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Abstract: Noise reduction of underwater acoustic signals is of great significance in the fields of
military and ocean exploration. Based on the adaptive decomposition characteristic of uniform phase
empirical mode decomposition (UPEMD), a noise reduction method for underwater acoustic signals
is proposed, which combines amplitude-aware permutation entropy (AAPE) and Pearson correlation
coefficient (PCC). UPEMD is a recently proposed improved empirical mode decomposition (EMD)
algorithm that alleviates the mode splitting and residual noise effects of EMD. AAPE is a tool to
quantify the information content of nonlinear time series. Unlike permutation entropy (PE), AAPE
can reflect the amplitude information on time series. Firstly, the original signal is decomposed into
a series of intrinsic mode functions (IMFs) by UPEMD. The AAPE of each IMF is calculated. The
modes are separated into high-frequency IMFs and low-frequency IMFs, and all low-frequency IMFs
are determined as useful IMFs (UIMFs). Then, the PCC between the high-frequency IMF with the
smallest AAPE and the original signal is calculated. If PCC is greater than the threshold, the IMF is
also determined as a UIMF. Finally, all UIMFs are reconstructed and the denoised signal is obtained.
Chaotic signals with different signal-to-noise ratios (SNRs) are used for denoising experiments.
Compared with EMD and extreme-point symmetric mode decomposition (ESMD), the proposed
method has higher SNR and smaller root mean square error (RMSE). The proposed method is applied
to noise reduction of real underwater acoustic signals. The results show that the method can further
eliminate noise and the chaotic attractors are smoother and clearer.

Keywords: underwater acoustic signals; uniform phase empirical mode decomposition;
amplitude-aware permutation entropy; Pearson correlation coefficient; noise reduction

1. Introduction

The processing and analysis of underwater acoustic signals play a significant role in the area
of military and marine exploration. Due to the influence of the accuracy of measuring instrument
and the interference of marine environment, underwater acoustic signals are often contaminated
by various noises. The true physical characteristics of underwater acoustic signals are masked,
consequently, it is necessary to denoise [1,2]. Underwater acoustic signals are nonlinear, non-Gaussian,
and non-stationary chaotic signals [3]. In the time-frequency domain, it has strong broadband
properties and pseudo-randomness. This causes the frequency band of the signal to partially or
completely overlap with the frequency band of the noise. Therefore, the conventional filtering method
is not suitable for noise reduction of underwater acoustic signals [4,5]. In order to effectively suppress
additive noise, wavelet analysis, local projection, and singular spectral analysis have been applied
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to underwater acoustic signals processing, but these methods have certain limitations to different
degrees [6,7]. As an example, the wavelet transform has the limits of the selection of the appropriate
wavelet basis, decomposition level, and wavelet threshold; the local projection method has the limits of
the selection of neighborhood radius; the singular spectral analysis method needs to solve the problem
of principal component selection.

Empirical mode decomposition (EMD) [8] provides a new idea of underwater acoustic signals
processing. It can decompose the original signal into a series of intrinsic mode functions (IMFs). Each
oscillation mode of the original signal represented an IMF. However, EMD has some problems, such as
mode mixing, residual noise, and endpoint effects. To overcome these shortcomings, a multitude of
methods have been put forward including the masking signal EMD (MS-EMD) [9], ensemble empirical
mode decomposition (EEMD) [10], extreme-point symmetric mode decomposition (ESMD) [11],
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [12], nonlinear
mode decomposition (NMD) [13], and improved empirical mode decomposition (IEMD) [14]. Both
MS-EMD and EEMD are based on a similar idea: adding certain disturbances to the original signal in
order to obtain a perturbed signal with a more uniform distribution of extrema. For example, MS-EMD
adds a sinusoidal signal, and EEMD adds Gaussian white noise. Based on EMD, ESMD optimizes the
external envelope interpolation method to internal pole-symmetric interpolation, thus, it improves
the mode mixing problem. Wang et al. proposed the uniform phase empirical mode decomposition
(UPEMD) algorithm [15], which selected sinusoidal functions with uniform phase distribution as
perturbed signals, and significantly alleviated the mode splitting and residual noise effects of MS-EMD
and EEMD simultaneously.

