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Research into the pathophysiology of psoriasis has shed light onto many fascinating 
immunological interactions and underlying genetic constellations. Most prominent 
among these is the crosstalk between components of the innate and the adap-
tive immune system and the crucial role of interleukins (IL)-23 and -17 within this 
network. While it is clear that IL-23 drives and maintains the differentiation of Th17 
lymphocytes, many aspects of the regulation of IL-23 and IL-17 are not quite as 
straightforward and have been unraveled only recently. For example, we know now 
that Th17 cells are not the only source of IL-17 but that cells of the innate immune 
system also produce considerable amounts of this central effector cytokine. In addi-
tion, there is IL-23-independent production of IL-17. Besides other innate immune 
cells, neutrophilic granulocytes prominently contribute to IL-17-related immune reg-
ulations in psoriasis, and it appears that they employ several mechanisms including 
the formation of neutrophil extracellular traps. Here, we strive to put the central role 
of the IL-23/IL-17 axis into perspective within the crosstalk between components 
of the innate and the adaptive immune system. Our aim is to better understand the 
complex immune regulation in psoriasis, a disorder that has become a model disease 
for chronic inflammation.
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iNTRODUCTiON

Psoriasis has evolved into an instructive model disease for many immune-mediated disorders. 
Nume rous different types of immune cells are involved in the disease process (Figures  1A–E). 
Our increasing understanding of pathophysiological principles has facilitated the development of 
effective therapies. Perhaps equally important, such therapies have taught us a lot about disease 
mechanisms (1, 2). In consequence, both research into the pathophysiology and targeted treatments 
of psoriasis have been and still are progressing hand-in-hand. Psoriasis-directed precision medicine 
illuminates vividly how pieces of the immunological mosaic fall into place to ultimately improve  
our patients’ lives. In this light, we here discuss immunological mechanisms governing the patho-
genesis of psoriasis with a certain emphasis on links between the adaptive and the innate immune 
system. We believe that such interactive and dynamic links are of paramount importance for complex 
immune regulations in general and are key to successful therapeutic interventions.
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FigURe 1 | Spatial distribution and compartmentalization of cells of the immune system in psoriatic skin. (A) A full-fledged psoriasis lesion was biopsied and  
stained with hematoxylin and eosin. Within the profoundly altered epithelial and mesenchymal compartments there are abundant cells of the adaptive and innate 
immune system (middle panel). The indicated magnified insets depict focal accumulations of neutrophilic granulocytes underneath and within the epidermal  
stratum corneum (upper image) and focal dermal aggregations of lymphocytes (admixed with other immunocytes; bottom image). (B) T cells indicated by expression 
of CD3 (left photomicrograph) reside within both the dermal compartment and, albeit to a lesser extent, the epidermis. CD4+ T cells are more abundant compared 
to CD8+ T cells, but epidermal T cells are almost exclusively CD8+. (C) Langerhans cells expressing CD1a are not only found in the epidermis but also within the 
dermal inflammatory infiltrate of psoriatic skin. The majority of macrophages expressing CD68 reside within the dermis, and a smaller proportion migrates up into 
higher layers of the epidermis. Mast cells expressing CD117 are present in the perivascular area and directly underneath the hyperplastic epidermis. (D) Highly 
increased proliferation of keratinocytes with some suprabasal proliferative activity is indicated by staining with Ki67, and dermal blood vessels are vastly increased  
in number and size as visualized by staining for CD31. By contrast, lymphatics identified by the D2–40 antibody are not significantly increased. (e) Neutrophilic 
granulocytes expressing lysozyme (left image; lysozyme is also expressed by some macrophages) and myeloperoxidase (MPO, right) migrate upward through the 
epidermis forming the telltale spongiform pustules of Kogoj within the stratum spinosum (asterisk near the right-hand margins of the images) and microabscesses  
of Munro directly underneath and within the stratum corneum (arrow near the left-hand-margin of the images). All images represent sequential sections  
of the same biopsy specimen. Scale bars = 100 µm.
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ON THe BRiNK OF UNDeRSTANDiNg: 
THe LiNK BeTweeN geNeTiCS AND 
iMMUNiTY iN THe PATHOgeNeSiS  
OF PSORiASiS

