance can be
seen within a single training session, whereas the second stage
is characterized by gradual improvements in performance, as the
practiced behavior is incorporated within the animal’s “neuronal
model” of the environmental context (Gabriel et al., 2002).

Lesion studies in animals have suggested that the fast or early
learning system includes the anterior cingulate cortex (ACC),
amygdala, and mediodorsal nucleus of the thalamus. The unique
properties of the fast learning system, specifically its contribution
to overcoming habitual responses, led Gabriel et al. (2002) to sug-
gest that this circuit is integral to what has been called the executive
control of cognition. Bussey et al. (2001) have shown that the ven-
tral and orbital prefrontal cortices should also be included as part

of this fast learning system. Lesion evidence suggested that the
slow learning system is centered on the posterior cingulate cortex
(PCC) and anterior thalamic nucleus (Gabriel et al., 2002), inte-
grating hippocampal contributions to the dorsal cortical pathway
for both spatial cognition and the pragmatic control of actions
(Tucker and Luu, 2007).

Perhaps consistent with the animal studies, results from human
imaging studies have also converged to identify brain structures
involved in the early and late stages of learning (Chein and Schnei-
der, 2005). For example, the prefrontal lobes (including the infe-
rior prefrontal cortex, dorsolateral prefrontal cortex, and medial
prefrontal cortex) and ACC are engaged early in learning. Dur-
ing the later stage of learning, however, the frontal structures of
cognitive control exhibit a reduction in activity. In contrast, in
the later stage the posterior regions, including PCC, precuneus,
cuneus, superior parietal lobule, and intraparietal sulcus were
found to show increased activity in the functional magnetic res-
onance (fMRI) observations (Chein and Schneider, 2005). The
accumulated evidence led Chein and Schneider to propose a dual-
processing model underlying human learning that has interesting
parallels with the neurophysiology of animal learning (Tucker and
Luu, 2007).

Event-related potential research on repetition suppression (RS),
wherein repeated presentation of the same stimulus produces
attenuated cortical responses, can be used to understand plasticity
induced changes associated with learning (see Garrido et al., 2008;
Race et al., 2010; Summerfield et al., 2011). Different forms of
learning, such as stimulus–decision and stimulus–response, pro-
duce RS effects in different cortical regions (Race et al., 2010).
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Chein and Schneider’s (2005) proposed that learning-related brain
changes reflect reduced dependencies on brain regions involved in
controlled processes and the formation of local associations in
brain regions that are specifically engaged by the task, such as
visual areas for visual learning. Consistent with this proposal Gar-
rido et al. showed that RS can be accounted for by changes in both
extrinsic (between brain regions) and intrinsic connections.

Based on the dual-stage model of learning, we conducted two
studies that were guided by the hypothesis that initial learning
requires greater executive control from frontolimbic networks
(centered on the ACC) and that more automated processing
engages posterior corticolimbic networks (centered on the PCC;
Luu et al., 2007, 2009). In a simple code-learning task in which sub-
jects read a number on the screen and had to learn which finger to
press,we examined cortical activity in response to both the number
target (Luu et al., 2007) and the feedback stimulus (Luu et al., 2009)
using dense-array (128 channel) EEG. The results revealed that in
response to the target stimulus, several neural response changes
with learning matched the theoretical predictions. As predicted,
posterior cortical regions (including parietal, PCC, and mediotem-
poral cortices, indexed by the P3) became progressively engaged as
participants discovered and learned stimulus–response mappings.

Surprisingly, activity in the medial prefrontal cortex (indexed
by the medial frontal negativity, MFN) increased as learning pro-
gressed, even after the early stage was completed. The MFN is
distinct from other negativities recorded along the midline, such
as the feedback-related negativity (FRN) and error-related nega-
tivity (ERN). As shown by Luu et al. (2009), the FRN is localizable
to the very rostral aspects of the ACC whereas the MFN is gener-
ated by more dorsal and caudal cortical areas (such as ACC, medial
premotor cortex, and mid-cingulate cortex). Unlike the MFN, the
FRN shows marked reduction after learning. The MFN is also dis-
tinguishable from the ERN in these previous studies because it is
defined relative to correct targets; the ERN is a response-locked
component that is elicited by erroneous responses and localizable
to more rostral aspects of the ACC than the MFN (see Luu et al.,
2003; Luu et al., 2007).

These previous results (Luu et al., 2007, 2009) were obtained
within single-session studies wherein early learning was defined
as the period before, and late learning as the period after learning
was achieved, in other words, after the participants’ consistent
performance demonstrated knowledge of the code. Consistent
performance was indicated by reduced variability in reaction times
(RTs), a characteristic of automated cognition and well-integrated
learning (Segalowitz and Segalowitz, 1993). Nonetheless, although
learning the code was achieved, it could be argued that the MFN
persisted because participants did not have enough practice to
acquire fully automated performance. Would the responses of
frontal corticolimbic circuits, including the MFN, decrease if
learning progressed to a more fully automatic stage, wherein
controlled processes of the frontal lobe would be more fully
disengaged?

We addressed this question in the present study by examin-
ing the MFN during the number code-learning task across four
sessions. In the first three sessions, participants learned, and then
practiced, the task with the same stimulus–response mappings.
This allowed us to broaden our definition of the late learning

stage and to explore the influence of extended practice (in sessions
2 and 3) on the MFN and P3 components. In a fourth session,
participants were required to learn new stimulus–response map-
pings, but within a task context that was now fully familiar. This
design allowed us to test the hypothesis, predicted by the the-
ory that frontal controlled processes decrease with practice, that
the extended practice of sessions 2 and 3 would lead to decreases
in MFN amplitude. Under this hypothesis, the MFN component
would reappear with the new code mapping (and effortful control)
to be learned in session 4.

