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Abstract: Alternative polyadenylation (APA) represents an important mechanism for regulating
isoform-specific translation efficiency, stability, and localisation. Though some progress has been
made in understanding its consequences in metazoans, the role of APA in the model organism Saccha-
romyces cerevisiae remains a relative mystery because, despite abundant studies on the translational
state of mRNA, none differentiate mRNA isoforms’ alternative 3′-end. This review discusses the
implications of alternative polyadenylation in S. cerevisiae using other organisms to draw inferences.
Given the foundational role that research in this yeast has played in the discovery of the mechanisms
of cleavage and polyadenylation and in the drivers of APA, it is surprising that such an inference is
required. However, because advances in ribosome profiling are insensitive to APA, how it impacts
translation is still unclear. To bridge the gap between widespread observed APA and the discovery
of any functional consequence, we also provide a review of the experimental techniques used to
uncover the functional importance of 3′ UTR isoforms on translation.

Keywords: alternative polyadenylation; 3′-end formation; Saccharomyces cerevisiae; translation

1. Introduction

Despite the close relationship between eukaryotic mRNA and protein expression,
changes to mRNA concentrations do not always correlate to changes at the protein level.
The 3′ untranslated region (3′ UTR) of mRNA plays a key role in regulating gene expression.
In particular, mRNA stability, localisation and translation are largely impacted by the many
cis-regulatory elements within the 3′ UTR. These interact with regulatory proteins that
can negatively or positively influence the mRNA and its protein abundance. Therefore,
changes to the length of the 3′ UTR have the potential to alter the fate of an mRNA.

In the budding yeast Saccharomyces cerevisiae, it is estimated that over 70% of genes
contain multiple sites where cleavage and polyadenylation can occur [1]. mRNA isoforms
produced from alternative poly(A) sites within the 3′ UTR generate the same protein;
however, they differ in the length of their 3′ UTR. In such cases, the longer isoform tends to
have a higher potential for regulation, due to additional regulatory elements present within
the extended 3′ UTR. It is now clear from multiple gene-by-gene and transcriptome-wide
studies that the relative concentration of the cleavage and polyadenylation factors, the rate
of transcription, and chromatin architecture can influence poly(A)-choice [2–6]. However,
whilst progress has been made towards understanding the effects of such alternative
polyadenylation (APA) in mammalian systems [7], surprisingly little is known about its
consequences in yeast.

In this review, we will describe what little is known about the effects of APA on
translation in S. cerevisiae with inferences from other species. In addition, the different
techniques available to better understand the impact that 3′ UTR isoform changes have on
translation efficiency will be discussed.
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2. The Regulatory Features Impacted by APA

mRNA 3′ UTRs harbour many cis-regulatory elements that are involved in post-
transcriptional regulation. Shortening or lengthening of the 3′ UTR thus results in the loss
or gain of such regulatory sequences (Figure 1). In metazoans, these include microRNA
(miRNA) binding sites. miRNAs are short, single-stranded RNAs of approximately 22 nt
that base pair with target mRNA and cause destabilisation and translational repression
of transcripts. Consequently, shorter mRNA isoforms tend to exhibit higher stability and
increased protein levels due to the loss of miRNA target sites [8,9]. The long 3′ UTR isoform
of the gene Hip2, for example, contains seed matches for the miRNAs mir-21 and mir-155
that are absent in the shorter isoform. Following T-cell activation, an increased relative
expression of the shorter transcript compared to the longer isoform was accompanied by
an increase in encoded ubiquitin conjugating enzyme levels [8]. Similarly, using luciferase
reporter assays, mutation of the miR-24 and miR-155 seed matches within the longer 3′

UTR of Hip2 restored luciferase expression to levels seen with the shorter 3′ UTR isoform.
As such, shortening of the 3′ UTR tends to correspond with increased protein expression
by eliminating miRNA-binding sites.
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sum effect of these different elements determines the overall stability, localisation, and translational efficiency of individual
transcripts.