Psoriasis is a systemic chronic inflammatory disease with pri-
mary manifestations on the skin and joints, and associations 
with a number of systemic comorbid diseases. The disorder has 
an immunogenetic basis and can be provoked by extrinsic or 
intrinsic stimuli. The familial occurrence of psoriasis evinces the 
relevance of genes for its pathogenesis (3). Several dozens of gene 
loci have been associated with psoriasis (so-called psoriasis sus-
ceptibility loci) (4, 5). Genome-wide association studies (GWAS), 
which also take into account single-nucleotide polymorphisms, 
associate the risk of psoriasis with genes that encode factors 
of antigen presentation and the innate and adaptive immune  
system. Psoriasis is associated with several human leukocyte anti-
gens [HLA, also termed major histocompatibility complex (MHC)]  
class I genotypes. This applies to both skin psoriasis (HLA-C*06 
and HLA-B*57) and psoriatic arthritis (PsA; HLA-B*27 and 
HLA-B*39). Patients with given HLA genotypes can be assigned 
to certain clinical characteristics of psoriasis as well as func-
tional immunological parameters. Likewise, the detection of cer tain 
autoantigens depends on HLA genotypes such as HLA-C*06:02 
(6). Potential autoantigens in psoriasis include peptide frag-
ments of keratin 17 with sequence homologies to streptococcal 
M-proteins (7, 8), the antimicrobial peptide LL37 (9), and the 
melanocytic autoantigen ADAMTSL5 (10). While LL37 can acti-
vate both CD4+ T helper cells (Ths) and CD8+ cytotoxic T cells,  
ADAMTSL5 only activates CD8+ T cells. Interestingly, both pep-
tides are recognized by the immune system after binding to HLA- 
C*06:02. This underlines the importance of certain HLA geno-
types for the development of psoriasis.

A group of psoriasis-associated polymorphisms were found 
in genes encoding transcription factors such as REL, TYK2, 
STAT3, or RUNX3 (3). The transcription factor REL belongs 
to the NF-κB-family and is involved not only in the regulation 
of different inflammatory factors, but also in the regulation of 
keratinocyte proliferation (3, 11, 12). The Janus kinase (JAK) 
TYK2 is involved in the signal transduction of interferons and 
cytokines such as interleukin (IL)-12 and IL-23. The association 
with the transcription factor STAT3 is of particular interest, 
since STAT3 is essential for the differentiation of Th17  cells 
on the one hand and regulates the expression of IL-23R on the 
other (13). Furthermore, STAT3 activation in keratinocytes has a 
proliferation-promoting effect. The transcription factor RUNX3 
is involved in the pathogenicity of autoreactive Th17 cells (14). 
Another important genetic association to psoriasis is the gene 
TRAF3IP2, which encodes the protein Act1, which is part of the 
signal cascade of IL-17.

Genome-wide association studies analyses also revealed psoriasis- 
associated genes encoding cytokines and cytokine receptors (3). 
These include the IL12B, IL23A, IL23R, and IL4/IL13 gene loci. 
The heterodimeric cytokine IL-23, one of the most important 
mediators in the immunopathogenesis of psoriasis, is composed 
of the gene products of IL12B (p40) and IL23A (p19).

Pustular psoriasis may represent a distinct entity, at least in a 
considerable proportion of cases. Recent studies have revealed 
associations of generalized pustular psoriasis with mutations in 
the genes of CARD14 and IL36RN (15–17) and, as a consequence, 
several studies to block either IL-36 or the IL-36 receptor (IL-36R) 
are underway (18). Furthermore, mutations in the AP1S3 gene, 
encoding the AP-1 complex subunit σ1C, which lead to a disrup-
tion of the endosomal translocation of toll-like receptor 3 (TLR3), 
are associated with pustular psoriasis (19).

Palmoplantar pustulosis is associated with missense muta-
tions in CARD14, but not IL36RN (20). CARD14 is expressed by 
keratinocytes and endothelial cells, and mutations in this gene 
lead to increased activation of NF-κB. IL-36RN is a natural anta-
gonist of the IL-1 family cytokine IL-36 (21). The consequence 
of mutations within the IL36RN gene is an increased production 
of NF-κB-regulated messengers (3, 22). IL-36 is also relevant for 
clonal responses of Th17 cells in patients with generalized pustular 
psoriasis (23). However, many patients with generalized pustular 
psoriasis and the vast majority of localized pustular psoriasis do 
not share mutations in the IL-36RN gene (24).

ADAPTive iMMUNiTY AND THe  
iL-23/iL-17 AXiS iN THe  
PATHOgeNeSiS OF PSORiASiS

The pathogenesis of psoriasis is thought to be based on tight  
interactions between components of the innate and adaptive 
immune system (1, 3, 22, 25, 26). Several classical studies under-
scores the importance of T cells for the pathogenesis of psoriasis: 
the disease can be improved by cyclosporin A (27) or other drugs 
that inhibit the function (e.g., CD2 blockade) or recruitment  
(e.g., LFA-1 blockade) of T cells (28, 29). A similar effect can be 
achieved by IL-4, which shifts the cytokine environment toward  
a Th two-weighted immune response (30), with a likely attenu-
ation of the Th17 function due to decreased IL-23 production 
in antigen-presenting cells (31). IL-10 can also reduce psoriatic 
symptoms by influencing T cell functions (32). Psoriasis can be 
triggered by bone marrow transplantation (33) and, like other auto-
inflammatory diseases, it shows the above-mentioned association 
with certain HLA expression patterns (34–36). Finally, psoriatic 
skin inflammation in animal models without pre-existing epi-
thelial changes can be induced by certain CD4+ T  cells alone  
(37, 38), and T  cells induce psoriatic lesions in transplanted 
human skin (39–41). These older studies have culminated in the  
more recent and above-mentioned discovery of potential auto-
antigens in psoriasis (8–10).