We also examine the P3 response to understand the unique-
ness of the MFN changes. We hypothesize that P3 amplitude
would increase during learning and that it will decrease when new
stimulus–response mappings must be learned.

MATERIALS AND METHODS
PARTICIPANTS
Participants were recruited from the general student population at
the University of Oregon. Fifteen right-handed participants com-
pleted the study (nine males), with ages ranging between 18 and
37 years of age (mean = 22.8, SD = 5.5) and education ranging
between 12 and 18 years (mean = 15, SD = 1.7). All participants
had normal or corrected-to-normal vision. Participants reported
no history of seizures or head injuries that resulted in loss of con-
sciousness, nor the taking medications that could affect the EEG
(e.g., anticonvulsants) or illicit drugs. Informed written consent
was obtained from each participant prior to participation in the
studies. The protocol was approved by the EGI and University of
Oregon institutional review boards.

TASK
The task was a variant of the go/no-go discrimination task devel-
oped by Newman et al. (1990). On each trial, 1 of 16 two-digit
codes (“targets,” e.g., 15, 23, 47) was presented centrally on a
computer screen (1500 ms maximum duration). Targets were pre-
sented using 18-point, bold Courier New font type. Participants
were seated 65 cm from the center of the computer screen. Tar-
gets were randomly presented, with the constraint that the same
target could not occur on consecutive trials. Half of the targets
were pre-designated as “go” stimuli and the other half were pre-
designated as “no-go” stimuli. Participants were required either to
press a button or to withhold a button-press response upon the
presentation of a target. For go stimuli, which required a response,
participants had to learn to respond with the appropriate finger of
the appropriate hand. There were four response choices (the index
and middle finger of each hand) and each of the eight targets was
consistently mapped to one of these four fingers (two targets per
finger). This mapping was arbitrarily determined. The target was
terminated when participants made a response or 1500 ms elapsed.
After each response (or non-response) contingent feedback was
provided immediately.

The feedback provided participants with all the information
needed to learn the stimulus–response rules, through shaping cor-
rect responses in an approximation sequence. The feedback stimuli
were: (1) ErrorGo (error of omission in response to go target), (2)
ErrorNG (error of commission in response to no-go target), (3)
Correct (correct response to go target but response committed
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with wrong hand), (4) CorrectH (correct response with correct
hand to go target but response committed with wrong finger), (5)
CorrectNG (correct withholding of response to no-go target), and
(6) CorrectF (correct response with correct hand and finger to go
target). The feedback was presented for a maximum duration of
10 s, unless terminated by the participant with a button press. The
inter-trial interval varied between 1500 and 2500 ms. A total of 800
trials was presented in each session, grouped into 100-trial blocks.

Participants were informed that correct performance (Cor-
rectNG and CorrectF) would earn eight points, errors (ErrorGo
and ErrorNG) would result in a loss of eight points, and partially
correct responses (Correct and CorrectH) would result in losses
of four and two points, respectively. Participants started the study
with zero points. To motivate participants to learn the task, par-
ticipants were informed they would be paid a monetary bonus
according to the number of points they accumulated by the end
of the study. At the end of each block, participants were presented
with the cumulative earned points and recorded them on a paper
form.

All participants completed four study sessions. The average
time between the first and fourth session was 9 days (range 3–
17, SD = 3.5). In sessions 1–3, participants were presented with
the same target–response mappings. In the fourth session, partici-
pants were presented with new target–response mappings to learn.
Note that new target stimuli were used in the fourth session (i.e.,
the target–response mappings were not simply switched).

For each session, participants were paid $15 for their par-
ticipation and an additional amount, ranging between $25 and
$45, depending on task performance. On average they earned $40
per session.

EEG RECORDING
The EEG was acquired using a 256-channel HydroCel Geodesic
Sensor Net (Electrical Geodesics, Inc., Eugene, OR, USA). All elec-
trodes impedances were kept below 70 kΩ (Ferree et al., 2001).
Recordings were referenced to Cz. The EEG was bandpass fil-
tered (0.1–100 Hz) prior to being sampled at 250 s/s with a 16-bit
analog-to-digital converter.

PROCEDURE
Participants completed several mood questionnaires prior to the
EEG recording for each session. Once fitted with the 256-channel
HCGSN, participants were seated 65 cm in front of the computer
monitor. A chin rest was used to minimize head movements and
to maximize consistency of gaze distance and alignment to the
monitor. Participants were explicitly instructed that there were a
total of 16 two-digit codes, half of which required a response and
half of which required no response. For those digits that required a
response, participants were told they had to figure out the correct
hand and finger mappings and that each of the four designated
fingers had two two-digit codes associated with it. The feedback
stimuli were described on a sheet of paper for participants to
review prior to task performance. They were explicitly informed
that they must learn the stimulus–response mappings through
trial-and-error based on these feedback stimuli. No mention of
context learning was made by the experimenter.