Shannon entropy is used to quantify the information content of time series. In recent years,
researchers have also come up with the approximate entropy (ApEn) [16], fuzzy entropy (FE) [17],
sample entropy (SE) [18], and permutation entropy (PE) [19]. PE is based on permutation patterns
or order relations among values of a signal, and it has the advantages of simple calculation and
relative robustness to observational and dynamical noise. Although the calculation efficiency is high,
PE does not consider the amplitude information of the signal. To overcome this problem, many
researchers have proposed modified algorithms, such as weighted-permutation entropy (WPE) [20],
permutation min-entropy (PME) [21], and amplitude-aware permutation entropy (AAPE) [22]. AAPE
is put forward in 2016, which takes into account the amplitude information of the signal and has a
wider application prospect.

Recently, an ocean of noise reduction methods based on signal decomposition algorithms and
Shannon entropy have been developed and used in different fields, such as acoustic signal [23,24],
hydropower unit vibration signal [25], bearing vibration signal [26], medical signal [27], wind speed
prediction [28], and so on. Xiao et al. [29] proposed a fault denoising and feature extraction method
of rolling bearing based on NMD and continuous wavelet transform (CWT). Zhan et al. [30] used
CEEMDAN and FE to denoise the shock signal. The relevant modes (noisy signal modes and useful
signal modes) can be identified by the difference between the FE of the new waveform and the next
adjacent new waveform. Li et al. [31] proposed a noise reduction method of underwater acoustic signals
based on CEEMDAN, mutual information, PE and CWT. Ma et al. [32] proposed EEG signal denoising
method based on EEMD and cosine similarity (CS). The similarity between IMF and the original signal
is calculated by CS. Then, the IMFs are divided into noise-dominated and signal-dominated part by
finding the latter location of the first minimal value of CS curve. Bi et al. [33] used EEMD, robust
independent component analysis (RobustICA) and CWT to study the blind source separation and
noise source identification of gasoline engines. As far as we know, UPEMD and AAPE have not been
used to solve the problem of underwater acoustic signals.

In this paper, a noise reduction method of underwater acoustic signals based on UPEMD,
AAPE and Pearson correlation coefficient (PCC) is proposed. We used UPEMD to decompose the
original signal into a series of IMFs. According to the threshold of AAPE, high-frequency IMFs and
low-frequency IMFs can be distinguished effectively. It is considered that all low-frequency IMFs are
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useful IMFs (UIMFs), and then PCC is used to determine whether the high-frequency IMF with the
smallest AAPE is a UIMF. Finally, the noise reduction can be realized by reconstructing all UIMFs.
The structure of this paper is as follows: Section 2 is the basic theory of UPEMD, AAPE, and PCC;
in Section 3, the proposed noise reduction method of underwater acoustic signals and evaluation
criteria is introduced; in Sections 4 and 5, the proposed method is applied to chaotic signal and
underwater acoustic signals respectively. The conclusion is given in Section 6.

2. Basic Theory

2.1. Uniform Phase Empirical Mode Decomposition (UPEMD)

The main purpose of the EMD algorithm is to decompose the original signal f (t) into a series of
IMFs that characterize the time scale, which can be expressed below:

f (t) = ∑ IMFi(t) (1)

The specific steps of EMD are briefly summarized as follows:

Step 1. Connect the local maxima/minima of x(t) to obtain the upper/lower envelope using the
cubic spline.

Step 2. Derive the local mean of envelope, m(t), by averaging the upper and lower envelopes.
Step 3. Extract the temporary local oscillation h(t) = x(t)−m(t).
Step 4. If h(t) satisfies some predefined stoppage criteria [8], h(t) is assigned as an IMF noted as

cm(t) where m is the IMF index. Otherwise set x(t) = h(t) and repeat Step 1 to Step 3.
Step 5. Compute the residue rm(t) = x(t)− cm(t).
Step 6. Set x(t) = rm(t) and repeat Step 1 to Step 5 to extract the next IMF.

Note that the fixed sifting number ns is one of the stoppage criteria of EMD [8].

2.1.1. The Masking Signal EMD (MS-EMD)

UPEMD is based on the idea of MS-EMD. Before introducing the concept of UPEMD, we first
introduce MS-EMD. To alleviate the residual noise effects of EMD, Deering et al. proposed MS-EMD in
2005 [9]. The masking EMD uses a sinusoid signal w(t) as the assisted disturbance with its frequency
fw no less than that of the highest frequency component of data. Then EMD is applied to decompose
the signal x(t) perturbed by w(t) into two IMFs. The same process is repeated by applying EMD to
the signal perturbed by −w(t). Finally, the average of the two resultant sets of IMFs is identified as the
final result [9]. Let Em(·) be an operator, which produces the mth IMF decomposed by EMD.