Mayr and Bartel [9] estimated that miRNA regulation evasion accounts for a quar-
ter to two-thirds of the increase in protein expression levels related to shorter 3′ UTR
transcript usage in human cancer cells. However, the impact that small RNA may have
on translational control in fungi is less well understood. MicroRNAs, as well as small
RNA (milRNA) and Dicer-independent Piwi-interacting RNAs (disiRNA), capable of gene
repression through imperfect base-pairing, have been identified in the filamentous fungus
Neurospora crassa [10]. However, neither these, nor miRNAs, have been found in S. cerevisiae
and, consequently, antisense-mediated repression appears to have been lost in budding
yeast [11]. As such, miRNA inclusion or exclusion does not alter the translatability of yeast
mRNA. This eliminates a major contributor to APA-specific translation in yeast. Therefore,
other regulatory events need to be taken into account. These include the effect of 3′ UTR
length on nuclear export and translation, as well as changes to regulatory protein binding
and cellular localisation caused by alternative 3′ UTRs.

2.1. Cis-Regulatory Features

The length of the mRNA itself has been seen to negatively influence the translation of
a transcript. In yeast, shorter transcripts tend to form a more stable closed-loop structure,
which enhances translation initiation and ribosome recycling [12]. However, shortening of
the 3′ UTR may also negatively affect translational efficiency [13]. In mice, the transcription
factor BZW1 has three alternative 3′ UTR isoforms. Expression of these isoforms fused to
EGFP indicated that the shortest transcript had the lowest protein expression [14]. This was
thought to be linked to its short 3′ UTR length [15]. The length of the 3′ UTR has also been
negatively linked to nuclear export rate in Drosophila [16]. This is likely a consequence of
regulatory proteins binding to the 3′ UTR and slowing export or actively retaining mRNA
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transcripts within the nucleus. Such mechanisms are likely to occur also in yeast, where
nuclear traffic is highly regulated [17].

Some studies have suggested that the presence of regulatory elements plays a larger
role in 3′ UTR regulation than the length of the 3′ UTR itself [18]. Several sequence elements,
such as AU-rich (AREs) and GU-rich (GREs) elements, have been associated with mRNA
instability and decreased translation efficiency [19,20]. AREs occur in approximately 10%
of human genes [21] and are conserved in yeast [22]. AREs tend to target mRNAs for rapid
degradation in a deadenylation-dependent manner [19,23,24]. As such, ARE-containing
mRNAs tend to be short-lived and generally encode proteins involved in cell growth or
responses to external stimuli [25]. The loss of AREs by use of short 3′ UTR isoforms is
likely to lead to increased mRNA stability and higher protein expression, relative to longer
isoforms containing AREs.

Importantly, mRNA transcript stability and translational efficiency do not always
correlate. The human gene for eukaryotic initiation factor 2α (EIF-2α) expresses both 1.6
kb and 4.2 kb mRNA products that differ in the length of their 3′ UTR sequence [26]. In
activated T-cells, the longer 4.2 kb mRNA was more stable than the 1.6 kb mRNA. Despite
both mRNA isoforms associating with polyribosomes, and, therefore, being actively and
efficiently translated, the 1.6 kb mRNA produced two- to threefold more protein than the
4.2 kb mRNA in vitro. This suggests that the additional 3′ UTR sequence in the 4.2 kb
isoform causes translation repression regardless of increased mRNA stability.

2.2. Trans-Regulatory Factors

Trans factors that interact with mRNA are also involved in alternative 3′ UTR isoform
regulation. In S. cerevisiae, approximately 570 different proteins have been estimated
to bind to RNA [27], and many proteins with other roles appear to moonlight as RNA-
binding proteins [28–31]. These include proteins with the ability to stabilise or destabilise
the transcript and regulate translational efficiency. Differential binding of such proteins
between short and long isoforms is therefore likely to affect stability and/or translation.
Surprisingly, no comprehensive analysis, mapping the intersect between APA and the
binding sites of such RNA-binding proteins, has yet been attempted in yeast, despite the
sequence motifs of a number of these being known [32].

