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M
achine learning refers to
building and using mathe-

matical models that can effectively
perform a specific task without
using explicit instructions, relying
on pattern recognition from exist-
ing examples instead. With ad-
vancements in computational
capacity and efficient models in
recent years, patterns that were
not easily noticed by most humans
are exploited by machines, result-
ing in their performances on par, if
not better, than humans in several
tasks. In health care specifically,
machine learning for computer
vision has been successfully used
in detecting diabetic retinopathy
from photographs,1 analyzing bi-
opsy slides,2 magnetic resonance
imaging,3 computed tomography
scans,4 and radiographs.5 The au-
thors have previously worked
with machine learning approaches
for analyzing biopsy images to
predict the stage of chronic kidney
disease, among other outcomes,
and have continued to explore
machine learning approaches on
biopsies in this current work.6,7 In
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recent years, because of the enor-
mous number of laboratory reports
and image data being generated,
and consequently the burnout cli-
nicians are facing, machine learning
offers a potential solution to keep
upwith the volume; however, it has
not been widely adopted and relied
on yet. Among machine learning
methods, deep learning stands out
in that it pertains to learning data
representations automatically, as
opposed to algorithms that require
manual task-specific modifications.
A convolutional neural network is a
class of deep neural networks
commonly applied to analyze 2-
dimensional and 3-dimensional im-
ages, waveforms, and occasionally
other sequential data such as text.

Convolutional Neural Networks
(CNNs) were inspired by the
structure and organization of the
animal visual cortex, and neural
units were modeled after neurons.
A typical CNN consists of units
organized in layers, with connec-
tions to units in adjacent layers.
The network learns data represen-
tations from a training dataset,
typically consisting of labeled
data. A test dataset is used to
evaluate performance, in which
the trained network tries to predict
the labels for the test data. When
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an input image is fed into the
network during the training phase,
each unit, associated with a
weight, scans through parts of the
image along with its adjacent units
and generates corresponding
output elements based on their
weights. The aggregate of all out-
puts generated by scanning the
complete input serves as the input
for the next layer and the process
continues. The weight associated
with each unit is adjusted based on
the difference between the gener-
ated output and the expected
output at the final layer using a
method known as backpropagation
to better predict the expected
output. This process is repeated for
all images in the training dataset,
with each unit storing a com-
pounded weight over all the
training images. However, when
the network very accurately
memorizes the training dataset,
rather than learns to generalize
from trends in it, a phenomenon
known as overfitting can occur,
resulting in poor performance on
test data with high performance on
training data. There are several
ways to tackle this problem, but
arguably the best is to use a larger
well-represented training dataset.
A well-represented dataset tries to
mitigate sample biases from influ-
encing the outcomes of the model.
Once the model’s performance is
satisfactory, it is used to infer the
output on new, unseen images.
The authors previously worked
with a CNN called Inception v3 to
analyze renal biopsy slides and
predict several outcomes,
including the stage of chronic
kidney disease, with success, in
some metrics outperforming pa-
thologists (based on their estimated
fibrosis scores).

Inception v3 by Google is a
widely used deep CNN in the
computer vision community that
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has been shown to perform well on
the ImageNet dataset, which con-
tains millions of labeled images
made available to the public. The
units of Inception v3 are trained to
recognize particular fundamental
features, such as simple shapes and
patterns that are subsequently
used by other units within the
model to recognize increasingly
complex features ultimately accu-
rately recognizing thousands of
objects such as specific types of
fruits, vehicles, animals, and
musical instruments, for example.
This hierarchical structure also al-
lows the model to recognize pat-
terns in other, completely different
images, and is used to enable
something called transfer learning:
applying a model trained in one
domain to another. The authors
exploited this ability and further
trained the model using biopsy
images.

In addition, to generate a varied
and rich training dataset, the au-
thors performed data augmentation
on existing biopsy images. Both
this and transfer learning are stra-
tegies to mitigate the challenge of
having few examples in a training
dataset. Data augmentation is a
process in which the training
dataset is enriched, by performing
classical image transformations like
rotating, cropping laterally shift-
ing and zooming existing images in
the training dataset and adding
them to it. The biopsy images used
by the authors were quite large
and computationally challenging
to work with, so they cropped the
image into smaller-sized images
that could be processed with more
ease. However, cropping also
resulted in some glomeruli being
chopped, and potentially missed
by the CNN. The authors mitigated
this by cropping with different
offsets and integrating over the
results. They also created new im-
ages using existing images by
whitening a small fraction of the
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pixels in the image. This enabled
them to generate a more resilient
model. The authors then divided
this corpus into training and
testing datasets. They repeated this
process 4 times such that different
images were used to train and test
in each run. The objective here is
to generate a well-represented
training dataset while minimizing
underlying biases that are not
easily evident to humans, but
could be picked up by the machine
learning model to influence its de-
cisions in an undesirable/unex-
pected way. The best performing
model usually has minimal influence
of these underlying biases, also
known as a well-generalized model.

The model in the glomerular
classification stage was used to
predict 1 of 3 outcomes for each
image: 0, no glomerulus detected;
1, normal or partially sclerosed
glomerulus detected; and 2, glob-
ally sclerosed glomerulus detected.
The coordinates of the cropped
image in the original image was
noted if the result was 2. They
then generated a heatmap of all the
cropped images in which glomeruli
were detected, across all different
cropping methods, in the original
image. This heatmap increased in
brightness with the certainty of a
glomerulus being present. This
heatmap was further processed to
mark the glomeruli with distinct
boxes to highlight them. The
trained model achieved an accu-
racy ranging from 89.66% to
95.06% over 4 independent
training/testing runs, with kappas
ranging from 0.8079 to 0.9111. The
model that achieved the highest
accuracy (most well-generalized
model) was used for glomerular
segmentation. The model identified
nonglomerular regions with a
specificity of 0.999 in the glomer-
ular segmentation phase, but it is
important to note that because
most regions do not contain a
glomerulus, this is a problem with
few positive regions and sensi-
tivity/precision would better
characterize performance.

In summary, the authors have
used popular techniques from the
image processing field and lever-
aged them to identify glomeruli in
kidney biopsies from a racially and
ethnically diverse cohort. They
have leveraged transfer learning
and popular regularization tech-
niques to better generalize the
model, like pixel whitening. They
have also used other techniques,
like cropping the image several
times and aggregating over them.
The glomerular classification
models achieved an accuracy of
89.66% to 95.06%. The best per-
forming model was selected for the
glomerular segmentation phase,
where it detected nonglomerular
regions with a specificity of 0.999
and also marked and classified
globally sclerosed glomeruli with a
sensitivity of 0.558, F1-score of
0.623, and Matthew correlation
coefficient of 0.628. This work
demonstrates that deep learning
models can assess complex histo-
logic structures with high accuracy
from digitized kidney biopsies.
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