Once participants understood the nature of the task and feed-
back stimuli, they performed a simplified, 32-trial task training
session, during which they learned to associate the hand/finger
mappings to 4 two-digit numbers through use of feedback infor-
mation. They were explicitly informed that only 1 two-digit code
would be associated with each finger for the practice session, unlike
the actual task. The training stimuli were not used in any subse-
quent part of the study. All participants showed proficiency for
the target-response mappings by the end of the training session.
After this initial training in session 1, participants did not engage
in any other training or rehearsal tasks for sessions 2 and 3. In ses-
sion 4, participants were informed that they will perform the same
learning task as in sessions 1–3 with new stimuli. The instructions
were identical to those provided at the beginning of session 1, and
they were provided with a training block using a new set of training
stimuli. In other words, all parameters were kept constant between
sessions 1 and 4 except for the stimuli. Each experimental session,
including recording set up, lasted approximately 2.5 h.

LEARNING CRITERION
Bayesian state-space analysis was employed to categorize pre-
learning vs post-learning trials for each participant (Smith et al.,
2007). By computing a learning curve and its corresponding 95%
confidence intervals, the state-space analysis identified, with 95%
confidence, the first trial at which the learner was performing
above chance. This estimate was based on the ideal observer. That
is, it used the outcomes of all the trials in the experiment to com-
pute the learning curve (the learning state process). The learning
curve was constructed by determining at each trial the likelihood
of a correct response given the prior response history. In a second
step, confidence intervals were computed in order to determine
the trial at which the learner began to respond above chance. The
Bayesian approach applies Monte Carlo Markov Chain methods to
compute the posterior probability densities of the model parame-
ters and the learning state, thereby enabling the model to handle
interleaved responses to the 16 different stimuli and to correct for
any initial response bias.

EXPERIMENTAL FACTORS
Stimulus (Go vs No-Go), Learning (Pre vs Post-learning criterion),
Learning Session (1 vs 4), Practice Session (1, 2, 3), and Accuracy
(Error vs Correct) served as repeated factors in the behavioral and
ERP analyses. “Learning” is the contrast between not knowing the
code-finger mapping, and demonstrating knowledge through con-
sistent use, as described in the next section. “Learning Session” is
the first, inexperienced learning session contrasted with the fourth
session in which the task context is well known, even though new
codes and response mappings are introduced. “Practice” refers to
the continued transition toward automated performance in ses-
sions 2 and 3, after demonstration of knowledge of the code and
mappings in session 1. Greenhouse–Geisser correction was applied
to all ANOVAs involving the Practice Session factor.

EEG PROCESSING
The continuous EEG data were digitally filtered with a 30-Hz low
pass finite impulse response filter and then segmented relative to
target onset (200 ms before and 1000 ms after) and sorted accord-
ing to pre and post-learning criteria. A segment of the EEG was
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excluded from signal averaging if it was contaminated by ocular
artifacts (e.g., blinks or lateral eye movements) or if it contained
10 or more channels of data that exceeded a voltage threshold of
200 μV (absolute) or a transition threshold of 100 μV (sample to
sample). After averaging, the data were re-referenced to the average
reference.

SOURCE ESTIMATES
Source estimates, describing the neural sources of the mea-
sured scalp potentials, were estimated with GeoSource (version
1.0) electrical source imaging software (EGI, Eugene, OR, USA).
GeoSource uses a finite difference model (FDM) of head tissue
conductivity for accurate computation of the lead field in relation
to head tissues, where the primary resistive component is the skull.
The FDM allows accurate characterization of the cranial orifices,
primarily the optical canals and foramen magnum. Tissue com-
partments of the FDM were constructed from whole head MRI
and CT scans of a single individual (Colin27) whose head shape
closely matches the Montreal Neurological Institute (MNI) aver-
age MRI (MNI305). The MRI and CT images were co-registered
prior to segmentation of the brain and cerebral spinal fluid (iden-
tified from MRI data) and skull and scalp (identified from CT
images). This individual’s MRI and CT images were aligned with
the cortex volume from the MNI atlas with Talairach registration.
The tissue volumes were parcellated using 2-mm voxels to form
the computational elements of the FDM.

Conductivity values used in the FDM model are as follows:
0.25 S/m (Siemens/meter) for brain, 1.8 S/m for cerebral spinal
fluid, 0.018 S/m for skull, and 0.44 S/m for scalp (see Ferree et al.,
2001). These values reflect recent evidence that the skull-to-brain
conductivity ratio is about 1:15 (e.g., Ryynanen et al., 2006), com-
pared to the 1:80 ratio traditionally assumed. Source locations
were derived from the probabilistic map of the MNI305 aver-
age (to which the typical subject matches closely). Based on the
probabilistic map, gray matter volume was parcellated into 7-mm
voxels; each voxel served as a source location with three orthog-
onal orientation vectors. This resulted in a total of 2447 source
triplets whose anatomic identities were estimated through use
of a Talairach daemon (Lancaster et al., 2000). Once the head
model was constructed, an average of the 256-channel sensor posi-
tions was registered to the scalp surface. To compute estimates of
the sources, a minimum norm solution with the LAURA (local
autoregressive average) constraint (Grave de Peralta Menendez
et al., 2004) was used. All source estimates were performed on
the grand-averaged scalp data.

RESULTS
BEHAVIORAL DATA
In order to reduce the influence of outlier RTs for behavioral analy-
ses, the top and bottom 10% of the RT distribution (i.e., the tails)
within each condition were winsorized (Wilcox, 1997) prior to
analysis.