The specific steps of MS-EMD are summarized as follows:

Step 1. A masking signal is constructed according to the frequency information of the original
signal x(t):

w(t; θ) = ε cos(2π fwt + θ) (2)

Step 2. Compute c+1 = E1(x(t) + w(t; θ)); Similarly, compute c−1 = E1(x(t) + w(t; θ + π)).

Step 3. Obtain IMF1 by c1 =
c+1 +c−1

2 , and IMF2 by c2 = x− c1.

The disturbance amplitude ε and phase θ of the assisted sinusoid signal can be preset according
to the relevant rules of the MS-EMD. The specific method is described in [9].

2.1.2. The Two-Level EMD (2L-UPEMD)

MS-EMD uses two sinusoidal signals to eliminate residual noise, but the effect is underdeveloped.
Wang et al. [15] pointed out that residual noise can be minimized by searching for all possible phases.
Based on this idea, 2L-UPEMD is proposed. Denote the number of phases as np with np ∈ N. Let these



Entropy 2018, 20, 918 4 of 18

np phases be uniformly distributed in the interval [0, 2π]. Then the phase θk in the k th realization in
Equation (2) is calculated as:

θk = 2π(k− 1)/np, k = 1, 2, . . . , np (3)

The specific steps of 2L-UPEMD are summarized as follows:

Step 1. Assign Tw(= 1/ fw), ε and np.
Step 2. Based on Equations (2) and (3), calculate the perturbed signal:

w(t; θk) = x(t) + ε cos
(

2π

(
fwt +

k− 1
np

))
(4)

Step 3. Perform EMD to obtain two IMFs, ck,m(t) = Em(x(t) + w(t; θk)), m = 1, 2.
Step 4. Repeat Step 2 to Step 3 for k = 1 to np.
Step 5. Obtain the resultant IMF1 and IMF2 as cm(t) = 1

np
∑
k

ck,m(t).

The observation formula shows that when np = 2, 2L-UPEMD is MS-EMD.

2.1.3. The Multi-Level UPEMD

As mentioned in Section 2.1.2, 2L-UPEMD can decompose the signal into two IMFs. The IMF1 is
identified as the resultant IMF1, and IMF2 is identified as the new signal. The same method is applied
recursively to extract the resultant IMFs at lower frequencies [15].

Assuming a time series of n samples in length. The masking frequency fw is predetermined by
taking the dyadic property of EMD that acts as an adaptive dyadic filter bank for the decomposition
of the white noise with ns = 10 [10]. The number of resultant IMFs is approximately equal to
nim f = log2 n. The period with index m is determined as Tw = 2m, m = 1, 2, . . . , log2 n. Let Um(·) be
an operator, which produces the mth IMF decomposed by 2L-UPEMD.

The specific steps of multi-level UPEMD are summarized as follows:

Step 1. Assign np, set nim f = log2 n and initial residue: r0(t) = x(t).

Step 2. Set εm = ε0 · std(rm−1(t)), where std stands for the standard deviation; and (Tw)m = 2m.
Step 3. Perform the 2L-UPEMD to obtain the IMF cm(t), that is cm(t) = U1

(
rm−1; np, εm, (Tw)m, ns

)
.

Step 4. Calculate residue rm(t)← rm−1(t)− cm(t) .
Step 5. Repeat Step 2 to Step 5 for m = 1 to nim f to extract all IMFs.

Note that the UPEMD used in this paper is the multi-level UPEMD. The disturbance amplitude
ε0 is usually empirically chosen over the range of ε0 ≈ 0.1∼1.0, np is the maximum number of phases
allowed in each IMF. According to the default values recommended in [15], ε0 and np are set to 0.2 and
8, respectively. The Matlab codes of UPEMD are available at http://in.ncu.edu.tw/mzlo/drLo.html.