In recent years, few areas in immunological science have 
attracted as much attention as the research on Th17 cells, a group of 
CD4+ T lymphocytes that differ from the “classical” Th1 and Th2 
cells (42) and which were named after their production of IL-17  
(Figure 2). Th17 cells are prominently involved in the pathogen-
esis of psoriasis (43–45), palmoplantar pustulosis (46), as well 
as other chronic inflammatory diseases (47, 48). Even healthy 
human skin contains some IL-17-producing T  lymphocytes 
(49), which suggests their involvement in immune surveillance. 
Changes in the number and activation state of Th17 cells lead to 
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FigURe 2 | Differentiation of T cell subsets and lineage-defining role of interleukin (IL)-23 for Th17 cells. (A) The differentiation of T cell subsets from naive T cells 
requires stimulation by dendritic cells and specific mediators. Key cytokines and transcription factors driving differentiation of the indicated populations are depicted 
above the respective T cell type, while their primary function is indicated below. (B) The differentiation of Th17 cells is embedded in a complex regulatory network. 
Antigen presentation by dendritic cells and cytokine stimulation lead to differentiation of effector cells including (but not limited to) Th1, Th2, or Th17, the latter 
induced by IL-23 in conjunction with other mediators. Regulatory T cells (Treg) inhibit differentiation and effector functions of Th1 and Th2 cells. Their effect on 
Th17 cells is not exactly known. (C) Besides the classical IL-23-dependent stimulation of IL-17 secretion (left panel), IL-23-independent induction of IL-17A may 
occur in response to presentation of glycolipid antigens by CD1d (right panel).
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a dysbalance between these and regulatory T cells, resulting in 
inflammation (43, 50, 51). Circulating effector memory T cells 
can be stimulated by streptococcal extracts to produce Th17 
cytokines and stimulate keratinocyte proliferation (50). In turn, 
activated keratinocytes stimulate the IL-17 production of T cells, 
which culminates in a positive feedback loop (52) (Figure 3). In 
psoriatic skin, IL-17 is not only produced by CD4+ Th17 cells but 
also by CD8+ T cells (53) and, as alluded to below, by cells of the 
innate immune system. IL-17A is the most important of the six 
known IL-17 isoforms for the pathophysiology of psoriasis (45).

Although the initiation of development from naive precursor 
cells has not yet been fully clarified, a robust body of evidence 
supports the notion that IL-23 produced by myeloid cells is essen-
tial for terminal differentiation and the preservation of Th17 cells 
(54–56) (Figure 2). This activity is conveyed via the IL-23 receptor 
expressed on naive T  cells, together with other cytokines and 
their receptors such as TNFα, IL-1, and IL-6. This differentiation 

in combination and balance with Th1 cells is of central impor-
tance for the pathogenesis of psoriasis (57) and other chronic 
inflammatory diseases (58). The Th17-mediated inflammation 
can be modulated by exogenous factors such as vitamin D3 or UV 
radiation (59, 60), or by other cytokines such as IL-9 (61).

In addition to IL-23-dependent production of IL-17A, a 
series of studies has demonstrated an alternative route which is 
independent of IL-23 and has been described, for example, for 
γδ-T  cells (a subset of the so-called “unconventional” T-cells) 
or invariant natural killer cells (62–65) (Figure  2C). However, 
implications of this alternative pathway on the course of inflam-
matory diseases or potential side effects following blockade of 
either IL-23 or IL-17 are not entirely clear yet.