Learning effects (trials to learn)
A repeated-measures ANOVA, with Stimulus and Learning Ses-
sions as factors, was performed on the total number of trials it
took participants to learn the stimulus–response mappings. A sig-
nificant effect was obtained for Learning Session, F(1,14) = 35.1,

p < 0.001 (see Figure 1). A significant trend was observed for Stim-
ulus, F(1,14) = 3.8, p < 0.08. The results show that learning was
much faster in session 4 and that No-Go stimuli required fewer
trials to learn than Go trials. Of particular significance is that the
total trials it took to learn Go stimuli in session 4 was substantially
reduced compared to session 1.

Learning effects (error rate)
A repeated-measures ANOVA was conducted with Stimulus,
Learning, and Learning Session as independent variables and error
rate as the dependent variable. For No-Go stimuli, error rates were
computed for errors of commission; for Go stimuli, error rates
were computed for errors of omission as well as partial errors (i.e.,
responses with the wrong finger or hand).

The results revealed significant main effects for Stimulus,
F(1,14) = 61.3, p < 0.001, and Learning Session, F(1,14) = 30.2,
p < 0.001. There was also a significant Learning × Learning Ses-
sion interaction, F(1,14) = 17.3, p < 0.002. All of these significant
effects were qualified by a Stimulus × Learning × Learning Ses-
sion effect, F(1,14) = 17.1, p < 0.002 (see Figure 1). This three-
way interaction was examined by performing separate Learn-
ing × Learning Session analyses for Go and No-Go stimuli. The
Learning × Learning Session interaction was significant for both
Go, F(1,14) = 21.0, p < 0.001, and No-Go stimuli, F(1,14) = 5.6,
p < 0.04. Analysis of the simple effects for each stimulus revealed
that for Go targets, participants made fewer errors prior to learning
the stimulus–response mappings in Learning Session 4 compared
to Learning Session 1, t (1,14) = 6.1, p < 0.001, and that after learn-
ing, error rates did not differ between the two learning sessions.
For No-Go stimuli, the results revealed that the number of errors
committed in Learning Session 4 did not differ from Session 1
either before or after learning.

Learning effects (RT)
In this analysis only data from 11 participants were included; four
participants did not make enough errors in the pre-learned error
condition to provide reliable RT data. That is, they exhibited
a fast learning rate. A repeated-measures ANOVA with Learn-
ing, Learning Session, and Accuracy as independent factors and
RT as dependent variable revealed significant main effects of
Learning, F(1,10) = 34.0, p < 0.01, and Accuracy, F(1,10) = 104.0,
p < 0.001. These main effects were qualified by a significant Learn-
ing × Accuracy interaction, F(1,12) = 17.1, p < 0.003. Examina-
tion of the significant interaction revealed that participants’
RTs decreased with learning for correct responses, t (1,10) = 7.7,
p < 0.001, but that RTs for error trials after learning did not
differ from error trials prior to learning. Moreover, error trials
after learning had longer RTs than correct trials after learning,
t (1,10) = 11.4, p < 0.001. This suggests that errors after learn-
ing were not “slips” (mistaken actions in the context of accurate
knowledge), but rather may have resulted from memory retrieval
failures that produced ambiguity (and thus response conflict) in
generating appropriate responses.

Practice effects (error rate)
Stimulus and Practice Session served as within-subjects fac-
tors. There were significant Stimulus, F(1,14) 33.3, p < 0.001,
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FIGURE 1 | Left: average of total trials to learn for stimulus type and learning session. Right: error rate for stimulus type, learning, and learning session.

and Practice Session, F(2,28) = 55.9, p < 0.001, effects that were
qualified by a significant interaction between these two factors,
F(2,28) = 8.9, p < 0.005. Figure 2 illustrates the nature of this
interaction. As participants gained practice in the task, their error
rates dropped significantly, particularly between sessions 1 and 2.

Practice effects (RT)
Reaction times were analyzed with Practice Session and Accu-
racy serving as repeated-measures factors. Thirteen participants
were included in this analysis (two were excluded because they
did not make enough errors after learning to provide stable RT
measures). Significant results were obtained for Practice Session,
F(2,24) = 7.9, p < 0.007, and Accuracy, F(2,24) = 60.5, p < 0.001.
The reduction in error RT as a function of practice was particularly
large between sessions 1 and 2 (see Figure 2) and error responses
were associated with longer RTs than correct responses.

Practice effects (development of automaticity)
To assess whether participants developed skilled performance to
automated levels, we computed the coefficient of variation (CV),
the ratio of the SD to the (winsorized) mean RT (CV = SD/RT;
Segalowitz and Segalowitz, 1993). The logic is that controlled
processes, such as those required early in learning, are inher-
ently more variable than the processes underlying automatic
performance (also see Logan, 1988). Therefore, a reduction in
controlled processes should result in a reduction in the CV.
For this analysis, CV values were only obtained for correct
responses.

We performed two analyses using the CV measure. The first
analysis aimed to replicate our previous findings of significant
CV changes within the first session (Luu et al., 2009). For this
analysis post-learning trials from session 1 were grouped into
four equal bins. A trend analysis revealed a significant linear
trend, F(1,14) = 8.5, p < 0.02 (see Figure 3); CV decreased within
the first learning session as participants practiced the task. The
decrease was most notable between the first and second bins.
This fully replicated our previous findings. We also analyzed CV
changes across sessions 1–3. For this analysis, CV was determined
for each session. Although participants’ CVs continued to decrease

across sessions, the reductions were small and the analysis did
not reveal significant trends. These results show that progression
toward automated performance was most dramatic within the first
session.