2.2. Amplitude-Aware Permutation Entropy (AAPE)

PE is a computational time series complexity method proposed by Bandt and Pompe. It has
the characteristics of simple, fast and robust calculation methods [19]. Assuming a time series of
N samples in length, that is y(n) = {y(1), y(2), . . . , y(N)}, the first step to compute this entropy
is to form N − d + 1 vectors of size d samples (where d denote the embedding dimension), such
that Yd(i) = {y(i), x(i + 1), . . . , y(i + d− 1)} , for 1 ≤ i ≤ N − d + 1 . Next, an ordinal pattern is
associated with each vector Yd(i) , which is defined as the permutation ϕi = {r0, r1, . . . , rd−1} of
{0, 1, . . . , d− 1} that fulfills y(i + r0) ≤ y(i + r1) ≤ . . . ≤ y(i + rd−2) ≤ y(i + rd−1) . Thus, d!

different ordinal patterns, referred to as πk, can be obtained from vectors Yd. For instance, six different
ordinal patterns can be considered for d = 3, such as π1 = {0, 1, 2}, π2 = {0, 2, 1}, π3 = {1, 0, 2},

http://in.ncu.edu.tw/mzlo/drLo.html
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π4 = {1, 2, 0}, π5 = {2, 0, 1}, and π6 = {2, 1, 0} [34]. For each πk, p(πk) represents the relative
frequency as follows:

p(πk) =

N−d+1
∑

i=1
δ(πk, ϕi)

N − d + 1
(5)

where δ(u, v) is the Kronecker delta function modified to work with patterns, such that:

δ(u, v) =

{
1, if u(i) = v(i), for every i = 1, 2, . . . , d;
0, for otherwise.

(6)

Finally, the normalized PE is computed as follows:

PE(d) = − 1
ln(d!)

d!

∑
k=1

p(πk) · ln(p(πk)) (7)

When p(πk) =
1
d! , the PE reaches the maximum value 1. PE denotes a random degree of the time

series y(n). The smaller the PE, the more regular the time series; otherwise, the more random the
time series.

PE only considers ordinal structure of patterns, the amplitude of each sample is discarded [34].
For instance, vectors Yd(i) = {5, 10, 2} and Yd(j) = {11, 26, 8} produce the same ordinal pattern
πk = {2, 0, 1}, thus, their PE values are equal. Azami et al. proposed the amplitude-aware permutation
entropy (AAPE) for the above problems. Briefly, the repetition probability of each pattern πk is
estimated by considering its relative frequency, as well as the average absolute (AA) and relative
amplitudes (RA) associated with the vectors Yd. For a specific vector Yd(i), the amplitudes can be
expressed as follows:

AAi =
1
d

d

∑
l=1
|y(i + l − 1)| (8)

RAi =
1

d− 1

d

∑
l=2
|y(i + l − 1)− y(i + l − 2)| (9)

Then, the occurrence probability of πk can be expressed as:

p∗(πk) =

N−d+1
∑

i=1
δ(πk, ϕi) · (α · AAi + (1− α) · RAi)

N−d+1
∑

i=1
α · AAi + (1− α) · RAi

(10)

where α is an adjusting coefficient, for α ∈ [0, 1], it makes the AAPE algorithm more flexible. In this
paper, we set α = 0.5 according to the suggestion in [22]. Finally, the normalized AAPE is computed
as follows:

AAPE(d) = − 1
ln(d!)

d!

∑
k=1

p∗(πk) · ln(p∗(πk)) (11)

The value of d is crucial to the calculation of PE and AAPE. The larger d, the more reliable results
are usually obtained. But if d is too large, it takes longer to calculate the entropy. In this paper, based
on the length of time series analyzed, we set d = 5.

In order to more intuitively verify and compare the performances of the PE and the AAPE, some
quintessential simulation signals are given. The simulation signals f1, f2, and f3 can be determined by:
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s1 = 0.5 cos(50πn), 0 ≤ n ≤ 1
s2 = 0.9 cos(250πn), 0.3 ≤ n ≤ 0.7
f1 = s1 + s2

f2 = s1 + 3s2

f3 = s1 + s2 + 1.5

(12)

where s1 and s2 are two components of f1, f2, and f3, respectively, and the sampling frequency is
1000 Hz. The PEs and AAPEs of the three simulated signals are listed in Table 1.

Table 1. The PEs and AAPEs of simulated signals.

Parameter f1 f2 f3

PE 0.6513 0.6513 0.6513
AAPE 0.6879 0.7214 0.6403

As shown in Table 1, for three different simulated signals, the PEs are completely equal and the
AAPEs are different. The results of this study indicate that PE cannot distinguish three signals in this
case accordingly, and AAPE can better measure time series complexity.