In general, unconventional T-cells appear to merit further 
studies in the context (66). They include CD1-restricted T cells, 
MR1-restricted mucosal-associated invariant T cells (MAIT cells), 
MHC class Ib-reactive T  cells, and the above-mentioned γδ 
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FigURe 3 | Inflammatory loops in psoriasis involving innate and adaptive immune cells. (A) Inflammatory cytokines including interleukin (IL)-23 and IL-6 produced by 
cells of the innate immune system such as dendritic cells and macrophages facilitate the differentiation of Th17 cells. The latter secrete IL-17 and other mediators 
which stimulate epidermal cells to produce cytokines and chemokines that attract and activate cells of the innate immune system. The result is an inflammatory loop 
or “vicious circle” in which IL-23 and IL-17 play central roles. (B) On a larger scale, a complex network of inflammatory mediators connects virtually all resident and 
immigrating cells within the skin. In fact, this machinery can be considered the core of psoriasis pathophysiology. The examples depicted here (in reality, there are 
considerably more players orchestrating the pathophysiology of psoriasis) highlight the intertwined crosstalk of cells of the innate and the adaptive immune system 
with activated resident cells such as vascular endothelial cells and epidermal keratinocytes. Such interactions can explain most, if not all, hallmark features of 
psoriasis such as, on the one hand, recruitment, activation, spatial compartmentalization, and disease-promoting differentiation of cells of the immune system, as 
well as, on the other hand, pathological changes of resident tissues such as the epidermis and the cutaneous vasculature. The alterations extend to additional skin 
components not depicted here such as cutaneous nerves and the connective tissue. (C) Inflammatory mediators such as IL-17 and TNFα are present at elevated 
levels in the serum of psoriasis patients. Their systemic activity also facilitates vascular changes, thus contributing to the accrual and course of comorbid diseases, 
in particular cardiovascular disorders (depicted here is atherosclerosis).
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T cells. A role of these cells in chronic inflammatory disorders 
is currently emerging, although actual data in psoriasis are 
still scant (66). For example, MAIT cells seem to be altered or 
activated in patients with inflammatory bowel disease, psoriasis, 

or autoimmune diseases (67–69). However, further studies are 
needed to assess the role of the other populations in psoriasis.

Innate lymphoid cells (ILCs) also appear to be promising 
new candidates to reveal novel aspects in the pathogenesis of 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


6

Schön and Erpenbeck Immunological Crosstalks in Psoriasis

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1323

psoriasis. ILCs are a heterogeneous group of innate immune cells, 
characterized by their lack of somatic rearrangement of antigen-
specific receptors. They are divided into subsets according to 
their function, cytokine profile, and transcription factors (NK, 
ILC1, ieILC1, ILC2, ILC3, LTi, and ILCP) (70). Recent studies 
show considerable diversity of ILCs between and within these 
major subsets. Interestingly, the group 3 ILCs are characterized 
by the ability to produce Th17-like cytokines and express the 
transcription factor RORγt, traits which are reminiscent of Th17 
T-cells. Even more strikingly, as a subset of group 3 ILCs is able to 
generate both IL-17 and IL-22 (70), it is reasonable to assume that 
these cells play a role in psoriasis and other chronic inflammatory 
diseases. Nevertheless, more research is needed to solidify these 
initial findings.

The still young field of IL-17 research has recently experienced 
a paradigm shift due to the observation that not only Th17 cells 
but also cells of the innate immune system and resident skin cells 
can secrete IL-17 (71–73). Among the cells that produce IL-17 
are mast cells and neutrophilic granulocytes. It appears that the 
presentation of IL-17 through so-called neutrophil extracellular 
traps (NETs) may also play a role (74). The production of IL-17 
by different cell types in psoriatic skin and its effect on different 
target cells could explain why targeted blocking of IL-17 by new 
drugs works so quickly and effectively.

The IL-23/IL-17 axis clearly illustrates the close interaction 
of different components of the innate immune system (in this 
case IL-23-producing myeloid cells, granulocytes, macrophages, 
and mast cells) with cells of the adaptive immune system (Th17- 
and IL17-producing CD8+ T  cells) in psoriasis. Translational 
research into the immunology of this “model disease” has given 
us fascinating insights into the complex pathogenesis of chronic 
inflammation including comorbid diseases (Figure 3).

NOT LOST iN TRANSLATiON: THeRAPieS 
TARgeTiNg THe iL-23/iL-17 AXiS

The discovery that the IL-23/IL-17 axis is of major importance 
for the pathogenesis of psoriasis has been confirmed by the effi-
cacy of new therapeutics (1): in 2009, Ustekinumab (Stelara®), a 
monoclonal antibody that inhibits the p40 subunit found in both 
IL-12 and IL-23, was approved for the treatment of psoriasis (75). 
The development of this compound began when it was assumed 
that IL-12 was significantly involved in the development of 
psoriasis (76). It was somewhat fortunate that Ustekinumab also 
inhibited IL-23, which is now considered to be more pathogene-
tically relevant than IL-12 (77). Guselkumab (Tremfya®), which 
specifically neutralizes human IL-23 by blocking the p19 subunit, 
has been approved recently and shows very good efficacy against 
psoriasis (78). In fact, circumventing a potential unwanted effect 
of concomitant blocking of IL-12 (Figure 2B) by specific block-
ade of IL-23 may account, at least in part, for the seemingly higher 
efficacy of guselkumab as compared to ustekinumab. Several fur-
ther anti-p19 antibodies, in addition to a large number of other 
anti-psoriatic agents, are currently in phase 3 clinical trials. The 
direct blockade of IL-17A by Secukinumab (Cosentyx®) and 
Ixekizumab (Taltz®) also leads to a convincing improvement in 

psoriasis (79, 80). Similarly, the blockade of the IL-17 receptor 
by brodalumab (Siliq®, Kyntheum®) was very effective (81, 82).