ERP DATA
In order to examine the neural mechanisms associated with
learning arbitrary visuomotor mappings, as opposed to response
inhibition, we focused the ERP analysis on Correct Go trials.
Because pre-learning represents the performance stage during
which stimulus–response mappings are not known, we combined
all pre-learning trials (correct and error Go and No-Go trials)
into a single “pre-learning” condition to contrast against the post-
learned CorrectGo trials. Prior to combining all pre-learned trials,
we examined whether differences exist between go and no-go
trials. The results revealed no significant differences. This com-
bination permitted more trials to be included, resulting in a more
stable average ERP. We focused the analyses on two ERP compo-
nents: MFN and P3. Note that researchers have used the labels
MFN and N2 to refer to the same component. Because we have
used the MFN label in previous publications of work employing
this experimental paradigm, we will use the MFN label to maintain
consistency.

Channels that were used to quantify the MFN and P3 are illus-
trated in Figure 4. For all ERP components, the data from each
channel was first quantified (see below) and then averaged across
the channel groups. To quantify the MFN, a negative peak was
identified between 295 and 427 ms after target onset (yellow box
in Figure 5) and an average amplitude was calculated for a 44-ms
interval around this peak. The MFN was referenced to the pre-
ceding positive peak (i.e., the P2). The P2 was quantified as the
average amplitude around a 44-ms window centered on the most
positive peak within a 167- to 283-ms post-target interval. The P3
was quantified by first indentifying positive peak between 440 and
760 ms after target onset (yellow box in Figure 6) and then aver-
aging over a 44-ms interval centered on this peak. The average was
then referenced to the average of the −200 to 0 ms pre-stimulus
baseline. This method for quantifying the MFN and P3 amplitude
was applied separately for each participant and condition, thereby
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FIGURE 2 | Left: error rate for stimulus type and practice session. Error rates are for post-learned trials. Right: mean RT for practice session and accuracy.

FIGURE 3 | Left: CV across four blocks of post-learned trials in session 1. Right: CV of post-learned trials across first three sessions.

allowing for small variations in peak latency across individuals and
conditions.

MFN (learning effects)
Learning and Learning Session served as within-subject factors.
Significant main effects for Learning, F(1,14) = 7.3, p < 0.02, and
Learning Session, F(1,14) = 8.0, p < 0.02 were observed. These
were qualified by a significant Learning × Learning Session inter-
action, F(1,14) = 6.4, p < 0.03. Paired t -tests showed that MFN
amplitude was substantially more negative post-learning in ses-
sion 4 than pre-learning in session 4, t (14) = 3.0, p < 0.02, or
post-learning in session 1, t (14) = 3.5, p < 0.01.

P3 (learning effects)
Learning, Learning Session, and Laterality (left, midline, right)
served as within-subject factors. Significant effects were found
for Learning, F(1,14) = 79.9, p < 0.001, and Learning Session,

F(1,14) = 5.7, p < 0.04. P3 amplitude was larger after learning and
it was also larger in session 4.

MFN (practice effects)
A one-way repeated-measures ANOVA was conducted with Prac-
tice Session as the factor. The results revealed that the MFN
amplitude increased with practice, F(2,28) = 6.5, p > 0.01. This
was also confirmed by a significant linear trend, F(1,14) = 8.8,
p < 0.02.

P3 (practice effects)
Practice Session and Laterality (left, midline, right) served as
within-subject factors. No significant results were obtained.

Predictors of facilitated learning
The behavioral results revealed that participants required fewer
trials to reach learning criterion (henceforth, “trials to learn”) in
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FIGURE 4 | Sensor layout for 256-channel Hydrocel Geodesic Sensor Net. Orientation of layout is top looking down with the nose at the top of the page.
Channel groups used to quantify ERP components: Red: MFN, Black: P3.

session 4 than session 1, indicating that they did indeed acquire a
task set that facilitated learning a new group of code-finger map-
pings. Based on our theoretical model that the MFN tracks the
gradual development of a contextual model that guides learning
(Luu et al., 2007, 2009), we examined whether the post-learning
MFN amplitude in sessions 1–3 could predict learning rate during
the fourth session. Moreover, to control for individual differ-
ences in learning rate, we included the trials to learn in session
1 as a covariate. We conducted a statistical stepwise regression
(p-to-enter = 0.05, p-to-remove = 1.0) with MFN amplitude in
session 1–3 as predictors and session 4 learning rate as the cri-
terion. As covariate, trials to learn in session 1 was entered first.
R2 = 0.617, F(1,13) = 23.5, p < 0.001. Based on the criterion set
for variable inclusion, MFN amplitude in session 3 entered next;
R2 change = 0.115, F(1,12) = 5.7, p < 0.04. Because the P3 also
increases with learning (reported previously in Luu et al., 2007,
2009), we explored whether P3 amplitude (from session 1–3)

may predict learning rate in session 4. The analysis revealed that
P3 amplitudes did not contribute significantly as predictors of
learning rate in session 4.