2.3. Pearson Correlation Coefficient (PCC)

Pearson correlation coefficient (PCC) is an indicator used to quantify the linear relation between
two stochastic variables, X and Y. In order to determine whether the high-frequency IMF with the
smallest AAPE is a UIMF, this paper uses PCC to calculate the similarity between the IMF and the
original signal. Then the PCC can be expressed as follows:

PCC(X, Y) =
E[(X− µX)(Y− µY)]

σXσY
(13)

where µX is the mean of the variable X, µY is the mean of the variable Y, σX is the standard deviation
of X and σY is the standard deviation of Y. The correlation coefficient can range between −1 and +1
and reveals two aspects about the linear relation between variables: its strength and direction. The
direction is determined by the sign, which indicates whether the variables are positive correlated or
anti-correlated [35]. The relationship between PCC and correlation is given in Table 2.

Table 2. The relationship between PCC and correlation.

Parameter No Correlation Weak Correlation Moderate Correlation Strong Correlation

PCC 0~0.1 0.1~0.3 0.3~0.5 0.5~1

3. The Proposed Noise Reduction Method

3.1. The Proposed Noise Reduction Method

The flow chart of the proposed noise reduction method (namely UPEMD-AAPE-PCC) is shown
in Figure 1.

The specific steps of the proposed method are as follows:

Step 1. Decompose the original signal using UPEMD.
Step 2. Calculate the AAPE of each IMF.
Step 3. Determine the threshold of AAPE. These IMFs, where AAPE is less than a given threshold,

are determined as low-frequency IMF (all low-frequency IMFs to be UIMFs). The remaining
IMFs are determined as high-frequency IMFs. When the embedded dimension of AAPE is 5,
it is appropriate to set the threshold to 0.35, which will be proved in Section 4.1.
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Step 4. Calculate PCC between the high-frequency IMF with the smallest AAPE and the original
signal. If PCC is greater than 0.4, the IMF is also determined as a UIMF.

Step 5. Reconstruct all UIMFs. After the reconstruction, the process of noise reduction is completed.
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3.2. Evaluation Criteria for Chaotic Signal Noise Reduction

In order to evaluate the performance of the proposed noise reduction method, the proposed
method is applied to the denoising experiment of chaotic signal. For the sake of evaluating the
performance of these methods, the signal-to-noise ratio (SNR) and root mean square error (RMSE) are
adopted and defined as follows [36]:

SNR = 10 · log10

(
‖x‖2

‖x̂− x‖2

)
(14)

RMSE =

√
‖x̂− x‖2

N
(15)

where x and x̂ are the noiseless signal and the denoised signal; N represents the length of the signal.

3.3. Evaluation Criteria for Underwater Acoustic Signals Noise Reduction

For the underwater acoustic signals without prior knowledge, the dynamical behavior of
denoised signal is analyzed with noise intensity [1], correlation dimension [37] and spatial-dependence
recurrence sample entropy (SdrSampEn) [38] to show the validity of the proposed method. Since the
original signal contains a multitude of noises, these feature parameters will be larger than the denoised
signal, and we use these feature parameters to evaluate the noise reduction effect.
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3.3.1. Noise Intensity

Assuming a time series of N samples in length, that is x(n) = {x(1), x(2), . . . , x(N)}. Its noise
intensity can be approximated by the standard deviation, i.e.,:

σ =

√√√√ 1
N

N

∑
n=1

[x(n)− x]2 (16)

where x = 1
N

N
∑

n=1
x(n) represents the mean of the time series.

3.3.2. Correlation Dimension

The given time series of a dynamic system xk= x(k∆t), (k = 1, 2, . . . , N) is embedded into a
m-dimensional space to fully expose the information contained in the time series [37]. For this phase
space, it is converted into a set of vectors as follows:

Xn(m, τ) =
{

xn, xn+k, . . . , xn+(m−1)k

}
(17)

where τ = k∆t is the time delay, ∆t is the sampling interval, Xn is the N vector in m-dimensional space,
n = 1, 2, . . . , M, and M = N − (m− 1)τ is the total number of vectors in reconstructed m-dimensional
phase space.