Pumilio-Fem-3-binding factor (Puf) proteins are a conserved family of RNA-binding
proteins that are linked to translational repression and have been associated with develop-
mental regulation in several eukaryotes [33]. The first member of this family, Pumilio, is
a Drosophila protein that binds to PUF response elements within the 3′ UTR of target mR-
NAs [34]. This binding promotes translational repression in both poly(A)-independent [35]
and dependent manners [36,37]. One key role of Pumilio involves its binding to the mater-
nal hunchback mRNA, causing its translational repression at the posterior pole during early
embryogenesis [38–41].

In yeast, six different Puf proteins are known. Affinity-assay analysis of the Puf
proteins 1–5 demonstrated interaction with approximately 12% of yeast mRNAs [42], and
mutants lacking these Puf proteins caused a 7–8% difference in mRNA expression [43].
Interestingly, each Puf protein is associated with distinct groups of functionally related
mRNA targets [42]. Puf1p and Puf2p bind to mRNAs of membrane-associated proteins,
whereas Puf3p associates almost exclusively with mRNAs for nuclear-encoded mitochon-
drial proteins. In contrast, Puf4p and Puf5p interact preferentially with transcripts encoding
proteins destined for the nucleus. Specifically, Puf4p binds to nucleolar ribosomal RNA-
processing factor mRNAs, and Puf5p binds to mRNAs encoding chromatin modifiers and
components of the spindle pole body. Differential inclusion of Puf binding sites within
only longer alternative 3′ UTR mRNAs is likely to decrease protein production from these
transcripts. Analysis of Puf binding sites and their association with different 3’ UTR iso-
forms would allow testing of APA-specific mRNA repression. However, to our knowledge,
this analysis has not been systematically performed, even though, since both the consensus
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sequences for binding and the positions of APA are known, it would be bioinformatically
straightforward to do so.

RNA-binding proteins can also increase the translational efficiency or stability of
mRNA. HuR is a ubiquitously expressed mammalian RNA-binding protein that binds
specifically to AREs within the mRNA transcript. This is generally associated with translo-
cation to the cytoplasm and increased mRNA stability and translation [44–47]. Conversely,
several instances of HuR promoting mRNA decay or repressing translation have also been
reported [48,49]. Pub1p, a HuR-like protein, has been shown to similarly inhibit deadenyla-
tion and subsequent mRNA decapping in yeast [22]. Deletion of Pub1p, therefore, resulted
in destabilisation of ARE-containing reporter transcripts. Similarly, the tristetraprolin
family member, Cth2p, participates in the translational regulation and decay of AREs
in targets, in a negative feedback loop of its own expression [50]. Again, whether such
ARE-containing mRNAs are differentially regulated in conditions that stimulate APA is
not known.

Sequences within the 3′ UTR have also been seen to affect the localisation of mRNA
transcripts and their resulting proteins. The exclusion of such localisation sequences in
shorter 3′ UTR isoforms is expected to alter expression within the cell. In neurons, two
different transcripts of the brain-derived neurotrophic factor (BDNF) gene are produced
that differ in the length of their 3′ UTR [51]. The shorter BDNF mRNA was found to
be restricted to the cell body, whereas the longer isoform was preferentially targeted to
dendrites [52]. The 3′ UTR sequence between the two BDNF poly(A) sites was also shown
to be sufficient for targeting GFP mRNA to dendrites [52].

Currently, 32 mRNAs are known to specifically localise in yeast [53], though more are
likely. Of these, 24 are targeted to the bud tip for localisation in the presumptive daughter
cell [54–58]. This localisation is dependent on interaction with the RNA-binding protein
She2p [54]. She2p then recruits the Myo4p–She3p complex that transports the mRNA
to the bud tip [59–62]. The best characterised example is Ash1p, a protein involved in
yeast cell-fate determination and inhibition of mating-type switching. The ASH1 3′ UTR
is required for mRNA localisation to the distal tip of buds during anaphase of the cell
cycle [56]. This results in the correct sorting of Ash1p to the nucleus of daughter cells.
Consequently, 3′ UTR deletion caused the symmetrical distribution of Ash1p throughout
the mother and daughter nuclei and prevented mating-type switching [56]. This was
unable to be rescued when the 3′ UTR from ADH2 was substituted [58]. However, the
replacement of the ASH1 3′ UTR with that of CDC6 caused only a 16% reduction in mRNA
localisation and 10% reduction in Ash1p asymmetry.