ERP source estimates
For source estimates of the MFN, a difference between the wave-
forms from session 3 and the pre-learned waveforms in session
1 was derived. The source estimate was then obtained during the
peak (∼339 ms) difference. The results revealed sources along the
mediodorsal aspect of the frontal lobe, including the ACC (BA 24),
medial frontal gyrus (BA 8 and 6), and mid-cingulate cortex and
paracentral lobule (BA 31, see Figure 7). These results are con-
sistent with source estimates for the MFN in our previous studies
(Luu et al., 2007, 2009). Source estimates were also derived for
MFNs obtained at different stages of post-learning (i.e., sessions
1, 2, 3, and 4) to examine differences. The results for each estimate
were very similar to the solution shown in Figure 7.
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FIGURE 5 |Two dimensional topographic maps and waveform

plots for pre-learned targets and correct post-learned go

targets for sessions 1 and 4. Topographic maps are presented
for the peak of the MFN. Orientation of maps is top looking down

with nose at the front. Black circles on 2D maps represent channel locations
of the waveform plots. Yellow boxes in waveform plots mark the time window
used to quantify the MFN. Vertical lines in waveform plots mark onset
of targets.

FIGURE 6 |Three dimensional topographic maps and waveform plots for

pre-learned targets and correct post-learned go targets for sessions 1

and 4. Topographic maps are presented for the peak of the P3. White circles

on 3D maps represent channel locations of the waveform plots. Yellow boxes
in waveform plots mark the time window used to quantify the P3. Vertical
lines in waveform plots mark onset of targets.

Source estimates of the P3, derived from post-learning sessions
1, 2, 3, and 4 were performed at the peak (∼500 ms). The
source locations are similar across all post-learning sessions

and is illustrated for session 3 in Figure 7. Consistent with
our previous findings (Luu et al., 2007, 2009), the generators
of the P3 are located in the medial temporal lobes (stronger
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FIGURE 7 | Estimate of source generator for MFN and P3. Lines at each
voxel represent orientation vectors (pointing in the positive direction). The
vectors indicate the scalp topography features that are accounted by the
source voxels (see orientation of these sources relative to the scalp
topography of the MFN in Figure 5 and P3 in Figure 6).

in the left for the stimuli used in the present study) and
PCC.

DISCUSSION
Participants took more trials to learn correct response (Go)
stimulus–response mappings than correct (No-Go) response sup-
pressions. This is not surprising because No-Go stimuli require a
single category (inaction) whereas Go stimuli have four possible
response mappings (four finger alternatives) that must be learned
depending on the codes. Participants made fewer errors after they
learned the task, and error RTs did not decrease after learning, in
contrast to the significant reduction in RTs associated with correct
responses after learning. Apparently, in this paradigm, the speed-
ing of responses with automaticity after learning applies only to
correct responses, and the residual errors are not quick “slips” but
rather trials in which problems of attention, memory retrieval,
response programming or other underlying mechanisms lead to
extended processing preceding the error.

These learning-related behavioral results are consistent with
our previous findings (Luu et al., 2007, 2009). Furthermore, there
was evidence of improved automaticity with continued practice.
With continued practice in sessions 2 and 3, participants made
faster responses and fewer errors (particularly between the first
and second sessions). Analysis of the CV measure revealed that
variability in performance decreased substantially after learning
within the first session, and then remained quite stable thereafter
(across sessions 2–3). According to CV rationale, stable CV after
learning implies that automaticity did not further increase with
practice.

These behavioral results can be understood using Logan’s
(1988) Instance Theory of automaticity. This theory proposes that
during the initial stages of learning, participants’ performance
is based on algorithmic computations and/or response strate-
gies. Through learning and practice, a single-step, direct-access
retrieval of the stimulus–response mapping is established to pro-
duce automaticity. This may be described as obligatory retrieval.
The transition to automaticity and obligatory retrieval explains the
reduction in RT as well as reduction in the variability of RT. These
behavioral findings suggest that the experimental manipulations
were successful, and they provide the psychological framework for
understanding the neurophysiological results.

A unique effect in the present study was the improvement in
learning rate after participants had learned the general require-
ments of the task, even as they were challenged with new codes
in session 4. The participants required fewer trials to learn in the
fourth session than they did in the first session.

MEDIAL FRONTAL NEGATIVITY
Initially, based on well known findings of decreased ACC activa-
tion after learning and practice (e.g., Chein and Schneider, 2005)
we predicted that MFN amplitude would decrease after learning
has been achieved (Luu et al., 2007). The MFN is localized to
the medial frontal cortex, including the ACC, and should reflect
similar effects as fMRI studies showing ACC decreases in learning.
Furthermore, studies have shown a similar component (the frontal
N2) to be involved in cognitive control (Folstein and Van Petten,
2008). However, we found that the amplitude of the MFN con-
tinued to increase as learning progressed, even during the practice
sessions when P3 amplitude remained stable. Recently, Schapkin
et al. (2007) also found that the MFN (referred to as an N2 in that
study) increased with practice. How should we understand this
increase?

Based on a review of the literature, Folstein and Van Petten
(2008) argued that there are at least two types of N2 compo-
nents: one related to cognitive control and the other to detection
of novelty or mismatch. If the MFN of the present study indexes
cognitive control, we would expect it to decrease with learning
and practice, similar to what is observed in RS studies (e.g., Race
et al., 2009, 2010). Whereas the ACC has been the focus of many
studies and theories of cognitive control, and whereas the ERN in
motor tasks is consistently localized to the ACC (Luu et al., 2003),
the MFN often includes sources in the supplementary motor area
(SMA) and mid-cingulate cortex (MCC; Tucker et al., 2003; Luu
et al., 2007, 2009). In fact, sources in both the SMA and MCC
were major contributors to the MFN in the present experiment
(Figure 7). Several studies now show that the SMA and MCC are
progressively engaged during learning (Eliassen et al., 2003; Lee
and Quessy, 2003) and that increases of neural activity within these
regions correlate with improvements in performance (Salimpoor
et al., 2010). These findings are not consistent with fMRI find-
ings of reduced activity based on repetition of stimulus–response
mappings (the RS effect, Garrido et al., 2008; Race et al., 2009).
They are also inconsistent with a simple model of reduced cogni-
tive control (at least in relation to cingulate cortex) with increase
learning.