Thus, the reconstructed phase space is defined as:

X = [X1(m, τ), X2(m, τ), . . . , XM(m, τ)]T (18)

First we calculated the distance between all the vectors in the phase space. We define the phase
point Xi, which is chosen arbitrarily from the M data points, as the reference phase point and calculated
the spatial distance dij between Xi and the other M− 1 phase points:

dij = ‖Xi − Xj‖ (19)

where Xi and Xj are the two points in the phase space reconstruction.
After calculating all the points, the correlation integral can be obtained as:

C(r) =
2

M(M− 1)∑ θ(ε− dij) (20)

where r > 0, and 1 ≤ i ≤ j ≤ M.
C(r) represent the percentage of the number of point pairs in the phase space whose radius is

smaller than r, and θ(x) is the Heaviside function, which is defined as:

θ(x) =

{
0, x < 0
1, x ≥ 0

(21)

Therefore, the correlation dimension D2 is calculated by the correlation integral C(r) and the
radius r with:

D2 =
d ln C(r)

d ln r
(22)

D2 is regarded as the slope of the ln C(r)-ln r line segments when r is in a relatively small value
and the correlation of ln C(r) with ln r is indicated approximately straight. With a growing m, D2

increases and becomes saturated gradually. It is worth noting that the calculation of the correlation
dimension is more reliable when the length of the data is large enough [39].
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3.3.3. Spatial-Dependence Recurrence Sample Entropy (SdrSampEn)

SdrSampEn is based on the mathematical principle of sample entropy and enables the capture of
sequential information of a time series in the context of spatial dependence provided by the binarylevel
co-occurrence matrix of a recurrence plot. Pham et al. [38] used SdrSampEn to measure the uncertainty
of Lorenz signal. At the same time, it is pointed out that SdrSampEn have a better discriminative
ability in measuring the irregularity of chaotic time series. Detailed calculation of SdrSampEn can be
seen in [38].

4. The Chaotic Signal Denoising Experiment

Underwater acoustic signals have obvious chaotic characteristics. Three quintessential chaotic
signals are selected for simulation experiments, including Lorenz signal, Rossler signal, and Duffing
signal. In order to show the superiority of the method, EMD-AAPE-PCC, EMSD-AAPE-PCC and the
proposed method are used for comparison.

4.1. Choice the Threshold of AAPE

After decomposing the original signal into a series of IMFs, and determining whether they
are UIMFs in accordance with AAPE, we need to set the corresponding threshold. Therefore, it is
indispensable to study the threshold of AAPE. For the sake of brevity, this section selects the Lorenz
signal to analyze.

The Lorenz system can be expressed as:

.
x = −σ(x− y)
.
y = −xz + rx− y
.
z = xy− bz

(23)

where σ = 10, b = 8/3, r = 28. The equation is integrated by using a fourth-order Runge–Kutta
method with a fixed step size of 0.01, and the parameter values of the equation are x = −1, y = 0 and
z = 1. The x component signal with a length of 2048 points is selected as a chaotic signal, and the
signal are added the Gaussian white noise with SNR = 10 dB. The time-domain waveform for noisy
Lorenz signal are shown in Figure 2a. The decomposition result of the EMD, ESMD, UPEMD for the
noisy Lorenz signal are presented in Figure 2b–d.

As can be seen in Figure 2, EMD and ESMD decompose the original signal into 9 IMFs, and
UPEMD decomposes the original signal into 10 IMFs. The AAPE of each IMF is listed in Table 3.
In order to choose the appropriate AAPE threshold, we set the threshold from 0.1 to 1 and the
increment is 0.01. When the AAPE is less than this value, the corresponding IMFs are added to obtain
a recombined signal. Finally, the SNR of the recombined signal is shown in Figure 3.

Table 3. The AAPEs of IMFs.

Method IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

EMD 0.8990 0.7361 0.5074 0.2929 0.2236 0.1896 0.1642 0.1621 0.1512 /
ESMD 0.9230 0.7038 0.4938 0.2810 0.2185 0.1932 0.1742 0.1600 0.1533 /
UPEMD 0.8681 0.7870 0.5886 0.3978 0.2704 0.2188 0.1895 0.1737 0.1614 0.1506

As indicated in Figure 3, as the AAPE increases, the SNR first increases to a certain extent and
then decreases. When the AAPE is around 0.3, the SNR of the three decomposition algorithms reaches
the maximum for the first time. As AAPE continues to increase, the SNR of UPEMD begins to decline
around 0.4, and the SNR of EMD and ESMD begins to decrease around 0.5. After testing, we found
that the threshold selection presented similar results for the Duffing signal and the Rossler signal,
which are not listed here. For convenience, this paper sets the AAPE threshold to 0.35.
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4.2. Denoising for Noisy Chaotic Signal