This suggests that the CDC6 3′ UTR contains localisation signals, or that other parts
of the ASH1 mRNA play a role in targeting it to the bud tip [58]. Indeed, along with the
discovery of a cis-regulatory element that overlaps with the termination codon and the
3′ UTR, three additional cis-elements have been located within the coding region of the
ASH1 mRNA [63]. These interact with She2p and are responsible for localisation to the
presumptive daughter cell in a structure-specific, rather than sequence-specific, manner [58,
59,61,63–65]. While each cis-element can individually target a reporter mRNA to the bud
tip, having all four increased the quality and efficiency of ASH1 mRNA localisation [65].
Shifting all four elements to the 3′ UTR did not affect mRNA localisation; however, it did
affect the Ash1p asymmetry [65]. This was linked to the cis-elements reducing translation
of ASH1 mRNA during transport to daughter cells. In addition, the sixth yeast Puf protein,
Puf6p, is also involved in ASH1 mRNA translation repression and is required for its
localisation through interaction with 3′ UTR Puf binding sites [66].

The other eight nuclear-encoded mRNAs known to specifically localise in yeast are
targeted to the mitochondria in a 3′ UTR-dependent manner [67–71] and are believed to
increase mitochondrial proteins’ import efficiency [69]. One such mRNA is ATP2. Substitu-
tion of the ATP2 3′ UTR with the 3′ UTR of non-localising ADH1 inhibited mitochondrial
targeting and caused respiratory dysfunction [69]. Therefore, 3′ UTRs play a key role in
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mRNA localisation in yeast, which is important for correct mitochondria biogenesis and
bud tip asymmetry.

Additionally, 3′ UTRs are able to regulate protein localisation independently of mRNA
localisation. Berkowitz and Mayr [72] demonstrated that alternative 3′ UTRs differentially
regulate the localisation of membrane proteins post-translationally in human cell lines.
The gene CD47 possesses two alternative 3′ UTR isoforms. The long isoform enables
cell surface expression, whilst the shorter transcript results in protein localised to the
endoplasmic reticulum. This is a consequence of the longer 3′ UTR acting as a scaffold
and recruiting HuR and SET proteins. During translation, this protein complex is targeted
to the endoplasmic reticulum surface. The cytoplasmic domains of the CD47 protein
can subsequently bind to SET, which interacts with Rac1 for translocation to the plasma
membrane. Consequently, the 3′ UTR of mRNAs can play an integral role in mRNA
and protein localisation. Shortening of this region through APA may therefore interfere
with the subcellular localisation of mRNA and/or their resulting proteins. Whether such
isoform-specific localisation mediated by APA occurs for yeast genes is still unknown.

3. Techniques for Investigation of Alternative 3′ UTR Isoform Translation

Given the widespread nature of alternative 3′ UTR usage and its potential functional
consequences, further analysis of mRNA isoform-specific translation is of interest. Several
key approaches currently exist for the examination of the translatome in yeast. These
techniques will play a critical role in determining the influence that APA has on translation.