It is possible that the MFN examined in the present study is
related to novelty-mismatch processes rather than cognitive con-
trol processes. Novelty or mismatch detection depends on the
existence of a “mental template” (Folstein and Van Petten, 2008).
Schapkin et al. (2007) also interpreted their findings of increased
N2 amplitude with practice as reflecting improved stimulus–
response classification supported by a mental template. We think
that the notion of a mental template may be reinterpreted within
learning theory as a context model that organizes the relations of
actions with the environmental situation (Luu et al., 2009).

Based on the finding by Elliott and Dolan (1998) that fMRI
activation of the dorsal ACC reflects the formation of hypotheses
to guide actions, we proposed that dorsal aspects of the ACC track
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the monitoring of actions in relation to task parameters (such as
feedback and conflicting task demands, Luu et al., 2003). More
recently, based on the findings of increased MFN amplitudes with
learning and practice, we proposed that the dorsal ACC is involved
in the early representation of action contexts (Luu et al., 2009).
Conceptually, generating hypotheses about future events and gener-
ating temporary action contexts could be seen as differing ways of
describing the same cognitive process; an internal model is formed
to guide the selection of action. We suggest that framing the role of
the dorsal ACC as early context-formation may serve as a generic
theoretical model that subsumes more specific contemporary the-
ories of ACC function. These include a role for the ACC as a
motor control filter (Holroyd and Coles, 2002), a conflict detector
(Botvinick et al., 2004), and an integrator of actions with values
(Rushworth et al., 2004).

Results from several recent studies point to a key role of the
MCC in contextual representation during learning and decision-
making. For example, Behrens et al. (2007) found the MCC to
be active during decision-making phases of a probability track-
ing task, wherein the goal is to maximize rewards. In a task that
involves making decisions about how many monetary points to
send to another participant (who then returns a portion of received
points), Chiu et al. (2008) found that activity in the MCC was asso-
ciated with making the decision to send points. These results may
be interpreted as demonstrating MCC contributions to context
representations (specific to each task) that were required to direct
an optimal course of action.

Takehara-Nishiuchi and McNaughton (2008) examined neu-
ronal responses in the dorsal aspects of the prelimbic region of rats
during conditional association learning. Based on their report, the
electrodes were positioned in the caudal aspects of the prelimbic
region, appearing to us to be in close proximity to the MCC. They
showed that activity of neurons in this region became selective
for task-relevant information during the course of learning. Of
particular importance are the findings that (1) the neurons were
responsive to more than just the stimulus (they also responded
to the spatial and behavioral context), and (2) task performance
depended on the integrity of these neurons after 2 weeks (lesions
to this region before this time result only in minor impairment in
task performance). Additionally, they found that during the first
session of reconditioning (i.e., retraining on the same learning
task after a 6-week interval during which no training occurred)
there was a decrement in the conditioned response, although not
to the initial unlearned levels, and that it took the animal about
half the time, relative to original learning, to reacquire the condi-
tion response. Examination of the neuronal response revealed that
during reconditioning, excitatory responses were similar to the
overtraining (i.e., practice) sessions rather than the initial learning
sessions. These results can be interpreted as analogous to our find-
ing that MFN amplitude reflects the cingulate cortex contribution
to context representation that efficiently frames new learning in a
similar context.

In order to differentiate the SMA and MCC involvement from
the findings and literature on the ACC, we propose the following
distinction. Generating new hypotheses (action contexts) initially
engages the ACC, because this is the limbic (motivational) base of
the frontal motor planning system. As learning progresses, action

contexts that accurately dictate the course of action are extended
and supported by the SMA and MCC. Action context here refers to
the configuration of external features and internal states, includ-
ing action values organized in the visceral limbic cortex (Luu and
Tucker, 2003; Rushworth et al., 2004; Tucker and Luu, 2007), and
not just the stimulus–response mappings (see Balsam, 1985). The
activity indexed by the MFN thus appears to provide a transitional
mechanism, a conceptual representation of action contexts in the
SMA and MCC, that mediates between the temporary representa-
tion and monitoring of action contexts (i.e., a hypotheses) in the
dorsal ACC (Luu et al., 2003, 2007) and the more enduring rep-
resentation of the environmental context model by the PCC and
hippocampus.

P3
As in previous dense-array EEG studies (Luu et al., 2007, 2009), we
found that P3 amplitude increased as participants demonstrated
learning of the task, consistent with our previous findings as well
as results reported by other researchers (e.g., Barceló et al., 2000;
Race et al., 2010). However, unlike MFN amplitude, with contin-
ued practice in sessions 2 and 3, P3 amplitude did not increase but
remained constant. Perhaps most importantly, P3 amplitudes did
not predict new learning rate in session 4, whereas MFN amplitude
did.