In addition to specifically targeting the IL-23/IL-17 axis, 
this pathway is also modulated by more broadly acting classical 
compounds. Two examples of orally available pharmaceuticals 
highlight this notion: fumaric acid esters and apremilast are 
registered for the treatment of psoriasis. The main component 
of the fumaric acid ester preparation Fumaderm® is dimethyl 
fumarate (DMF), which was recently approved as a single-
substance medication (Skilarence®). DMF reduces the produc-
tion of IL-23 and IL-12 in DC and promotes the production of 
the anti-inflammatory messenger IL-10 (83). It shifts the Th17/
Th1 dominated immune response—similar to IL-4—toward an 
IL-4+ Th2 phenotype. In patients treated with DMF-containing 
preparations, fewer IL-17+ and IFNγ+ T  cells are found, and 
IL-4+ Th2 cells increase (83). DMF can also reduce the endo-
thelial recruitment of immune cells (84, 85). The phosphodies-
terase 4 inhibitor apremilast (Otezla®) has a somewhat similar 
immunomodulating effect with respect to the IL-23/IL-17 axis. 
This inhibitor also diminishes the production of IL-23, IL-12, 
TNFα, and IFNγ and, like DMF, it increases the formation of the 
anti-inflammatory cytokine IL-10 (86).

New classes of immune modulators are JAK inhibitors and 
other tyrosine kinase inhibitors, which we know from the treat-
ment of malignant diseases (87). These kinases are associated with 
cytokine receptors and are therefore also important for immune 
regulation, e.g., several cytokine receptors require the activation 
of JAKs for their signal transmission (88). In the pathogenesis 
of psoriasis, receptors of the cytokines IL-6, IL-12, IL-21, IL-22, 
IL-23, IFNα, and IFNγ are of particular importance in this respect 
(87). Selective inhibitors have been developed, and a number of 
JAK inhibitors for psoriasis are in phase 2 and 3 clinical trials 
(89). However, it remains to be seen whether the potential risks 
of infections under this treatment will limit the broad systemic 
use of JAK Inhibitors.

Given the importance of IL-23/IL-17 signaling in psoriasis and 
the expression of the transcription factor RORγt in Th17 cells, a 
blockade of RORγt with orally administered drugs is also aimed 
at (90). Pre-clinical studies showed positive results. A tangible 
goal are personalized therapies and prediction of individual 
therapeutic success of selected drugs, also known as “Precision 
Medicine” (91, 92).

BRiDgiNg THe gAP: COMMUNiCATiON 
BeTweeN iNNATe AND ADAPTive 
iMMUNe SYSTeM iN PSORiASiS

While the puzzle of the multifactorial immunogenetic pathology 
of psoriasis is emerging ever more clearly (93), the mechanisms 
of its first manifestation are quite far from being understood. 
Infections with streptococcal bacteria and medications such as 
lithium or β-blockers have been described as triggers. Mechanical 
stress eliciting an isomorphic irritant effect (Köbner’s phenom-
enon) may explain the symmetrical localization of psoriasis, for 
example, on the elbows and knees. Minimal trauma may lead to 
responses with rapid immigration and activation of immune cells 
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such as neutrophilic granulocytes and T cells (71), some of which 
seem to react in the above-mentioned autoimmune fashion (9, 10).  
Amplifying feedback loops between T  cells as representatives 
of the adaptive immune system and neutrophilic granulocytes 
and keratinocytes of the innate immune system finally lead to 
an amplification and chronification of the immune response 
(Figure 3). In addition, ILC with traits of both innate and adap-
tive immunocytes and the capacity to produce IL-17 and IL-22 
have entered the stage very recently (94, 95).

Characteristic for keratinocytes in psoriatic plaques are their 
increased proliferation rate, altered differentiation and produc-
tion of antimicrobial peptides and proteins (AMP). AMPs are 
the first line of innate immune defense. Due to their specific 
properties (positive charge, hydrophobicity, and amphiphilic 
properties) they can form pores and thus exert their antimicrobial 
functions. Owing to their strong pro-inflammatory properties, 
these peptides have also been called alarmins. Many studies have 
been carried out on cathelicidin (LL37), which is expressed at 
elevated levels in psoriatic skin (96) and has a direct stimulatory 
effect on keratinocytes (97). In addition, the positively charged 
LL37 is able to form immunostimulatory complexes with nega-
tively charged DNA and RNA. These complexes are taken up by 
myeloid dendritic cells (mDC) and plasmacytoid DC (pDC), 
where RNA motifs stimulate TLR7 and 8 and DNA leads to the 
stimulation of TLR9 (98–100). TLR7/8-stimulated myeloid DC 
secrete the messenger substances TNFα, IL-23, and IL-12, while 
pDC produce large amounts of interferon α <χιτ>(93).