For individual genes, luciferase reporter assays are a common method for examining the
effect of different 3′ UTR lengths and compositions on mRNA translational efficiency [8,9,73–80].
Different 3′ UTRs are fused to a luciferase reporter gene and the luciferase activity of different
constructs is assessed. Decreased luminescence for one 3′ UTR length relative to another
indicates a less translationally active isoform. Other useful reporter genes include GFP [52,81]
and lacZ. However, some changes to translational efficiency between isoforms may be lost using
this method. Fusion of alternative 3′ UTRs to a reporter gene is unlikely to demonstrate changes
to the closed-loop structure formation, as the original gene’s length is not maintained and
recapitulation of native 3’-end formation is complex. Moreover, the stability of these reporter
proteins relative to the yeast cell cycle may mask subtle changes that have a more pronounced
effect on short-lived proteins.

mRNA translational activity can also be inferred from its ribosomal association. Ac-
tively translated mRNAs will generally be bound to one or more ribosomes, known as
monosomes and polysomes, respectively. Identification of an mRNA’s degree of ribo-
some association can, therefore, be used as a proxy for its translation efficiency. Several
techniques have been designed that take advantage of this (Figure 2).

Polysome profiling remains the gold standard for the assessment of mRNA trans-
lational activity [82,83]. This technique uses sucrose-gradient centrifugation to separate
actively translated polysome-associated mRNAs from untranslated free mRNA. Polysome
profiling can be used to examine the translational efficiency of specific mRNAs gene-by-
gene or, paired with microarray and deep-sequencing techniques, to assess translation
transcriptome-wide [84–88]. As this approach retains the full-length mRNA following
profiling, changes to the length of the 3′ UTR in translated and untranslated fractions
and any ribosomal biases for specific isoforms can be monitored with 3′ UTR-specific
sequencing methods. However, large amounts of starting material are required, and the
procedure is labour intensive and not well-suited for handling many samples in parallel.
Sucrose gradients also usually include heparin, which complicates the isolation of RNA
for downstream applications. Furthermore, this conventional approach suffers from lim-
ited resolution and potential contamination of profiles with other high molecular weight
complexes and membranes [89–91].
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Figure 2. Experimental techniques to study the translatome. Cell lysate is prepared using the translation elongation inhibitor
cycloheximide to stall ribosomes on mRNA transcripts. Polysome profiling separates cell lysate using ultracentrifugation in
a sucrose density gradient that generally increases from 15% to 50% sucrose. Fractionation, whilst observing the absorbance
at 254 nm, creates a polysome profile with peaks for free RNA, the 40S and 60S ribosomal subunits, the 80S monosome
bound to RNA, and polysomes of increasing size. RNA is isolated from individual fractions for downstream applications
such as qPCR, microarrays, or RNA-seq. Ribosomal profiling digests mRNA using RNase I. A translating ribosome encloses
an approximately 30 nt sequence and protects it from nuclease digestion, creating ribosome-protected fragments (RPFs).
Ribosomes are recovered by ultracentrifugation, usually in a sucrose cushion. RPFs are purified and size selected in a
polyacrylamide gel for downstream applications. Ribo Mega-SEC cell lysate is injected into a uHPLC column containing
5 µm particles for separation, and a chromatogram is recorded during fractionation. This creates peaks for polysomes,
monosomes, 60S and 40S ribosomal subunits, and smaller protein complexes or free RNA. RNA is isolated from individual
fractions for downstream applications. Ribosome affinity purification uses affinity-tagged ribosomes to capture ribosomes
and their associated mRNAs from cell lysate, using specific antibodies coupled to a matrix. Purified ribosomes are then
released from the matrix and the mRNA prepared for downstream applications.

Resolution challenges were overcome with the development of the ribosome profil-
ing technique [92] and its extension, TCP-seq [93]. Ribosomes leave an approximately
28–30 nucleotide footprint when bound to mRNA [92,94]. Following limited treatment
with RNase I, only these ribosome-protected RNA fragments will remain. The libraries
prepared from these fragments are then deep-sequenced to quantify ribosome positioning
on individual genes globally to a sub-codon resolution [92]. However, this technique is not
suitable for examining changes to translational efficiency linked to 3′ UTR APA. Despite
providing higher resolution data, little information about non-coding regions, such as the
3′ UTR, is expected to be captured via this method. In yeast, 98.8% of ribosome footprints
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map to protein-coding regions of mRNA transcripts [92]. As such, ribosome profiling
is blind to alternative 3′ UTR isoform usage and its effect on translation. Consequently,
approaches that retain the entire mRNA transcript are preferable for analysis of 3′ UTR
APA-dependent changes in translation efficiency.