This section also selects the Lorenz signal to analyze, and the test results of the Rossler signal
and the Duffing signal will be given later. The x component signal with a length of 2048 points is
selected as a chaotic signal, and the signal is added the Gaussian white noise with different SNRs. The
time-domain waveform before and after noise reduction for noisy Lorenz signals when SNR = 10 dB
are shown in Figure 4, and their phase diagrams are shown in Figure 5. The noise reduction results
for chaotic signal (including Lorenz signal, Rossler signal and Duffing signal with SNR = 5 dB, 10 dB,
15 dB, and 20 dB are listed in Table 4.
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Table 4. Noise reduction results of chaotic signal.

Chaotic Signal SNR/dB
EMD-AAPE-PCC ESMD-AAPE-PCC UPEMD-AAPE-PCC

SNR/dB RMSE SNR/dB RMSE SNR/dB RMSE

Lorenz signal

5 13.7972 1.5807 13.3847 1.6575 15.6321 1.2797
10 19.5190 0.8180 19.2559 0.8431 21.0471 0.6860
15 23.3469 0.5264 21.8157 0.6279 25.5440 0.4088
20 26.2986 0.3748 26.1920 0.3794 29.1438 0.2701

Rossler signal

5 13.8541 0.9662 14.4716 0.8999 17.3298 0.6475
10 18.5442 0.5630 18.4306 0.5705 20.7218 0.4382
15 23.9379 0.3026 22.9977 0.3372 26.1470 0.2346
20 28.6691 0.1755 28.8895 0.1711 30.4150 0.1435

Duffing signal

5 13.6513 0.4619 13.9917 0.4442 17.0769 0.3114
10 18.6499 0.2598 18.6051 0.2611 20.4668 0.2108
15 22.5043 0.1667 21.6795 0.1833 24.1256 0.1383
20 18.6596 0.2595 26.5844 0.1042 26.9542 0.0999
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Figure 4. The time-domain waveform before and after noise reduction for noisy Lorenz signal
when SNR is 10 dB. (a) The time-domain waveform of the noisy signal and noiseless signal; (b) the
time-domain waveform after noise reduction by EMD-AAPE-PCC; (c) the time-domain waveform after
noise reduction by ESMD-AAPE-PCC; and (d) the time-domain waveform after noise reduction by the
proposed method.

Figure 4 revealed that there are still some noises based on the EMD and ESMD methods, the noise
reduction result of UPEMD has the highest similarity with the noiseless signal. In order to better prove
the noise reduction effect of the three methods, we compare the phase diagrams before and after noise
reduction. As presented in Figure 5a, the phase diagram of the noisy Lorenz signal is annihilated
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by noise and appears as a disorderly pseudo-random feature. As can be seen from Figure 5d, the
phase diagram has a smoother track after noise reduction using UPEMD. Compared with EMD and
ESMD, we can see that the denoised phase diagram of UPEMD is closest to the noiseless signal. Table 4
presents the comparison of the SNR and the RMSE of the above three methods. Compared with
EMD-AAPE-PCC and ESMD-AAPE-PCC, the proposed method further enhances the SNR and reduces
the RMSE. It is obvious that the method in this paper has improving the performance.Entropy 2018, 20, 918 12 of 18 
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Figure 5. The phase diagram before and after noise reduction for noisy Lorenz signal when SNR is
10 dB. (a) The phase diagram of noisy signal and noiseless signal; (b) the phase diagram after noise
reduction by EMD-AAPE-PCC; (c) the phase diagram after noise reduction by ESMD-AAPE-PCC; and
(d) the phase diagram after noise reduction by the proposed method.

5. The Underwater Acoustic Signals Denoising Experiment

5.1. Data Collection

In this paper, three different types of ship radiated noise are selected as sample data, namely
the Ship-I, the Ship-II, and the Ship-III. The ship radiated noise are measured in the South China Sea.
Each type of underwater acoustic signals has 100 sample data. Each sample length is 2048 points and
sampling interval is 0.05 ms. Before the noise reduction experiment, the sample data have been filtered,
normalized, and sampled.