In addition to LL37, S100 proteins are important for the patho-
genesis of psoriasis. An important stimulus for the production of 
S100A7 (psoriasin) and S100A15 (koebnerisin) by keratinocytes 
is IL-17A (101). Both AMPs have pro-inflammatory properties 
(102). The calgranulins, S100A8 and S100A9, are produced by 
myeloid cells and keratinocytes. They stimulate the proliferation 
and cytokine production of keratinocytes (103) and are able to 
facilitate a T  cell-dependent autoimmune response in murine 
models (104). Defensins are also alarmins produced by keratino-
cytes in psoriasis plaques and, similar to LL37, human β-defensin 
2 and 4 are known to bind DNA and stimulate pDC in a TLR9-
dependent manner (105). DC performs important regulatory 
functions in psoriasis. Activated by alarmins of keratinocytes and 
neutrophils, they stimulate pathogenetically important T  cells 
(93). Primary activation and programming of relevant Th17/Th1  
and Th22 cells takes place in the lymph node. Activated DC faci-
litates the differentiation of naive T  cells through IL-1β, IL-6, 
and IL-23 into Th17 cells (9). IL-12 assumes these functions for 
Th1 cells (which dampen Th17 activity), and TNFα and IL-6 lead 
to the programming of Th22 cells (Figures 2 and 3).

In skin lesions of psoriasis patients, CD11c+ inflammatory 
DC can be detected more frequently, expressing TNFα, IL-23, and 
iNOS (so-called TNFα- and iNOS-expressing TIP-DC) (100). 
Attempts to define these cells more precisely have suggested that 
they are not classical myeloid CD1c+ DC1 or CD141+ DC2 (100). 
A portion of the TIP-DC corresponds to the so-called slanDC 
(106). In addition, CD163+ macrophages with phenotypic 
properties of TIP-DC could also be detected (107). These slanDC 
were first detected in the blood using the specific marker slan 
and the expression of CD16 (108–110). They are now believed 

to be of monocytic origin and produce large amounts of pro-
inflammatory cytokines such as IL-12, IL-23, IL-1β, and TNFα. 
Numerous pDCs perform stimulatory functions in psoriatic skin 
and are characterized by high production of interferon α (111).

NeUTROPHiLS, NeTs, AND MeCHANiSMS 
OF DiSeASe

In addition to DC, macrophages, and T cells, neutrophilic granu-
locytes are a hallmark feature of psoriatic skin lesions (Figures 1E 
and 4A). They are key effector cells of the innate immune system 
and they target invading microbes by phagocytosis, the generation 
of reactive oxygen species (ROS), as well as the release of AMPs 
and inflammatory mediators. While these “classical” strategies 
are well known for many years, the recent discovery of NETs 
has catapulted neutrophils back into the focus of immunological 
science including psoriasis research (112).

The mechanisms leading to the formation of NETs are only 
partially understood. It is clear that upon contact with various 
stimuli including bacteria, fungi, activated platelets, antigen-
antibody complexes or CXCL8 (IL-8), calcium ionophores, phor-
bol 12-myristate 13-acetate, or lipopolysaccharide neutrophils  
enter a cell-death pathway that is different from apoptosis and 
necrosis (113–115). To this end, the neutrophils go through a 
series of dramatic alterations of their morphology and behavior. 
In the course of several hours, they stop migrating and rearrange 
their cytoskeleton. The nuclear and granular membranes dissolve 
and a mixing of granular content with chromatin occurs before 
NETs are finally released. On the molecular level, this pathway 
generally requires the production of ROS and is therefore 
dependent on the NADPH oxidase complex (114, 116), although 
ROS-independent mechanisms have also been proposed (117).  
In addition, there is evidence for an involvement of protein  
kinase C and the Raf–MEK–ERK pathway (118). NETosis relies 
strongly on myeloperoxidase (MPO) and neutrophil elastase (NE).  
NE is released from azurophilic granules into the cytosol in an 
MPO-dependent manner (119) and subsequently translocates to 
the nucleus, where it cleaves histones to decondense chromatin 
(120). MPO also travels to the nucleus where it synergizes with 
NE in promoting chromatin decondensation independent of its 
enzymatic activity (120). Finally, a crucial player is peptidylar-
ginine deiminase 4, an enzyme that, after translocation to the 
nucleus (121), leads to (global) histone hypercitrullination and 
enables histone decondensation (122), a prerequisite for expelling 
the chromatin content of the cell in the form of NETs (Figure 4B).