An interesting variation on polysome profiling was recently developed to evaluate
mRNA translational efficiency [95]. The Ribo Mega-SEC technique utilises size exclusion
chromatography (SEC) and ultra high-pressure liquid chromatography (uHPLC) for the
separation and analysis of polysomes and their associated mRNA molecules, rather than
sucrose density gradients. This approach is expected to provide greater reproducibility
than other methods, due to automated injection and fraction-collection systems [95]. Fur-
thermore, unlike traditional polysome profiling, which includes a long ultracentrifugation
step, Ribo Mega-SEC uHPLC runs for approximately 15 min. Optimisation of this approach
would make it suitable for the analysis of translational efficiency in yeast.

An additional method for the evaluation of mRNA–ribosome association in yeast
involves engineering ribosomes with an affinity tag. This allows rapid purification of
ribosomes with their associated mRNA in vivo [96]. Ribosome affinity purification (RAP)
uses genetically modified cells that express an affinity tag on a protein of the large ribo-
somal subunit. In yeast, these include the fusion of a FLAG(His)6 tag to Rpl25p [96] or
incorporation of the protein A IgG-binding domain on Rpl16b [97]. Following affinity
selection of ribosomes, their associated RNA is isolated for downstream applications such
as RNA-seq. This provides a relatively quick and efficient method for translatome analysis
using well-defined immunoprecipitation tags that can be adapted to high throughput
assays. This technique is, however, lower resolution than polysome profiling, as the extent
of polysome vs. monosome association cannot be quantified. Nevertheless, this remains a
useful approach for determining whether a 3′ UTR isoform is translationally active.

Further refinement of these techniques or development of new translatome-focused
methods would aid in accurate analysis of the translational efficiency in yeast. Careful
consideration for the 3′ UTR is, however, needed to ensure new approaches do not obscure
their role in translation. Three of the approaches—polysome profiling, Ribo-MEGA-Seq,
and Ribosome affinity purification—are suitable for the determination of isoform-specific
mRNA translation, yet they have not yet been utilised for this purpose, leaving the field
open for new discoveries in translational control of alternative 3′ UTR isoforms.

4. Conclusions

S. cerevisiae represents a key model organism for basic biological research and has aided
in a better understanding of human biology and disease. Though the majority of proteins
that make up the yeast core cleavage and polyadenylation machinery have been identified,
and much has been learnt about how alternative cleavage sites are selected [2], the role of
this APA remains a relative mystery. The discovery of whether changes to the length of
the 3′ UTR alter the translational efficiency of an mRNA transcript has been compromised
by the techniques used to study the translatome. Consequently, as translational efficiency
studies have progressed, the information present in 3′ UTRs has been left behind. The use
of approaches allowing for analysis of the entire ribosome-associated mRNA or reporter
assay systems will allow for further examination of the impact of APA on translation.

S. cerevisiae possesses fewer opportunities for APA-mediated control of translation due
to the loss of miRNAs and their overall shorter 3′ UTR lengths (median 166 nucleotides [1]),
compared to more complex eukaryotes. This model organism is also less likely to follow
the “longer 3′ UTR transcripts create less protein” principle. This suggests a possibility
that APA may exercise only a limited impact on translation in budding yeast. However,
nutritional and pharmacological changes to cellular metabolism and transcription cause
abundant changes to 3′ UTR lengths [2–4]. An option is that that this APA functions
primarily as a transcription termination safety mechanism. However, various cis-elements
present within the 3′ UTR and their associated regulatory proteins present a mechanism
for 3′ UTR isoform-specific stability, localisation, and translation efficiency. Therefore, APA
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is likely to play a key role in translation in yeast. However, rather than global effects, the
direction of control will likely be on a gene-specific basis, where translation is balanced by
positive and negative cis-regulatory elements contained within the 3′ UTR isoform used.
Research connecting mRNA translation to specific 3′ UTR isoforms is ripe for discovery
after being overlooked for too long.
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