5.2. Denoising for Underwater Acoustic Signals

For the sake of brevity, this section selects the Ship-I to analyze. The time-domain waveform of
the Ship-I is shown in Figure 6a. The decomposition result of UPEMD for the Ship-I is presented in
Figure 6b. The AAPEs and PCCs of these components are indicated in Figure 7.
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Figure 6. The time-domain waveform of the Ship-I and the decomposition result of UPEMD. (a) The
time-domain waveform of the Ship-I; and (b) the decomposition result of UPEMD.
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From the AAPE curve in Figure 7, the proposed method determines the high-frequency IMFs and
low-frequency IMFs by AAPE, and the AAPE decreases as the IMF order increases. The AAPEs of
the last six IMFs (IMF5~IMF10) are all less than 0.35, and they are identified as low-frequency IMFs.
From the PCC curve, we find the high-frequency IMF with the smallest AAPE, which is IMF4. It can
be found that the PCC between IMF4 and the original signal is greater than 0.4, consequently, IMF4 is
also determined as a UIMF. The time-domain waveforms before and after noise reduction of the Ship-I
are shown in Figure 8. The phase diagrams before and after noise reduction are shown in Figure 9.
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Using the same method, we perform noise reduction on the Ship-II and the Ship-III. The
time-domain waveforms before and after noise reduction are presented in Figures 10 and 11,
respectively. The phase diagrams before and after noise reduction are presented in Figures 12 and 13,
respectively. In order to measure the effect of the noise reduction method for real underwater acoustic
signals, we calculate some feature parameters and make a comparison before and after noise reduction,
as listed in Table 5.
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Figure 11. The time-domain waveform before and after noise reduction for the Ship-III. (a) The
time-domain waveform before noise reduction; and (b) the time-domain waveform before noise
reduction (select 300 points).
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Figure 12. The phase diagram before and after noise reduction for the Ship-II. (a) The phase diagram
before noise reduction; and (b) the phase diagram after noise reduction.
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Figure 13. The phase diagram before and after noise reduction for the Ship-III. (a) The phase diagram
before noise reduction; and (b) the phase diagram after noise reduction.

Table 5. Feature parameters before and after noise reduction.

Underwater Acoustic Signals Status Noise Intensity Correlation Dimension SdrSampEn

The Ship-I
Before noise

reduction 0.2318 2.1261 1.7626

After noise
reduction 0.2034 1.5841 0.5991

The Ship-II
Before noise

reduction 0.2105 2.5325 2.9703

After noise
reduction 0.1799 1.8446 1.1416

The Ship-III
Before noise

reduction 0.2561 1.9459 0.9726

After noise
reduction 0.2388 1.2441 0.3647

It can be seen from Figures 8, 10 and 11 that underwater acoustic signals before noise reduction is
full of a great deal of noise, and it is completely infeasible to distinguish the trend of the waveform.
After noise reduction, the noises are well suppressed. Figures 9, 12 and 13 indicated that the phase
diagrams of underwater acoustic signals are obliterated by noise before noise reduction, and fractal
characteristics are almost not observed. After noise reduction, the proposed method can roughly
restore the phase diagram of the pure attractor. The denoised signal has a smoother orbit, and the
attractor has better geometric regularity. As demonstrated in Table 5, the denoised signal has smaller
noise intensity, correlation dimension, and SdrSampEn, indicating that the method removes most of the
noises in the underwater acoustic signals, further reflecting the effectiveness of the proposed method.
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6. Conclusions

In this paper, a new noise reduction method for underwater acoustic signals based on UPEMD,
AAPE, and PCC is proposed. The proposed method uses UPEMD to decompose the original
signal, distinguishes the high-frequency and low-frequency IMFs by AAPE, judges whether the
high-frequency IMF with the smallest AAPE is a UIMF according to PCC, and finally reconstructs all
UIMFs. The main findings in this paper are highlighted as follows:

(1) UPEMD, as a new adaptive decomposition algorithm, is first used in the noise reduction of
underwater acoustic signals.

(2) A simulation experiment shows that AAPE can reflect the amplitude information of the signal
compared with PE. Consequently, AAPE is used to measure the complexity of IMF in this paper.

(3) Quantitative comparisons based on the noisy chaotic signals demonstrate that the proposed
method performs better than the EMD-AAPE-PCC and the ESMD-AAPE-PCC method by
providing lower RMSE and higher SNR value.

(4) Through the noise reduction experiments of three types of underwater acoustic signals, it is
proved that the proposed method can further eliminate the noise and recover the true dynamic
characteristics of the chaotic signal more clearly, which lays a foundation for the study of the
detection, feature extraction and classification of underwater acoustic signals.
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