While originally described as a method to entrap and kill 
bacteria, we now know that NETs play a broader role in the 
immune system. Free DNA of host origin, as released during 
NET formation, indicates a disruption of cellular integrity and 
therefore constitutes a potent “danger” signal. Interestingly, DNA 
complexed with LL-37, is much more stable and activates DCs 
more effectively than “naked” DNA, triggering them to produce 
pro-inflammatory interferons (98). In addition, LL-37 (as well 
as other AMPs such as human beta defensin-3 and human 
neutrophil peptide-1) protects neutrophil-derived DNA against 
nuclease degradation (123). At the same time LL37 appears to 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigURe 4 | Neutrophilic granulocytes become recruited, activated, and form neutrophil extracellular traps (NETs) in psoriatic skin. (A) Two consecutive sections  
of an early psoriatic lesion were stained by immunohistochemistry for myeloperoxidase (MPO; left photomicrograph) and by immunofluorescence for citrullinated 
histone-3 (H3cit; right). Within the typical subcorneal neutrophil accumulations (Munro’s microabscesses) there are numerous H3cit-positive cells indicating NETosis. 
(B) Schematic of NET formation: a variety of stimuli can activate neutrophils. Consequently, their chromatin decondenses until it fills the entire cell. Finally, the cell 
membrane ruptures to release the NET, consisting of DNA, histones and a plethora of antimicrobial peptides, chemokines, etc. The right-hand image depicts a 
characteristic confocal image of a neutrophil directly after NET release (DNA staining by Hoechst in blue, membrane staining by the PHK26 dye in red). Scale 
bar = 10 µm. (C) The complex interactions between neutrophils, which are among the most prominent representatives of the innate immune system in psoriatic 
skin, include recruitment and activation by CXCL8 [interleukin (IL)-8], CXCL-1 (GROα), and other mediators as well as activation by cytokines such as IL-23 and 
TNFα. In turn, neutrophils undergo NETosis and they are thought to produce and release pro-inflammatory factors including IL-17, IL-22, CXCL8, and TNFα.
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lose its antimicrobial activity when bound to DNA, implying that 
antimicrobial peptides may have different, mutually exclusive 
roles in the immune system. The high presence of AMPs within 
NETs indicates that most likely NETs and AMPs act in unison 
to either directly kill invading pathogens or to modulate the 
immune system.

The clinical relevance of these mechanisms becomes appa-
rent when studying their impact in diseases like systemic lupus  
erythematosus (124) or autoimmune diabetes (125). In addi-
tion, NETs can directly prime T cells by reducing their activa-
tion threshold. Thus, NET-mediated priming increases T  cell 
responses to antigens and even to suboptimal stimuli, thus 

https://www.frontiersin.org/Immunology/
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providing an additional link between the innate and the adaptive 
immune system (126).

In autoimmune diseases featuring anti-neutrophilic cytoplas-
mic antibodies (ANCAs) like lupus erythematosus or ANCA- 
associated small-vessel vasculitis, tolerance against nuclear  
components of neutrophils is disrupted. In order for these 
ANCAs to form, neutrophil proteins such as MPO or proteinase-3 
must be processed by professional antigen-presenting cells and 
presented to T- and B-cells. It has been shown that the structure 
of NETs favors the upload of neutrophilic antigens into mDCs, 
leading to their activation and presentation of these antigens 
to the effector cells of the adaptive immune system (127). The 
formation of antigen-antibody complexes that ensues from this 
process may then lead to a vicious circle as antigen-antibody 
complexes in turn effectively trigger NETosis. Deregulated 
NETosis may therefore be important for the pathophysiology of 
inflammatory diseases.

So what does all this mean in the context of psoriasis? While 
here the pathogenic importance of NETs is less well-established 
than in other autoimmune diseases, NETs are prominently present 
in both psoriatic plaques (Figures 4A,C) and psoriatic pustules 
(112). Research into the contribution of NETs and neutrophils 
in general to the pathogenesis of psoriasis is hampered by the 
fact that the currently most popular mouse model, namely that of 
imiquimod-induced dermatitis, does not reflect the importance 
of neutrophils in human psoriasis (128). In this model, γδ-T cells 
are the primary source of IL-17, limiting its suitability to study 
neutrophils or NETs in murine skin (129). So far only neutro-
phil depletion in flaky skin mice has provided evidence for the 
involvement of neutrophils in a psoriasis-like phenotype in an 
animal model (129). The use of other animal models, for example, 
IL-23-induced psoriasis-like skin inflammation will hopefully 
help to overcome this limitation (130).