On the other hand, the P3 amplitude did parallel the MFN
amplitude increase with new learning in session 4: P3 amplitude
post-learning in session 4 was significantly larger than P3 ampli-
tudes for post-learning in session 1. We propose that this pattern
of results is consistent with the classical context-updating theory
of the P3 (Donchin and Coles, 1988) and that it reveals the more
passive, late-stage operation of the posterior dorsal corticolimbic
networks in generating the P3 (including the PCC and medial tem-
poral lobes, Luu et al., 2007, 2009), in contrast to the more active
context-model generation supported by the ACC and MCC.

According to the context-updating model of the P3, this elec-
trophysiological measure tracks a cognitive system that forms
a representation of the environmental context that is restored
and reinforced on a trial-by-trial basis during task performance
(Donchin and Coles, 1988; Gonsalvez et al., 1999; Polich, 2007).
P3 amplitude appears to reflect both the extent to which a tem-
plate is restored (i.e., updated) and the processing resources that
are available during restoration (Gonsalvez et al., 1999; Gonsalvez
and Polich, 2002). Based on the context-updating model, we inter-
preted learning-related P3 amplitude increases as reflecting the
representation and restoration of action contexts that support
skilled performance, specifically during the late stages of learn-
ing (Luu et al., 2007, 2009). With a stable representation of action
contexts, skilled performance can be achieved through a more
automatic, implicit mode of control, with a concomitant reduction
in processing resource requirements.

LIMITATIONS OF THE PRESENT STUDY
One limitation of the present study is that the EEG reflects brain
activity generated by the cortex, and yet there is substantial evi-
dence, from both animal and human studies, that subcortical
structures (such as the caudate nucleus and amygdala) are central
to learning (e.g., Grol et al., 2006). These subcortical structures
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and circuits work in concert with cortical structures during both
early and late stages of learning (Brovelli et al., 2008). Studies with
techniques that have ms time resolution and subcortical sensitiv-
ities (such as joint dense-array EEG–fMRI) will be required to
delineate a comprehensive account of the brain’s learning systems
and stages.

A second limitation of the present study is the spatial resolution
of the source estimate procedure. Although not yet demonstrated
to achieve the spatial resolution of fMRI, recent research shows
that, given 256-channel sampling and realistic head models, source
estimates can be quite accurate, allowing localization to sub-lobule
resolution (approximately several centimeters) even in deep corti-
cal structures, such as the medial temporal lobe (e.g., Michel et al.,
2004; Yamazaki et al., in press). Thus, distinguishing between the
various brain regions implicated for the MFN and P3 (e.g., medial
prefrontal cortex, PCC, and medial temporal lobes) is well within
the resolution of dense-array EEG. However, it is possible that
the lack of any difference in MFN sources for different stages of
learning and practice is due to the spatial resolution afforded by
the “Atlas” FDM and the use of the grand-averaged data. Ideally,
source estimates should be performed using FDMs from MRI seg-
mentation for each participant and applied to their individual
dEEG source localization.

A third limitation of the present study is that direct manipu-
lation of contextual information was not performed (aside from
keeping all parameters except stimulus–response mappings the
same between sessions 1 and 4) and yet context representation is
the key concept for understanding the findings. This is mainly due
to the fact that the results reported here are novel and needed
to be replicated and confirmed with systematic manipulations
of the original paradigm. The results are interpreted in light of
recent findings from EEG and fMRI studies in humans as well as
results from animal studies and provide a foundation from which
clear hypotheses can be formulated for future studies. Such studies
might involve the manipulation of learning context while keeping
stimulus–response mappings consistent.

CONCLUSION
Based on the present findings, we propose a graded model of
learning that emphasizes a progression across ACC, MCC, PCC,
and medial temporal lobes in the contextual representation func-
tions of the dorsal corticolimbic network. In the earliest stage of

learning, the key cognitive representation of context is an action
hypothesis formed within the dorsal ACC as a temporary guide for
actions. Although the term“hypothesis” implies a rational process,
this temporary action context model can be understood in more
primitive terms, such as impulses related to current urges and
affordances, or impulses related to associates triggered with past
experiences (also see Mitchell et al., 2009). These temporary con-
texts are tested through trial-and-error, and outcomes of actions
are evaluated for motive significance by the rostroventral division
of the ACC (e.g., Luu et al., 2003; Taylor et al., 2006), such that out-
comes are integrated with actions (Williams et al., 2004) to form
action values (Rushworth et al., 2004). This cycle is reiterated and
new temporary contexts are generated to guide rapid learning.
With this dorsal frontolimbic circuitry providing the key substrate
of motivated action, the actual association between stimulus and
response is supported by ventrolateral corticolimbic structures,
such as the inferior frontal gyrus (Passingham et al., 2000; Luu
et al., 2009; Race et al., 2009).

When an action hypothesis is confirmed through repeated suc-
cessful performance, it is consolidated within the SMA and MCC.
This context is still amenable to rapid modification, and it can
be used to facilitate relearning of the task or new learning when
the new learning situation resembles the existing context. When
a behavioral context model is further stabilized through extensive
experience, it is then consolidated in the PCC, precuneus, hip-
pocampal network through the process of context updating. This
more passive context-updating process slowly adapts changes to
the context.

As Gabriel et al. (2002) noted, a system that is organized for
rapid learning cannot easily or efficiently deal with the require-
ment for coding of consistent and enduring stimulus–response
contingencies. Here we emphasize that there appears to be an
intermediate stage that may overlap with both the early and late
learning stages, permitting current context to guide learning of
new responses in similar situations while supporting the grad-
ual context-updating process that must occur to support skilled
performance.
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