NeUTROPHiLS, iL-17, AND OTHeR 
CYTOKiNeS

While it was long assumed that Th17 cells were the most impor-
tant sources of IL-17 in psoriasis, there is accumulating evidence 
that cells of the innate immune system like neutrophils, mast cells, 
γδ T cells, and ILCs are major sources of IL-17 (74, 131). Similar  
to Th17 cells, neutrophils possess the machinery to produce IL-17. 
In humans, two models of psoriasis-like inflammation (leukot-
riene B4 application or repeated tape stripping) have shown the 
coexpression of the IL-17-associated transcription factor RORγt 
and IL-17 (71, 131). In neutrophils, incubation with keratinocytes 
(72) or IL-23 induced IL-17 and IL-22 in an mTOR-dependent 
manner (126). However, to what extent neutrophil-produced 
IL-17 stimulates inflammatory reactions and the mechanism of 
IL-17-release, in particular within the context of NET formation, 
still remains enigmatic (74). It appears likely that IL-17 is released 
alongside NETs and may even be displayed on them, as IL-17 co-
localizes with indirect immunohistochemical markers of NETs  
in psoriatic tissue and Munro’s microabscesses (74).

Interleukin-17 stimulates many pro-inflammatory and immu-
nomodulatory functions including production of IL-6 and IL-8 

(CXCL8) but also TNFα, IL-1, CXCL10, and CCL20 (112, 132). 
In turn, IL-8 promotes the recruitment and activation of neutro-
phils and has long been known to trigger NETosis (133, 134). In 
addition, interaction of CCL20 with its corresponding receptor 
CCR6 is enhanced in chronic inflammatory diseases such as 
inflammatory bowel disease and may augment the recruitment 
of Il-17-producing cells such as Th17 T-cells (135, 136).

Neutrophils themselves produce a number of cytokines such 
as TNFα, IL-12 or, again, IL-8 (CXCL8), in addition to the afore-
mentioned IL-17, which may add to the overall pro-inflammatory 
environment, recruitment of additional leukocytes, and NET pro-
duction (137), creating a vicious circle that can be efficiently inter-
cepted by modern therapies directed against the key cytokines 
IL-23 and IL-17 as well as TNFα in psoriasis (Figure 4C). In fact,  
IL-17 and TNFα have been shown to synergistically regulate cyto-
kine levels, for example, upregulating beta-defensins and, yet again,  
IL-8, and to exert synergistic effects both on keratinocytes (138) 
and on melanocytes (139). One may hypothesize that the reason 
IL-17 blockade and TNFα-inhibition have similarly strong effects 
in patients is the abolition of this synergism.

wHAT CAN we eXPeCT?

Psoriasis remains a fascinating entity, and while we have been 
able to solve some of the mysteries surrounding this disease, 
many aspects still remain enigmatic. Among the most mesmer-
izing novel concepts in the disease mechanisms are the emerging 
roles of “young” immune cells such as ILCs and nonconventional 
T-cells, whose role in immunology we are only just beginning to 
understand. Just as importantly, we have learned that cells such 
as neutrophils and mast cells may have a central role in psoriasis 
that reaches beyond the originally described functions of innate 
immune cells and may in fact bridge the innate and the adaptive 
immune system. Last but not least, “classical” psoriasis-associated 
cells such as certain Ths keep presenting us with surprising find-
ings when it comes to the complex, often synergistic effects of 
chemokines.

These exciting developments show potential for novel thera-
peutic approaches. While we have already come very far in apply-
ing our knowledge and generating new therapies that make a  
vast difference in patients’ quality of life, the inhibition of all or 
some of the above-mentioned mediators theoretically present 
therapeutic opportunities. For example, inhibition of IL-9 could 
be explored in the context of psoriasis (61). In general, medicine 
is moving toward more personalized therapeutic approaches. For 
psoriasis, this could mean targeting the cytokines most relevant 
for the given subtype of psoriasis. For example, while chronic 
plaque-type psoriasis is dominated by the IL-17/INFγ axis, pust-
ular forms of psoriasis feature an IL-17/IL-36/IL-1 signature (140).  
The development of highly effective (targeted) therapies with 
mild to moderate side effects also allows the exploration of “early 
intervention” to prevent the psoriatic march which may lead to 
cardiovascular diseases resulting from systemic inflammation. 
Similar to approaches used in rheumatoid arthritis, it can be 
speculated that blocking inflammatory mediators early on in the 
disease process could intercept the evolution of psoriasis toward 
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a more detrimental systemic disease. Such approaches may also 
include targeting of important resident cell types such as vascular 
endothelial cells (141).

The above-mentioned “novel players” in psoriasis, including 
ILCs, unconventional T-cells but also “old” new candidates like 
neutrophils (including NETs released by them) and mast cells  
also present interesting new targets in psoriasis. It is conceiv-
able that targeting these cells or other factors in psoriasis may 
require an approach adapted to the disease stage or activity, as 
for example, NETs might only be present in acute inflammatory 

exacerbations while other cells and cytokines may dominate 
more chronic phases of the disease.

Whatever the future holds in stock for us and patients suf-
fering from psoriasis, looking back on the last couple of years of 
psoriasis research certainly justifies optimism.
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